Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55201
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾孝文
dc.contributor.authorMei-Lan Chuen
dc.contributor.author朱美孏zh_TW
dc.date.accessioned2021-06-16T03:51:05Z-
dc.date.available2017-03-13
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-01-20
dc.identifier.citation[1] Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999;42:963-969.
[2] Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962.
[3] Pruessmann KP, Weiger M, Bornert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638- 651.
[4] Atkinson D, Porter DA, Hill DL, Calamante F, Connelly A. Sampling and reconstruction effects due to motion in diffusion-weighted interleaved echo planar imaging.' Magnetic resonance in medicine 44.1 (2000): 101-109.
[5] Atkinson D, Counsell S, Hajnal JV, Batchelor PG, Hill DL, Larkman DJ. Non- linear phase correction of navigated multi-coil diffusion images. Magn Reson Med 2006;56:1135-1139.
[6] Bammer R, Stollberger R, Augustin M, Simbrunner J, Oenbacher H, Kooijman H, Ropele S, Kapeller P, Wach P, Ebner F, Fazekas F. Diffusion-weighted Imaging with Navigated Interleaved Echo-planar Imaging and a Conventional Gradient System. Radiology 1999;211:799-806.
[7] Butts K, deCrespigny AJ, Pauly JM, Moseley ME. Diffusion-weighted inter- leaved echo-planar imaging with a pair of orthogonal navigator echoes. Magn Reson Med 1996;35:763-770
[8]Jeong HK, Gore JC, Anderson AW. High-resolution human diffusion tensor imaging using 2-D navigated multishot SENSE EPI at 7 T. Magn Reson Med 2013;69:793–802.
[9]Li Z, Pipe JG, Lee CY, Debbins JP, Karis JP, Huo D. X-PROP: A fast and robust diffusion-weighted propeller technique. Magn Reson Med 2011;66:341–347.
[10]Pipe JG, Farthing VG, Forbes KP. Multishot diffusion-weighted FSE using PROPELLER MRI. Magn Reson Med 2002;47:42–52.
[11]Porter DA, Heidemann RM. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn Reson Med 2009;62:468–475.
[12]Skare S, Newbould RD, Clayton DB, Bammer R. Propeller EPI in the other direction. Magn Reson Med 2006;55:1298–1307.
[13]Wang FN, Huang TY, Lin FH, Chuang TC, Chen NK, Chung HW, Chen CY, Kwong KK. PROPELLER EPI: an MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions. Magn Reson Med 2005;54:1232–1240.
[14]Frank LR, Jung Y, Inati S, Tyszka JM, Wong EC. High efficiency, low distortion 3D diffusion tensor imaging with variable density spiral fast spin echoes (3D DW VDS RARE). Neuroimage 2010;49:1510– 1523.
[15]Liu C, Bammer R, Kim DH, Moseley ME. Self-navigated interleaved spiral (SNAILS): Application to high-resolution diffusion tensor imaging. Magn Reson Med 2004;52:1388–1396.
[16]Miller KL, Pauly JM. Nonlinear phase correction for navigated diffusion imaging. Magn Reson Med 2003;50:343–353.
[17]Robson MD, Anderson AW, Gore JC. Diffusion-weighted multiple shot echo planar imaging of humans without navigation. Magn Reson Med 1997;38:82–88.
[18]Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol 2003;45(3):169-184.
[19]Chen NK, Guidon A, Chang HC, Song AW. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE). NeuroImage 2013;72:41-47.
[20]Guhaniyogi S, Chu ML, Chang HC, Song AW, Chen NK, 2014. Simultaneous Correction of Motion-Induced Artifacts and Diffusion-Encoding Corruption in Multishot Diffusion Tensor EPI. Proceedings of the 22th Annual Meeting of ISMRM; 4351.
[21]Gubin LG, Polyak BT, Raik EV. The method of projections for finding the common point in convex sets. USSR Comput Math Phys 1967;7:1–24.
[22]Youla DC, Webb H. Image restoration by the method of convex projections: Part 1, Theory. IEEE Trans Med Imaging 1982;1:81–94.
[23]Haacke EM, Lindskog ED, Lin W. A fast, iterative, partial-Fourier technique capable of local phase recovery. J Magn Reson 1991;92:126–145.
[24]Liang ZP, Boada FE, Constable RT, Haacke EM, Lauterbur PC, Smith MR. Constrained reconstruction methods in MR imaging. Rev Magn Reson Med 1992;4:67–185.
[25]McGibney G, Smith MR, Nichols ST, Crawley A. Quantitative evaluation of several partial Fourier reconstruction algorithms used in MRI. Magn Reson Med 1993;30:51–59.
[26]Samsonov AA, Kholmovski EG, Parker DL, Johnson CR. POCSENSE: POCS-based reconstruction for sensitivity encoded magnetic resonance imaging. Magn Reson Med 2004;52:1397-1406.
[27]Chen NK, Avram AV, Song AW. Two-dimensional phase cycled reconstruction for inherent correction of echo-planar imaging Nyquist artifacts. Magn Reson Med 2011;66:1057–1066.
[28]Chang HC, Guhaniyogi S, Chen NK. Interleaved Diffusion-Weighted EPI Improved by Adaptive Partial-Fourier and Multiband Multiplexed Sensitivity-Encoding Reconstruction. Magn Reson Med 2014; doi: 10.1002/mrm.25318 [Epub ahead of print].
[29]Rasche V, Proksa R, Sinkus R, Bo‥rnert P, Eggers H. Resampling of data between arbitrary grids using convolution interpolation. IEEE Trans Med Imaging 1999;18:385–392.
[30]Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding. IEEE Trans Med Imaging 1991;MI-10:473–478.
[31]Liu C, Moseley ME, Bammer R. Simultaneous phase correction and SENSE reconstruction for navigated multi-shot DWI with non-cartesian k-space sampling. Magn Reson Med 2005;54:1412–1422.
[32]Chen NK, Wyrwicz AM. Removal of EPI Nyquist ghost artifacts with two-dimensional phase correction. Magn Reson Med 2004;51:1247–1253.
[33]Xu D, King KF, Zur Y, Hinks RS. Robust 2D phase correction for echo planar imaging under a tight field-of-view. Magn Reson Med 2010;64:1800–1813.
[34]Truong TK, Guidon A. High-resolution multishot spiral diffusion tensor imaging with inherent correction of motion-induced phase errors. Magn Reson Med 2014;71:790–796.
[35]Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999;45(2):265-269
[36]Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med 2000;44(4):625-632.
[37]Ciccarelli O, Catani M, Johansen-Berg H, Clark C, Thompson A. Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurol 2008;7(8):715-727.
[38]Moritani T, Ekholm S, Westesson PL. Diffusion-weighted MR imaging of the brain. Berlin: Springer-Verlag; 2009.
[39]Turner R, Le Bihan D, Maier J, Vavrek R, Hedges LK, Pekar J. Echo-planar imaging of intravoxel incoherent motion. Radiology 1990;177(2):407-414.
[40] Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 1995;34(1):65-73.
[41]Farzaneh F, Riederer SJ, Pelc NJ. Analysis of T2 limitations and off-resonance effects on spatial resolution and artifacts in echo-planar imaging. Magn Reson Med 1990;14(1):123-139.
[42]Anderson AW, Gore JC. Analysis and correction of motion artifacts in diffusion weighted imaging. Magn Reson Med 1994;32(3):379-387.
[43]Aksoy M, Liu C, Moseley ME, Bammer R. Single-step nonlinear diffusion tensor estimation in the presence of microscopic and macroscopic motion. Magn Reson Med 2008;59(5):1138-1150.
[44]Holdsworth SJ, Aksoy M, Newbould RD, Yeom K, Van AT, Ooi MB, Barnes PD, Bammer R, Skare S. Diffusion tensor imaging (DTI) with retrospective motion correction for large-scale pediatric imaging. J Magn Reson Imaging 2012;36(4):961-971.
[45]de Crespigny AJ, Marks MP, Enzmann DR, Moseley ME. Navigated diffusion imaging of normal and ischemic human brain. Magn Reson Med 1995;33(5):720-728.
[46]Butts K, de Crespigny A, Pauly JM, Moseley M. Diffusion-weighted interleaved echo-planar imaging with a pair of orthogonal navigator echoes. Magn Reson Med 1996;35(5):763-770.
[47]Butts K, Pauly J, de Crespigny A, Moseley M. Isotropic diffusion-weighted and spiral-navigated interleaved EPI for routine imaging of acute stroke. Magn Reson Med 1997;38(5):741-749.
[48]Li TQ, Kim DH, Moseley ME. High-resolution diffusion-weighted imaging with interleaved variable-density spiral acquisitions. J Magn Reson Imaging 2005;21(4):468-475.
[49]Bammer R, Aksoy M, Liu C. Augmented generalized SENSE reconstruction to correct for rigid body motion. Magn Reson Med 2007;57(1):90-102.
[50]Van AT, Karampinos DC, Georgiadis JG, Sutton BP. K-space and image-space combination for motion-induced phase-error correction in self-navigated multicoil multishot DWI. IEEE Trans Med Imaging 2009;28(11):1770-1780.
[51]Ooi MB, Krueger S, Muraskin J, Thomas WJ, Brown TR. Echo-planar imaging with prospective slice-by-slice motion correction using active markers. Magn Reson Med 2011;66(1):73-81.
[52]Batchelor PG, Atkinson D, Irarrazaval P, Hill DL, Hajinal J, Larkman D. Matrix description of general motion correction applied to multishot images. Magn Reson Med 2005;54(5):1273-1280.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55201-
dc.description.abstractA projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging, aliasing and blurring artifacts in interleaved diffusion weighted imaging (DWI). Images with reduced artifacts are reconstructed with an iterative POCS procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved DWI data corresponding to different k-space trajectories and matrix condition numbers. Furthermore, the POCSMUSE was applied to reduce blurring artifacts originating from large-scale in-plane and through-plane motion of multi-shot DWI data. Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. In conclusion, POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:51:05Z (GMT). No. of bitstreams: 1
ntu-104-F97945048-1.pdf: 9049776 bytes, checksum: 83e30bf7f0006afd64aee148e4de9985 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsChapter1 Introduction 1
1.1 ThesisOutline....3
Chapter2 POCS-based Multiplexed Sensitivity Encoded MRI 4
2.1 SENSE reconstruction of undersampled data versus MUSE reconstruction of fully sampled data ..................... 4
2.2 Challenges in performing MUSE reconstruction with irregularly sam-
pled Cartesian or non-Cartesian k-space data. . . . . . . . . . . . . . 7
2.3 The POCSMUSE reconstruction..................... 8
2.4 MUSE and POCSMUSE reconstruction of fully-sampled data in the
presence of significant variations among k-space segments . . . . . . . 11
2.5 Non-Cartesian POCSMUSE ....................... 11
2.6 Evaluation of the POCSMUSE reconstruction . . . . . . . . . . . . . 12
Chapter3 Artifact removal for abdominal T2-weighted FSE imaging 15
3.1 Introduction................................ 15
3.2 Methods.................................. 15
3.2.1 Respiratory-triggered acquisition . . . . . . . . . . . . . . . . 15
3.2.2 A hybrid simulation study .................... 17
3.3 Results................................... 18
3.3.1 Respiratory-triggered acquisition . . . . . . . . . . . . . . . . 18
3.3.2 A hybrid simulation study .................... 18
3.4 Discussion................................. 21
Chapter4 Artifact removal for interleaved EPI based DWI in the presence of minuscule motion 24
4.1 Introduction ................................ 24
4.1.1 Artifacts from phase variations among EPI segments . . . . . 24
4.1.2 MUSE and POCSMUSE with segment-specific phase variation 26
4.1.3 POCSMUSE with additional phase smoothness constraint . . 27
4.2 Methods.................................. 28
4.2.1 Artifact removal for interleaved DWI with well-conditioned reconstruction matrices....................... 29
4.2.2 Artifact removal for interleaved DWI with ill-conditioned reconstruction matrices....................... 30
4.2.3 Artifact removal for brain DWI with spiral k-space trajectory 30
4.3 Results................................... 31
4.3.1 Artifact removal for interleaved DWI with well-conditioned reconstruction matrices....................... 31
4.3.2 Artifact removal for interleaved DWI with ill-conditioned reconstruction matrices....................... 33
4.3.3 Artifact removal for brain DWI with spiral k-space trajectory 35
4.4 Discussion................................. 35
Chapter5 Artifact removal for interleaved EPI based DWI in the presence of 3D motion 40
5.1 Introduction................................ 40
5.1.1 Artifacts from position changes and phase variations among EPI segments ........................... 40
5.1.2 POCSMUSE with minuscule and macroscopic motion correction 41
5.2 Method .................................. 43
5.2.1 Multi-shot DTI in the presence of macroscopic in-plane motion 43
5.2.2 Hybrid simulation of multi-shot DWI data in the presence of macroscopic in-plane and through-plane motion . . . . . . . . . 45
5.3 Results................................... 47
5.3.1 Multi-shot DWI in the presence of macroscopic in-plane motion 47
5.3.2 Hybrid simulation of multi-shot DWI data in the presence of
macroscopic in-plane and through-plane motion . . . . . . . . . 48
5.4 Discussion................................. 49
Chapter6 Summary ...52
Bibliography....54
dc.language.isoen
dc.title基於凸集合投影的多工敏感度編碼技術zh_TW
dc.titlePOCS-Based Reconstruction of Multiplexed Sensitivity Encoded MRI (POCSMUSE): A General Algorithm for Reducing Motion-Related Artifactsen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳南圭,莊子肇,王俊杰,蔡尚岳,吳文超
dc.subject.keyword核磁共振影像,動作假影,擴散權重影像,凸集合投影,多工敏感度編碼技術,zh_TW
dc.subject.keywordMRI,motion-related artifacts,diffusion weighted imaging,projection onto convex sets,multiplexed sensitivity encoded MRI,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2015-01-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
8.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved