Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55214
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李清勝
dc.contributor.authorBuo-Fu Chenen
dc.contributor.author陳柏孚zh_TW
dc.date.accessioned2021-06-16T03:51:37Z-
dc.date.available2015-03-13
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-01-16
dc.identifier.citationAkter, N., K. Tsuboki, 2012: Numerical Simulation of Cyclone Sidr Using a Cloud-Resolving Model: Characteristics and Formation Process of an Outer Rainband. Mon. Wea. Rev., 140, 789–810.
Barnes, G. M., E. J. Zipser, D. P. Jorgensen, and F. D. Marks Jr., 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 2125–2137.
Beattie, J. C., and R. L. Elsberry, 2012: Western North Pacific monsoon depression formation. Wea. Forecasting, 27, 1413–1432.
Beattie, J. C., and R. L. Elsberry, 2013: Horizontal structure of monsoon depressions in the western North Pacific at formation time. Geophys. Res. Lett., 40, 983–987.
Boukabara, S.-A., R. N. Hoffman, C. Grassotti, and S. M. Leidner, 2002: Physically-based modeling of QSCAT SeaWinds passive microwave measurements for rain detection. J. Geophys. Res., 107, 4786.
Cecil, D. J., and E. J. Zipser, 1999: Relationships between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Mon. Wea. Rev., 127, 103–123.
Cecil, D. J., E. J. Zipser, and S. W. Nesbitt 2002a, Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description, Mon. Wea. Rev., 130, 769–784.
Cecil, D. J., and E. J. Zipser, 2002b: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part II: Intercomparison of observations, Mon. Wea. Rev., 130, 785–801.
Chan, K. T. F., and J. C. L. Chan, 2012: Size and strength of tropical cyclones as inferred from QuikSCAT data, Mon. Wea. Rev., 140, 811–824.
Chen, B.-F., R. Elsberry, and C.-S. Lee, 2014a: Origin and Maintenance of the Longlasting, Outer Mesoscale Convective System in Typhoon Fengshen (2008). Mon. Wea. Rev., 142, 2838–2859.
Chen, B.-F., C.-S. Lee, and R. Elsberry, 2014b: On tropical cyclone size and intensity changes associated with two types of long-lasting rainbands in monsoonal environments. Geophys. Res. Lett., 41, 2575–2581.
Chen, D. Y., K. K. W. Cheung, and C. S. Lee, 2011: Some implications of core regime wind structures in western North Pacific tropical cyclones, Wea. Forecasting, 26, 61–75.
Chen, D. Y., K. K. W. Cheung, and C. S. Lee, 2012: A study on the synoptic-dynamical characteristics of compact tropical cyclones in the western North Pacific. Mon. Wea. Rev., 140, 4046–4065.
Chen, S. S., and R. A. House, 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Q. J. Roy. Meteor. Soc., 123, 357–388.
Chien, F. C., and H. C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). Geophys. Res. Lettr., 37, L08805.
Chien, F. C., Y. C. Liu, and C. S. Lee, 2008: Heavy rainfall and southwesterly flow after the leaving of Typhoon Mindulle (2004) from Taiwan. J. Meteorol. Soc. Jpn., 86, 17–41.
Chien, F.-C., and H.-C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res., 116, D05104.
Chou, K.-H., C.-C. Wu, P.-H. Lin, and S. Majumdar, 2010: Validation of QuikSCAT wind vectors by dropwindsonde data from DOTSTAR. J. Geophys. Res., 115, D02109.
Cocks, S. B., and W.M. Gray, 2002: variability of the outer wind profiles of western North Pacific typhoons: Classifications and techniques for analysis and forecasting. Mon. Wea. Rev., 130, 1989-2005.
Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 2110–2123.
Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366–376.
Didlake, A. C., Jr., and R. A. Houze, Jr., 2013a: Convective-scale variations in the inner-core rainbands of a tropical cyclone. J. Atmos Sci., 70, 504–523.
Didlake, A. C., and R. A. Houze, 2013b: Dynamics of the Stratiform Sector of a Tropical Cyclone Rainband. J. Atmos. Sci., 70, 1891–1911.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107.
Eastin, M. D., T. L. Gardner, M. C. Link, and K. C. Smith, 2012: Surface cold pools in the outer rainbands of Tropical Storm Hanna (2008) near landfall. Mon. Wea. Rev., 140, 471–491.
Elhmaidi, D., A. Provenzal, and A. Babinao, 1993: Elementary topology of two-dimensional turbulence from a Lagrangian viewpoint and single-particle dispersion. J. Fluid Mech., 257, 533–558.
Frank, W.M., and E.A. Ritchie, 1999: Effects on environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 2044–2061.
Gray, W. M., and R. W. Jacobson, Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 1171–1188.
Grell, G.A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophy. Res. Lett., 29, NO 14.
Hence, D. A., and R. A. Houze, 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108.
Hill, K.A., and G. M. Lackmann (2009), Influence of environmental humidity on tropical cyclone size, Mon. Wea. Rev., 137, 3294–3315.
Holland, G.J., and R.T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110, 723–745.
Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003.
Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293–344.
Irish, J. L., D. T. Resio, and J. J. Ratcliff, 2008: The influence of storm size on hurricane surge. J. Phys. Oceanography, 38, 2003–2013.
Ishihara, M., Z. Yanagisawa, H. Sakakibara, K. Matsuura, and J. Aoyagi, 1986: Structure of a typhoon rainband observed by two Doppler radars. J. Meteor. Soc. Japan, 64, 923–939.
Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydromet., 5, 487-503.
Kevlahan, N. K-R., and M. Farge, 1997: Vorticity filaments in two-dimensional turbulence: Creation, stability and effect. J. Fluid Mech., 346, 49–76.
Knaff, J.A., J.P. Kossin, and M. DeMaria, 2003: Annular hurricanes. Wea. Forecasting, 18, 204–223.
Knaff, J.A., T. A. Cram, A.B. Schumacher, J. P. Kossin, and M. DeMaria, 2008: Objective identification of annular hurricanes. Wea. Forecasting, 23, 17–28.
Lee, C. S., C. C. Wu, T. C. C. Wang, and R. L. Elsberry, 2011: Advances in understanding the “Perfect Monsoon-influenced Typhoon”: Summary from International Conference on Typhoon Morakot (2009). Asia Pac. J. Atmos. Sci., 47, 213–222.
Lee, C.-S., B.-F. Chen, and R. L. Elsberry, 2012: Long-lasting convective systems in the outer region of tropical cyclones in the western North Pacific. Geophys. Res. Lett., 39, L21812.
Lee, C.-S., K. K. W. Cheung, W.-T. Fang, and R. L. Elsberry, 2010: Initial maintenance of tropical cyclone size in the western North Pacific. Mon. Wea. Rev., 138, 3207–3223.
Li, Q., and Y. Wang, 2012: A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone. Mon. Wea. Rev., 140, 2782–2805.
Liu, C. T., E. J. Zipser, and S. W. Nesbitt, 2007: Global distribution of tropical deep convection: Different perspectives from TRMM infrared and radar data. J. Climate, 20, 489–503.
Liu, K. S., and J. C. L. Chan, 1999: Size of tropical cyclones as inferred from ERS-1 and ERS-2 data. Mon. Wea. Rev., 127, 2992–3001.
Maddox, R. A., 1980: Meoscale Convective Complexes. Bull. Amer. Meteor. Soc., 61, 1374–1387.
Mapes, B. E., and R. A. Houze, 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121, 1398–1415.
May, P. T., and G. J. Holland, 1999: The role of potential vorticity generation in tropical cyclone rainbands. J. Atmos. Sci., 56, 1224–1228.
May, P. T., G. J. Holland, and W. L. Ecklund, 1994: Wind profiler observations of Tropical Storm Flo at Saipan. Wea. Forecasting, 9, 410–426.
McCaul, E. W., Jr., 1991: Buoyancy and shear characteristics of hurricane–tornado environments. Mon. Wea. Rev., 119, 1954–1978.
Mechem, D. B., R. A. Houze, Jr., and S. S. Chen, 2002: Layer inflow into precipitating convection over the western tropical Pacific. Q. J. Roy. Meteor. Soc., 128, 1997–2030.
Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 1408–1418.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16663–16682.
Mohr, K. I., and E. J. Zipser, 1996: Defining mesoscale convective systems by their 85-GHz ice-scattering signatures. Bull. Amer. Meteor. Soc., 77, 1179–1189.
Mohr, K. I., J. S. Famiglietti, and E. J. Zipser, 1999: The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the 85-GHz ice-scattering signature. J. Appl. Meteor., 38, 596–606.
Moncrieff, M. W., and E. Klinker, 1997: Organized convective systems in the tropical western Pacific as a process in general circulation models: A TOGA COARE case study. Q. J. Roy. Meteor. Soc., 123, 805–827.
Moon, Y., and D. S. Nolan, 2010: The dynamic response of the hurricane wind field to spiral rainband heating. J. Atmos. Sci., 67, 1779–1805.
Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the Tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 4087–4106.
Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 421–427.
Okubo, A., 1970: Horizontal dispersion of floatable particles in the vicinity of velocity singularity such as convergences. Deep-Sea Res., 17, 445–454.
Pettet, C. R., and R. H. Johnson, 2003: Airflow and precipitation structure of two leading stratiform mesoscale convective systems determined from operational datasets. Wea. Forecasting, 18, 685–699.
Powell, M. D., 1990a: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891–917.
Powell, M. D., 1990b: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918–938.
Powell, M. D., and T. A. Reinhold, 2007: Tropical cyclone destructive potential by integrated kinetic energy. Bull. Amer. Meteor. Soc., 88, 513–526.
Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2012: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 3163–3188.
Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057.
Sampson, C.R., P. A. Wittman, E. A. Serra, H. T. Tolman, J. Schauer, and T. Marchok, 2013: Evaluation of wave forecasts consistent with tropical cyclone warning center wind forecasts, Wea. Forecasting, 28, 287–294.
Samsury, C. E., and E. J. Zipser, 1995: Secondary wind maxima in hurricanes: Airflow and relationship to rainbands. Mon. Wea. Rev., 123, 3502–3517.
Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 1197–1223.
Shapiro, L.J., and H.E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378–394.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note TN-468_STR, 88 pp.
Stenger, R. A., and R. L. Elsberry, 2013: Outer vortex wind structure changes during and following tropical cyclone secondary eyewall formation. Tropical Cyclone Research and Review, 2, 184–195.
Tabata, A., H. Sakakibara, M. Ishihara, K. Matsuura, and Z. Yanagisawa, 1992: A general view of the structure of typhoon 8514 observed by dual-Doppler radar—From outer rainbands to eyewall clouds. J. Meteor. Soc. Japan, 70, 897–917
Tang, B., and K. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 1901–1912.
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115.
Trier, S. B., M. A. LeMone, and W. C. Shamarock, 1998: Effect of three-dimensional structure on the stormwide horizontal accelerations and momentum budget of a simulated squall line. Mon. Wea. Rev., 126, 2580–2598.
Wang, Y., 2002: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 1239–1262.
Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 1250–1273.
Weatherford, C., and W. M. Gray, 1988: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability, Mon. Wea. Rev., 116, 1044–1056.
Weiss, J., 1991: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48, 273–294.
Weissman, D. E., M. A. Bourassa, and J. Tongue, 2002: Effects of rain rate and wind magnitude on SeaWinds scatterometer wind speed errors. J. Atmos. Oceanic Technol., 19, 738–746.
Williams, M., and R. A. Houze, 1987: Satellite-observed characteristics of winter monsoon cloud clusters. Mon. Wea. Rev., 115, 505-519.
Willoughby, H. E., F. D. Marks, and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 3189–3211.
Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395–411.
Wu, C.-C., K. K. W. Cheung, Y.-Y. Lo, 2009: Numerical study of the rainfall event due to the interaction of Typhoon Babs (1998) and the northeasterly monsoon. Mon. Wea. Rev., 137, 2049–2064.
Yamasaki, M., 1983: A further study of the tropical cyclone without parameterizing the effects of cumulus convection. Pap. Meteor. Geophys., 34,221–260.
Yang, M.-J., and R. A. Houze, Jr., 1995: Multicell squall-line structure as a manifestation of vertically trapped gravity waves. Mon. Wea. Rev., 123, 641-661.
Yuter, S. E., and R. A. Houze, 1998: The natural variability of precipitating clouds over the western Pacific warm pool. Quart. J. Roy. Meteorol. Soc., 124, 53–99.
Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation. Mon. Wea. Rev., 105, 1568–1589.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55214-
dc.description.abstract本研究針對西北太平洋地區熱帶氣旋與季風環境交互作用所導致之兩類長生命期雨帶,進行系統性分析。第一類雨帶為由熱帶氣旋外圍雨帶發展而來、且伴隨大範圍冷雲頂之線狀對流系統,稱之外圍中尺度對流系統(OMCS),如莫拉克颱風(2009)所伴隨者;第二類雨帶則由熱帶氣旋主雨帶發展而來,具較長之生命期與大範圍冷雲頂,稱之加強型雨帶(ERB)。分析紅外線衛星雲圖與微波頻道衛星資料顯示,在1999年至2009年間,西北太平洋之熱帶氣旋分別有22% 和21% 伴隨有OMCS和ERB形成;而OMCS和ERB之總個數分別為109和90。分析發生於熱帶氣旋南側之85個OMCS與80個ERB顯示,OMCS常在距中心200至700公里處發展,且向外移動;而ERB則常在半徑100至300公里處發展,且以氣旋式繞中心移動。結果亦顯示,當ERB形成後,熱帶氣旋之暴風半徑常顯著增大,但增強速率維持不變;而OMCS形成後,熱帶氣旋之暴風半徑維持原有之變化趨勢,但增強速率減慢。值得注意的是,暴風半徑較大之颱風(15 m s-1暴風半徑大於3.6°),有70%在其增強至颱風強度(65 kt)前,皆伴隨有一個以上的ERB發生。
針對伴隨有OMCS之風神颱風(2008),利用Weather Research and Forecasting Model (WRF)進行模擬與分析,結果顯示WRF可合理模擬風神颱風所伴隨OMCS之形成與發展過程,唯因模擬之颱風外圍環流較大,而導致系統往南偏移約100公里。分析模擬結果顯示,風神颱風低層環流受呂宋島地形影響,颱風中心西側邊界層中之南北走向水氣帶向外圍區偏移;此南北向水氣帶因而能與西南氣流合流(而非旋入內核區),並導致OMCS之形成。颱風西側之水氣帶形成則因西南季風所夾帶水氣以氣旋式軌跡繞過颱風中心,並受颱風與垂直風切交互作用影響所導致;換言之,颱風渦漩受垂直風切影響而傾斜,導致下風切方向之邊界層因不對稱渦度產生摩擦輻合;而摩擦造成之水平水氣通量輻合使水氣帶形成。在OMCS維持方面,受低層西南氣流與中層颱風北風環流之影響,此OMCS向南移動,並具有後方(北方)內流與前方(南方)層狀降雨區。南北向水氣帶中、低層具高對流可用位能之空氣,不斷隨後方內流進入系統,並在伴隨層狀降雨區之冷池(∆θ < -3 K)北方邊界、連續形成新對流胞,有利OMCS生命期之延長。分析1999年至2009年85個OMCS形成時之環境特徵顯示,51%之OMCS在颱風西側南北向水氣帶與西南氣流合流處形成,與風神颱風之OMCS形成過程相似。
zh_TW
dc.description.abstractThis study analyzes two types of long-lasting rainbands associated with tropical cyclones (TCs) in the western North Pacific. These rainbands are separated from the eyewall convection and form due to the interactions of TCs and the monsoonal environments. The first type is the outer mesoscale convective system (OMCS), which is a linear convective system with a large cold cloud shield that develops from the TC distant rainband (e.g. OMCS embedded in Typhoon Morakot 2009). The second type is the enhanced rainband (ERB) that develops from TC principal rainband and is accompanied with active and long-lasting convections. A total of 109 OMCSs and 90 ERBs that occurred in the western North Pacific during 1999-2009 are identified using infrared and passive microwave images. About 22% (21%) of all TCs have at least one OMCS (ERB) during their life cycle. Eighty five OMCSs and 80 ERBs that developed in the southern part of TC are further analyzed. Results show that the south-type OMCSs developed at 200-700 km radii from the TC center and moved predominantly outward. The south-type ERBs developed at 100-300 km radii from the TC center and moved predominantly cyclonically. The TC intensification rate decreased but the rate of TC size change did not change when after an OMCS was present. However, the TC size increased significantly after an ERB was present. Seventy percent of very large typhoons (radius of 15 ms-1 wind > 3.6°) had an ERB during the period when they intensified from tropical storms to typhoons.
The Weather Research and Forecasting (WRF) model was used to simulate the development and maintenance of an OMCS that occurred to the southwest of Typhoon Fengshen (2008). Results show that the WRF does a reasonably-well simulation except that the OMCS is shifted southward by 100 km because the simulated TC outer circulation is larger. The low-level TC circulation of Frngshen is deflected by the Luzon terrain causing a westward shift of an elongated north-south moisture band which then converges with the low level monsoon southwesterly flows. As a result, the OMCS develops at the outer region of Fengshen instead of being spiraled into the inner-core region. The formation of this moisture band is attributed to i) the moisture from the southwest monsoon that is transported cyclonically around the TC center, and ii) the tilting of the TC due to the strong northeasterly vertical wind shear (VWS). The TC-VWS interactions result in down-shear frictional convergence associated with asymmetric vorticity in the boundary layer and the formation of the moisture band. The OMCS develops when this moisture band interacts with the low-level southwesterly flow. Results also show that a characteristic structure of rear-fed inflow with leading stratiform in the cross-line direction (toward the south) is established when the OMCS becomes mature and moves southward. Such a structure contributes to the long duration of the OMCS because the high-CAPE air in the moisture band keeps feeding into the system and new cells form continuously at the trailing (north) edge of a cold pool (Δθ < - 3K) associated with the large stratiform precipitation. The synoptic conditions of all 85 south-type OMCS formations are examined. Results show that 51% of these OMCSs that formed at the intersection of an elongated moisture band in the TC northerly circulation and the southwest monsoon flow have similar feature with that of the OMCS embedded in Fengshen.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:51:37Z (GMT). No. of bitstreams: 1
ntu-104-F98229003-1.pdf: 19841667 bytes, checksum: 57aa7c9a3dd4f7e52306e7097e397814 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致 謝 i
摘 要 iii
Abstract v
Contents vii
Table Captions viii
Figure Captions ix
Chapter 1 Introduction 1
1.1 Motivation and paper reviews 1
1.2 Objectives 9
Chapter 2 Methodology to identify OMCSs and ERBs 13
2.1 Data 13
2.2 Methodology to identify OMCSs and ERBs 16
Chapter 3 Analyses of OMCSs and ERBs during 1999 to 2009 seasons 21
3.1 Climatological characteristics of OMCSs and ERBs 21
3.1.1 Climatological characteristics of 109 OMCSs 22
3.1.2 Eighty south-type ERBs and comparisons with OMCSs 25
3.2 Influences on TC size and intensity changes 27
3.2.1 Effects of long-lasting rainbands on normalized TC intensity and size 27
3.2.2 ERBs produced in tropical storm stage may favor large-size typhoons 33
3.3 Summary of Chapter 3 34
Chapter 4 Origin and Maintenance of the OMCS in TY Fengshen (2008) 37
4.1 Overview of Typhoon Fengshen (2008) and the synoptic environment 38
4.2 Model description and verifications of the simulations 41
4.2.1 Model description 41
4.2.2 Verifications and preliminary analyses of the OMCS 43
4.3 Mechanisms leading to the OMCS development 46
4.3.1. Effect of Luzon terrain 46
4.3.2 Role of the elongated moisture band 49
4.3.3 Role of vertical wind shear 52
4.4 Kinematic structure and the maintenance mechanisms 54
4.4.1 Analysis of the simulated OMCS 54
4.4.2 Kinematic structure of the OMCS 57
4.5 The conceptual model of Fengshen OMCS 59
Chapter 5 Synoptic controls of various types of OMCSs 67
5.1 Classifications of OMCSs 68
5.2 Environmental conditions accompanying four OMCS types 71
5.2.1. Climatology of four types of OMCSs 71
5.2.2. Composite analyses 73
5.3 Conceptual models of OMCS rain areas 81
5.4 Summary of Chapter 5 83
Chapter 6 Concluding remarks and discussions 87
References 97
Tables 109
Figures 115
dc.language.isoen
dc.title颱風與環境交互作用下之長生命期雨帶zh_TW
dc.titleLong-lasting rainbands associated with the interactions between tropical cyclones and their environmenten
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳泰然,吳俊傑,郭鴻基,林沛練,簡芳菁
dc.subject.keyword颱風,颱風雨帶,中尺度對流系統,西南季風,垂直風切,zh_TW
dc.subject.keywordtropical cyclone,tropical cyclone rainband,mesoscale convective system,southwest monsoon,vertical wind shear,en
dc.relation.page158
dc.rights.note有償授權
dc.date.accepted2015-01-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
19.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved