請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55178完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃立民(Li-Min Huang),江伯倫(Bor-Luen Chiang) | |
| dc.contributor.author | Hsin Chi | en |
| dc.contributor.author | 紀 鑫 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:50:09Z | - |
| dc.date.available | 2015-03-12 | |
| dc.date.copyright | 2015-03-12 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-01-22 | |
| dc.identifier.citation | 1. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. The IMpact-RSV Study Group. Pediatrics 1998;102:531-537.
2. Adkins B. Leclerc C. Marshall-Clarke S. Neonatal adaptive immunity comes of age. Nat Rev Immunol 2004;4:553-564. 3. Agenbach E. Tiemessen CT. Venter M. Amino acid variation within the fusion protein of respiratory syncytial virus subtype A and B strains during annual epidemics in South Africa. Virus Genes 2005;30:267-278. 4. Alexander WS. Hilton DJ. The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu Rev Immunol 2004;22:503-529. 5. Alwan WH. Record FM. Openshaw PJ. CD4+ T cells clear virus but augment disease in mice infected with respiratory syncytial virus. Comparison with the effects of CD8+ T cells. Clin Exp Immunol 1992;88:527-536. 6. Alwan WH. Record FM. Openshaw PJ. Phenotypic and functional characterization of T cell lines specific for individual respiratory syncytial virus proteins. J Immunol 1993;150:5211-5218. 7. American Academy of Pediatrics CoIDaCoFaN. Revised indications for the use of palivizumab and respiratory syncytial virus immune globulin intravenous for the prevention of respiratory syncytial virus infections. Pediatrics 2003;112:1442-1446. 8. American Academy of Pediatrics CoIDaCoFaN. Policy statements--Modified recommendations for use of palivizumab for prevention of respiratory syncytial virus infections. Pediatrics 2009;124:1694-1701. 9. Austin PC. Assessing balance in measured baseline covariates when using many-to-one matching on the propensity-score. Pharmacoepidemiol Drug Saf 2008;17:1218-1225. 10. Baker KA. Ryan ME. RSV infection in infants and young children. What's new in diagnosis, treatment, and prevention? Postgrad Med 1999;106:97-99, 103-104, 107-108 passim. 11. Barouch DH. Santra S. Tenner-Racz K. Racz P. Kuroda MJ. Schmitz JE. Jackson SS. Lifton MA. Freed DC. Perry HC. Davies ME. Shiver JW. Letvin NL. Potent CD4+ T cell responses elicited by a bicistronic HIV-1 DNA vaccine expressing gp120 and GM-CSF. J Immunol 2002;168:562-568. 12. Behrendt CE. Decker MD. Burch DJ. Watson PH. International variation in the management of infants hospitalized with respiratory syncytial virus. International RSV Study Group. Eur J Pediatr 1998;157:215-220. 13. Belshe RB. Anderson EL. Walsh EE. Immunogenicity of purified F glycoprotein of respiratory syncytial virus: clinical and immune responses to subsequent natural infection in children. J Infect Dis 1993;168:1024-1029. 14. Belshe RB. Van Voris LP. Mufson MA. Parenteral administration of live respiratory syncytial virus vaccine: results of a field trial. J Infect Dis 1982;145:311-319. 15. Bembridge GP. Rodriguez N. Garcia-Beato R. Nicolson C. Melero JA. Taylor G. DNA encoding the attachment (G) or fusion (F) protein of respiratory syncytial virus induces protection in the absence of pulmonary inflammation. J Gen Virol 2000;81:2519-2523. 16. Blachere NE. Li Z. Chandawarkar RY. Suto R. Jaikaria NS. Basu S. Udono H. Srivastava PK. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 1997;186:1315-1322. 17. Bode C. Zhao G. Steinhagen F. Kinjo T. Klinman DM. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 2011;10:499-511. 18. Bont L. Houben ML. Commentary: why are young healthy term infants protected against respiratory syncytial virus bronchiolitis? Pediatr Infect Dis J 2011;30:785-786. 19. Boyce TG. Mellen BG. Mitchel EF, Jr.. Wright PF. Griffin MR. Rates of hospitalization for respiratory syncytial virus infection among children in medicaid. J Pediatr 2000;137:865-870. 20. Boyer JD. Ugen KE. Wang B. Agadjanyan M. Gilbert L. Bagarazzi ML. Chattergoon M. Frost P. Javadian A. Williams WV. Refaeli Y. Ciccarelli RB. McCallus D. Coney L. Weiner DB. Protection of chimpanzees from high-dose heterologous HIV-1 challenge by DNA vaccination. Nat Med 1997;3:526-532. 21. Brandenburg AH. de Waal L. Timmerman HH. Hoogerhout P. de Swart RL. Osterhaus AD. HLA class I-restricted cytotoxic T-cell epitopes of the respiratory syncytial virus fusion protein. J Virol 2000;74:10240-10244. 22. British. Medical Association and Royal Pharmaceutical Society of Great Britain. British national formulary. No. 59. London: BMA and RPS; . 2010. 23. Cane PA. Molecular epidemiology of respiratory syncytial virus. Rev Med Virol 2001;11:103-116. 24. Cane PA. Pringle CR. Respiratory syncytial virus heterogeneity during an epidemic: analysis by limited nucleotide sequencing (SH gene) and restriction mapping (N gene). J Gen Virol 1991;72 ( Pt 2):349-357. 25. Carbonell-Estrany X. Quero J. Bustos G. Cotero A. Domenech E. Figueras-Aloy J. Fraga JM. Garcia LG. Garcia-Alix A. Del Rio MG. Krauel X. Sastre JB. Narbona E. Roques V. Hernandez SS. Zapatero M. Rehospitalization because of respiratory syncytial virus infection in premature infants younger than 33 weeks of gestation: a prospective study. IRIS Study Group. Pediatr Infect Dis J 2000;19:592-597. 26. Chan PW. Chew FT. Tan TN. Chua KB. Hooi PS. Seasonal variation in respiratory syncytial virus chest infection in the tropics. Pediatr Pulmonol 2002a;34:47-51. 27. Chan PW. Lok FY. Khatijah SB. Risk factors for hypoxemia and respiratory failure in respiratory syncytial virus bronchiolitis. Southeast Asian J Trop Med Public Health 2002b;33:806-810. 28. Chang J. Srikiatkhachorn A. Braciale TJ. Visualization and characterization of respiratory syncytial virus F-specific CD8(+) T cells during experimental virus infection. J Immunol 2001;167:4254-4260. 29. Chen CJ. Jeng MJ. Yuan HC. Wu KG. Soong WJ. Hwang B. Epidemiology of respiratory syncytial virus in children with lower respiratory tract infection. Acta Paediatr Taiwan 2005;46:72-76. 30. Cherrie AH. Anderson K. Wertz GW. Openshaw PJ. Human cytotoxic T cells stimulated by antigen on dendritic cells recognize the N, SH, F, M, 22K, and 1b proteins of respiratory syncytial virus. J Virol 1992a;66:2102-2110. 31. Cherrie AH. Anderson K. Wertz GW. Openshaw PJ. Human cytotoxic T cells stimulated by antigen on dendritic cells recognize the N, SH, F, M, 22K, and 1b proteins of respiratory syncytial virus. J Virol 1992b;66:2102-2110. 32. Chew FT. Doraisingham S. Ling AE. Kumarasinghe G. Lee BW. Seasonal trends of viral respiratory tract infections in the tropics. Epidemiol Infect 1998;121:121-128. 33. Chi H. Chang IS. Tsai FY. Huang LM. Shao PL. Chiu NC. Chang LY. Huang FY. Epidemiological study of hospitalization associated with respiratory syncytial virus infection in Taiwanese children between 2004 and 2007. J Formos Med Assoc 2011;110:388-396. 34. Collins PL, and J. E. J. Crowe ed. Respiratory syncytial virus and metapneumovirus. 2007. Philadelphia, PA: Lippincott Williams & Wilkins. 35. Collins PL. Graham BS. Viral and host factors in human respiratory syncytial virus pathogenesis. J Virol 2008a;82:2040-2055. 36. Collins PL. Graham BS. Viral and host factors in human respiratory syncytial virus pathogenesis. J Virol 2008b;82:2040-2055. 37. Collins PL MB ed. Vaccines against human respiratory syncytial virus. 2007. Amsterdam: Elsevier. 38. Crowe JE, Jr.. Firestone CY. Murphy BR. Passively acquired antibodies suppress humoral but not cell-mediated immunity in mice immunized with live attenuated respiratory syncytial virus vaccines. J Immunol 2001;167:3910-3918. 39. de Waal L. Power UF. Yuksel S. van Amerongen G. Nguyen TN. Niesters HG. de Swart RL. Osterhaus AD. Evaluation of BBG2Na in infant macaques: specific immune responses after vaccination and RSV challenge. Vaccine 2004;22:915-922. 40. Delgado MF. Coviello S. Monsalvo AC. Melendi GA. Hernandez JZ. Batalle JP. Diaz L. Trento A. Chang HY. Mitzner W. Ravetch J. Melero JA. Irusta PM. Polack FP. Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat Med 2009;15:34-41. 41. Devincenzo JP. Natural infection of infants with respiratory syncytial virus subgroups A and B: a study of frequency, disease severity, and viral load. Pediatr Res 2004a;56:914-917. 42. DeVincenzo JP. Hall CB. Kimberlin DW. Sanchez PJ. Rodriguez WJ. Jantausch BA. Corey L. Kahn JS. Englund JA. Suzich JA. Palmer-Hill FJ. Branco L. Johnson S. Patel NK. Piazza FM. Surveillance of clinical isolates of respiratory syncytial virus for palivizumab (Synagis)-resistant mutants. J Infect Dis 2004b;190:975-978. 43. Dowell SF. Anderson LJ. Gary HE, Jr.. Erdman DD. Plouffe JF. File TM, Jr.. Marston BJ. Breiman RF. Respiratory syncytial virus is an important cause of community-acquired lower respiratory infection among hospitalized adults. J Infect Dis 1996;174:456-462. 44. Drummond AJ. Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007;7:214. 45. Drummond AJ. Rambaut A. Shapiro B. Pybus OG. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 2005;22:1185-1192. 46. Durbin AP. Karron RA. Progress in the development of respiratory syncytial virus and parainfluenza virus vaccines. Clin Infect Dis 2003;37:1668-1677. 47. Elhassan NO. Sorbero ME. Hall CB. Stevens TP. Dick AW. Cost-effectiveness analysis of palivizumab in premature infants without chronic lung disease. Arch Pediatr Adolesc Med 2006;160:1070-1076. 48. Encke J. zu Putlitz J. Wands JR. DNA vaccines. Intervirology 1999;42:117-124. 49. Feltes TF. Cabalka AK. Meissner HC. Piazza FM. Carlin DA. Top FH, Jr.. Connor EM. Sondheimer HM. Palivizumab prophylaxis reduces hospitalization due to respiratory syncytial virus in young children with hemodynamically significant congenital heart disease. J Pediatr 2003;143:532-540. 50. Figueras-Aloy J. Carbonell-Estrany X. Quero J. Case-control study of the risk factors linked to respiratory syncytial virus infection requiring hospitalization in premature infants born at a gestational age of 33-35 weeks in Spain. Pediatr Infect Dis J 2004;23:815-820. 51. Frogel M. Nerwen C. Cohen A. VanVeldhuisen P. Harrington M. Boron M. Prevention of hospitalization due to respiratory syncytial virus: results from the Palivizumab Outcomes Registry. J Perinatol 2008;28:511-517. 52. Fryzek JP. Martone WJ. Groothuis JR. Trends in chronologic age and infant respiratory syncytial virus hospitalization: an 8-year cohort study. Adv Ther 2011;28:195-201. 53. Glezen WP. Taber LH. Frank AL. Kasel JA. Risk of primary infection and reinfection with respiratory syncytial virus. Am J Dis Child 1986;140:543-546. 54. Gonzalez-Reyes L. Ruiz-Arguello MB. Garcia-Barreno B. Calder L. Lopez JA. Albar JP. Skehel JJ. Wiley DC. Melero JA. Cleavage of the human respiratory syncytial virus fusion protein at two distinct sites is required for activation of membrane fusion. Proc Natl Acad Sci U S A 2001;98:9859-9864. 55. Graham BS. New approaches to vaccine adjuvants: inhibiting the inhibitor. PLoS Med 2006;3:e57. 56. Grenfell BT. Pybus OG. Gog JR. Wood JL. Daly JM. Mumford JA. Holmes EC. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 2004;303:327-332. 57. Grimaldi M. Gouyon B. Sagot P. Quantin C. Huet F. Gouyon JB. Palivizumab efficacy in preterm infants with gestational age < or = 30 weeks without bronchopulmonary dysplasia. Pediatr Pulmonol 2007;42:189-192. 58. Groothuis JR. Safety and tolerance of palivizumab administration in a large Northern Hemisphere trial. Northern Hemisphere Expanded Access Study Group. Pediatr Infect Dis J 2001;20:628-630. 59. Groothuis JR. King SJ. Hogerman DA. Paradiso PR. Simoes EA. Safety and immunogenicity of a purified F protein respiratory syncytial virus (PFP-2) vaccine in seropositive children with bronchopulmonary dysplasia. J Infect Dis 1998;177:467-469. 60. Group TI-RS. Palivizumab, a Humanized Respiratory Syncytial Virus Monoclonal Antibody, Reduces Hospitalization From Respiratory Syncytial Virus Infection in High-risk Infants. Pediatrics 1998;102:531-537. 61. Hall CB. Respiratory syncytial virus and parainfluenza virus. N Engl J Med 2001;344:1917-1928. 62. Hall CB. Respiratory Syncytial Virus. In Mandell GL BJ, Dolin R (Editor). Principles and Practice of Infectious Diseases. Vol. 2. City: Churchill Livingstone Inc 2010;p.2207-2221. 63. Hall CB MC. Respiratory Syncytial Virus. In Mandell GL BJ, Dolin R, (Editor). Principles and Practice of Infectious Diseases. Vol. 2. City: Churchill Livingstone Inc 2005;p.2008-2026. 64. Hall CB. Walsh EE. Long CE. Schnabel KC. Immunity to and frequency of reinfection with respiratory syncytial virus. J Infect Dis 1991;163:693-698. 65. Hall CB. Weinberg GA. Iwane MK. Blumkin AK. Edwards KM. Staat MA. Auinger P. Griffin MR. Poehling KA. Erdman D. Grijalva CG. Zhu Y. Szilagyi P. The burden of respiratory syncytial virus infection in young children. N Engl J Med 2009;360:588-598. 66. Hallak LK. Spillmann D. Collins PL. Peeples ME. Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection. J Virol 2000;74:10508-10513. 67. Handforth J. Friedland JS. Sharland M. Basic epidemiology and immunopathology of RSV in children. Paediatr Respir Rev 2000;1:210-214. 68. Harker JA. Godlee A. Wahlsten JL. Lee DC. Thorne LG. Sawant D. Tregoning JS. Caspi RR. Bukreyev A. Collins PL. Openshaw PJ. Interleukin 18 co-expression during respiratory syncytial virus infection results in enhanced disease mediated by natural killer cells. J Virol 2010; 2010/02/05. 69. Hauser H. Shen L. Gu QL. Krueger S. Chen SY. Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines. Gene Ther 2004;11:924-932. 70. Heikkinen T. Valkonen H. Lehtonen L. Vainionpaa R. Ruuskanen O. Hospital admission of high risk infants for respiratory syncytial virus infection: implications for palivizumab prophylaxis. Arch Dis Child Fetal Neonatal Ed 2005;90:F64-68. 71. Hightower LE. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 1991;66:191-197. 72. Howard TS. Hoffman LH. Stang PE. Simoes EA. Respiratory syncytial virus pneumonia in the hospital setting: length of stay, charges, and mortality. J Pediatr 2000;137:227-232. 73. Huang YC. Lin TY. Chang LY. Wong KS. Ning SC. Epidemiology of respiratory syncytial virus infection among paediatric inpatients in northern Taiwan. Eur J Pediatr 2001;160:581-582. 74. Huang YT. Collins PL. Wertz GW. Characterization of the 10 proteins of human respiratory syncytial virus: identification of a fourth envelope-associated protein. Virus Res 1985;2:157-173. 75. Hull J ed. Genetic susceptibility to RSV disease. 2007. Amsterdam, The Netherlands: Elsevier. 76. Inoue Y. Shimojo N. Suzuki Y. Campos Alberto EJ. Yamaide A. Suzuki S. Arima T. Matsuura T. Tomiita M. Aoyagi M. Hoshioka A. Honda A. Hata A. Kohno Y. CD14 -550 C/T, which is related to the serum level of soluble CD14, is associated with the development of respiratory syncytial virus bronchiolitis in the Japanese population. J Infect Dis 2007;195:1618-1624. 77. Janssen R. Bont L. Siezen CL. Hodemaekers HM. Ermers MJ. Doornbos G. van 't Slot R. Wijmenga C. Goeman JJ. Kimpen JL. van Houwelingen HC. Kimman TG. Hoebee B. Genetic susceptibility to respiratory syncytial virus bronchiolitis is predominantly associated with innate immune genes. J Infect Dis 2007;196:826-834. 78. Jennings GT. Bachmann MF. The coming of age of virus-like particle vaccines. Biol Chem 2008;389:521-536. 79. Johnson PR. Collins PL. The fusion glycoproteins of human respiratory syncytial virus of subgroups A and B: sequence conservation provides a structural basis for antigenic relatedness. J Gen Virol 1988;69 ( Pt 10):2623-2628. 80. Johnson PR, Jr.. Olmsted RA. Prince GA. Murphy BR. Alling DW. Walsh EE. Collins PL. Antigenic relatedness between glycoproteins of human respiratory syncytial virus subgroups A and B: evaluation of the contributions of F and G glycoproteins to immunity. J Virol 1987;61:3163-3166. 81. Johnson S. Oliver C. Prince GA. Hemming VG. Pfarr DS. Wang SC. Dormitzer M. O'Grady J. Koenig S. Tamura JK. Woods R. Bansal G. Couchenour D. Tsao E. Hall WC. Young JF. Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus. J Infect Dis 1997;176:1215-1224. 82. Kahn JS. Schnell MJ. Buonocore L. Rose JK. Recombinant vesicular stomatitis virus expressing respiratory syncytial virus (RSV) glycoproteins: RSV fusion protein can mediate infection and cell fusion. Virology 1999;254:81-91. 83. Kamath AT. Hanke T. Briscoe H. Britton WJ. Co-immunization with DNA vaccines expressing granulocyte-macrophage colony-stimulating factor and mycobacterial secreted proteins enhances T-cell immunity, but not protective efficacy against Mycobacterium tuberculosis. Immunology 1999;96:511-516. 84. Kapikian AZ. Mitchell RH. Chanock RM. Shvedoff RA. Stewart CE. An epidemiologic study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine. Am J Epidemiol 1969;89:405-421. 85. Karron RA. Buonagurio DA. Georgiu AF. Whitehead SS. Adamus JE. Clements-Mann ML. Harris DO. Randolph VB. Udem SA. Murphy BR. Sidhu MS. Respiratory syncytial virus (RSV) SH and G proteins are not essential for viral replication in vitro: clinical evaluation and molecular characterization of a cold-passaged, attenuated RSV subgroup B mutant. Proc Natl Acad Sci U S A 1997;94:13961-13966. 86. Khosroshahi KH. Ghaffarifar F. Sharifi Z. D'Souza S. Dalimi A. Hassan ZM. Khoshzaban F. Comparing the effect of IL-12 genetic adjuvant and alum non-genetic adjuvant on the efficiency of the cocktail DNA vaccine containing plasmids encoding SAG-1 and ROP-2 of Toxoplasma gondii. Parasitol Res 2012;111:403-411. 87. Kim HW. Canchola JG. Brandt CD. Pyles G. Chanock RM. Jensen K. Parrott RH. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol 1969;89:422-434. 88. Kim YK. Choi EH. Lee HJ. Genetic variability of the fusion protein and circulation patterns of genotypes of the respiratory syncytial virus. J Med Virol 2007;79:820-828. 89. Kohno K. Kataoka J. Ohtsuki T. Suemoto Y. Okamoto I. Usui M. Ikeda M. Kurimoto M. IFN-gamma-inducing factor (IGIF) is a costimulatory factor on the activation of Th1 but not Th2 cells and exerts its effect independently of IL-12. J Immunol 1997;158:1541-1550. 90. Kollmann TR. Crabtree J. Rein-Weston A. Blimkie D. Thommai F. Wang XY. Lavoie PM. Furlong J. Fortuno ES, 3rd. Hajjar AM. Hawkins NR. Self SG. Wilson CB. Neonatal innate TLR-mediated responses are distinct from those of adults. J Immunol 2009;183:7150-7160. 91. Kosakovsky Pond SL. Frost SD. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 2005;22:1208-1222. 92. Krilov LR. Respiratory Syncytial Virus: Update on Infection, Treatment, and Prevention. Curr Infect Dis Rep 2001;3:242-246. 93. Krishnan S. Craven M. Welliver RC. Ahmad N. Halonen M. Differences in participation of innate and adaptive immunity to respiratory syncytial virus in adults and neonates. J Infect Dis 2003;188:433-439. 94. Kuate S. Stefanou D. Hoffmann D. Wildner O. Uberla K. Production of lentiviral vectors by transient expression of minimal packaging genes from recombinant adenoviruses. J Gene Med 2004;6:1197-1205. 95. Kunzelmann K. Sun J. Meanger J. King NJ. Cook DI. Inhibition of airway Na+ transport by respiratory syncytial virus. J Virol 2007;81:3714-3720. 96. Kurt-Jones EA. Popova L. Kwinn L. Haynes LM. Jones LP. Tripp RA. Walsh EE. Freeman MW. Golenbock DT. Anderson LJ. Finberg RW. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nature immunology 2000;1:398-401. 97. Lambert L. Sagfors AM. Openshaw PJ. Culley FJ. Immunity to RSV in Early-Life. Frontiers in immunology 2014;5:466. 98. Lanari M. Giovannini M. Giuffre L. Marini A. Rondini G. Rossi GA. Merolla R. Zuccotti GV. Salvioli GP. Prevalence of respiratory syncytial virus infection in Italian infants hospitalized for acute lower respiratory tract infections, and association between respiratory syncytial virus infection risk factors and disease severity. Pediatr Pulmonol 2002;33:458-465. 99. Lanzavecchia A. Identifying strategies for immune intervention. Science 1993;260:937-944. 100. Law BJ. Carbonell-Estrany X. Simoes EA. An update on respiratory syncytial virus epidemiology: a developed country perspective. Respir Med 2002;96 Suppl B:S1-7. 101. Law BJ. Langley JM. Allen U. Paes B. Lee DS. Mitchell I. Sampalis J. Walti H. Robinson J. O'Brien K. Majaesic C. Caouette G. Frenette L. Le Saux N. Simmons B. Moisiuk S. Sankaran K. Ojah C. Singh AJ. Lebel MH. Bacheyie GS. Onyett H. Michaliszyn A. Manzi P. Parison D. The Pediatric Investigators Collaborative Network on Infections in Canada study of predictors of hospitalization for respiratory syncytial virus infection for infants born at 33 through 35 completed weeks of gestation. Pediatr Infect Dis J 2004;23:806-814. 102. Ledgerwood JE. Pierson TC. Hubka SA. Desai N. Rucker S. Gordon IJ. Enama ME. Nelson S. Nason M. Gu W. Bundrant N. Koup RA. Bailer RT. Mascola JR. Nabel GJ. Graham BS. A West Nile virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase I clinical trial. J Infect Dis 2011;203:1396-1404. 103. Lee JT. Chang LY. Wang LC. Kao CL. Shao PL. Lu CY. Lee PI. Chen JM. Lee CY. Huang LM. Epidemiology of respiratory syncytial virus infection in northern Taiwan, 2001-2005 -- seasonality, clinical characteristics, and disease burden. J Microbiol Immunol Infect 2007a;40:293-301. 104. Lee S. Miller SA. Wright DW. Rock MT. Crowe JE, Jr. Tissue-specific regulation of CD8+ T-lymphocyte immunodominance in respiratory syncytial virus infection. J Virol 2007b;81:2349-2358. 105. Li X. Sambhara S. Li CX. Ewasyshyn M. Parrington M. Caterini J. James O. Cates G. Du RP. Klein M. Protection against respiratory syncytial virus infection by DNA immunization. J Exp Med 1998;188:681-688. 106. Liu B. Mori I. Hossain MJ. Dong L. Takeda K. Kimura Y. Interleukin-18 improves the early defence system against influenza virus infection by augmenting natural killer cell-mediated cytotoxicity. J Gen Virol 2004;85:423-428. 107. Lopez JA. Villanueva N. Melero JA. Portela A. Nucleotide sequence of the fusion and phosphoprotein genes of human respiratory syncytial (RS) virus Long strain: evidence of subtype genetic heterogeneity. Virus Res 1988;10:249-261. 108. Loscertales MP. Roca A. Ventura PJ. Abacassamo F. Dos Santos F. Sitaube M. Men ndez C. Greenwood BM. Saiz JC. Alonso PL. Epidemiology and clinical presentation of respiratory syncytial virus infection in a rural area of southern Mozambique. Pediatr Infect Dis J 2002;21:148-155. 109. Luchsinger V. Piedra PA. Ruiz M. Zunino E. Martinez MA. Machado C. Fasce R. Ulloa MT. Fink MC. Lara P. Avendano LF. Role of neutralizing antibodies in adults with community-acquired pneumonia by respiratory syncytial virus. Clin Infect Dis 2012;54:905-912. 110. Marr N. Turvey SE. Grandvaux N. Pathogen recognition receptor crosstalk in respiratory syncytial virus sensing: a host and cell type perspective. Trends Microbiol 2013;21:568-574. 111. Matheson JW. Rich FJ. Cohet C. Grimwood K. Huang QS. Penny D. Hendy MD. Kirman JR. Distinct patterns of evolution between respiratory syncytial virus subgroups A and B from New Zealand isolates collected over thirty-seven years. J Med Virol 2006;78:1354-1364. 112. McNamara PS. Flanagan BF. Hart CA. Smyth RL. Production of chemokines in the lungs of infants with severe respiratory syncytial virus bronchiolitis. J Infect Dis 2005;191:1225-1232. 113. McNamara PS. Flanagan BF. Selby AM. Hart CA. Smyth RL. Pro- and anti-inflammatory responses in respiratory syncytial virus bronchiolitis. Eur Respir J 2004;23:106-112. 114. Meissner HC. Anderson LJ. Pickering LK. Annual variation in respiratory syncytial virus season and decisions regarding immunoprophylaxis with palivizumab. Pediatrics 2004;114:1082-1084. 115. Meissner HC. Long SS. Revised indications for the use of palivizumab and respiratory syncytial virus immune globulin intravenous for the prevention of respiratory syncytial virus infections. Pediatrics 2003;112:1447-1452. 116. Meissner HC. Welliver RC. Chartrand SA. Law BJ. Weisman LE. Dorkin HL. Rodriguez WJ. Immunoprophylaxis with palivizumab, a humanized respiratory syncytial virus monoclonal antibody, for prevention of respiratory syncytial virus infection in high risk infants: a consensus opinion. Pediatr Infect Dis J 1999;18:223-231. 117. Mejias A. Chavez-Bueno S. Jafri HS. Ramilo O. Respiratory syncytial virus infections: old challenges and new opportunities. Pediatr Infect Dis J 2005;24:S189-196, discussion S196-187. 118. Miller M. Cho JY. Baek KJ. Castaneda D. Nayar J. Rodriguez M. Roman M. Raz E. Broide DH. Plasmid DNA encoding the respiratory syncytial virus G protein protects against RSV-induced airway hyperresponsiveness. Vaccine 2002;20:3023-3033. 119. Mitchell I. Paes BA. Li A. Lanctot KL. CARESS: the Canadian registry of palivizumab. Pediatr Infect Dis J 2011;30:651-655. 120. Moghaddam A. Olszewska W. Wang B. Tregoning JS. Helson R. Sattentau QJ. Openshaw PJ. A potential molecular mechanism for hypersensitivity caused by formalin-inactivated vaccines. Nat Med 2006;12:905-907. 121. Mullooly JP. Bridges CB. Thompson WW. Chen J. Weintraub E. Jackson LA. Black S. Shay DK. Influenza- and RSV-associated hospitalizations among adults. Vaccine 2007;25:846-855. 122. Nair H. Nokes DJ. Gessner BD. Dherani M. Madhi SA. Singleton RJ. O'Brien KL. Roca A. Wright PF. Bruce N. Chandran A. Theodoratou E. Sutanto A. Sedyaningsih ER. Ngama M. Munywoki PK. Kartasasmita C. Simoes EA. Rudan I. Weber MW. Campbell H. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 2010;375:1545-1555. 123. Newborn AAoPCoIDaCoFa. Prevention of respiratory syncytial virus infections: indications for the use of palivizumab and update on the use of RSV-IGIV. Pediatrics 1998;102:1211-1216. 124. Nokes DJ. Ngama M. Bett A. Abwao J. Munywoki P. English M. Scott JA. Cane PA. Medley GF. Incidence and severity of respiratory syncytial virus pneumonia in rural Kenyan children identified through hospital surveillance. Clin Infect Dis 2009;49:1341-1349. 125. Parker KC. Bednarek MA. Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 1994;152:163-175. 126. Parker SE. Monteith D. Horton H. Hof R. Hernandez P. Vilalta A. Hartikka J. Hobart P. Bentley CE. Chang A. Hedstrom R. Rogers WO. Kumar S. Hoffman SL. Norman JA. Safety of a GM-CSF adjuvant-plasmid DNA malaria vaccine. Gene Ther 2001;8:1011-1023. 127. Paulus SC. Hirschfeld AF. Victor RE. Brunstein J. Thomas E. Turvey SE. Common human Toll-like receptor 4 polymorphisms--role in susceptibility to respiratory syncytial virus infection and functional immunological relevance. Clin Immunol 2007;123:252-257. 128. Pedraz C. Carbonell-Estrany X. Figueras-Aloy J. Quero J. Effect of palivizumab prophylaxis in decreasing respiratory syncytial virus hospitalizations in premature infants. Pediatr Infect Dis J 2003;22:823-827. 129. Pedraza-Sanchez S. Hise AG. Ramachandra L. Arechavaleta-Velasco F. King CL. Reduced frequency of a CD14+ CD16+ monocyte subset with high Toll-like receptor 4 expression in cord blood compared to adult blood contributes to lipopolysaccharide hyporesponsiveness in newborns. Clin Vaccine Immunol 2013;20:962-971. 130. Pemberton RM. Cannon MJ. Openshaw PJ. Ball LA. Wertz GW. Askonas BA. Cytotoxic T cell specificity for respiratory syncytial virus proteins: fusion protein is an important target antigen. J Gen Virol 1987;68 ( Pt 8):2177-2182. 131. Peret TC. Hall CB. Hammond GW. Piedra PA. Storch GA. Sullender WM. Tsou C. Anderson LJ. Circulation patterns of group A and B human respiratory syncytial virus genotypes in 5 communities in North America. J Infect Dis 2000;181:1891-1896. 132. Piedra PA. Jewell AM. Cron SG. Atmar RL. Glezen WP. Correlates of immunity to respiratory syncytial virus (RSV) associated-hospitalization: establishment of minimum protective threshold levels of serum neutralizing antibodies. Vaccine 2003;21:3479-3482. 133. Plows DJ. Pringle CR. Variation in the fusion glycoprotein gene of human respiratory syncytial virus subgroup A. Virus Genes 1995;11:37-45. 134. Pollack P. Groothuis JR. Development and use of palivizumab (Synagis): a passive immunoprophylactic agent for RSV. J Infect Chemother 2002;8:201-206. 135. Pond SL. Frost SD. Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 2005;21:2531-2533. 136. Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol 2008;25:1253-1256. 137. Posada D. Selection of models of DNA evolution with jModelTest. Methods Mol Biol 2009;537:93-112. 138. Power UF. Plotnicky-Gilquin H. Huss T. Robert A. Trudel M. Stahl S. Uhlen M. Nguyen TN. Binz H. Induction of protective immunity in rodents by vaccination with a prokaryotically expressed recombinant fusion protein containing a respiratory syncytial virus G protein fragment. Virology 1997;230:155-166. 139. Prescott WA, Jr.. Doloresco F. Brown J. Paladino JA. Cost effectiveness of respiratory syncytial virus prophylaxis: a critical and systematic review. Pharmacoeconomics 2010;28:279-293. 140. Purcell K. Fergie J. Driscoll Children's Hospital respiratory syncytial virus database: risk factors, treatment and hospital course in 3308 infants and young children, 1991 to 2002. Pediatr Infect Dis J 2004;23:418-423. 141. Puthothu B. Forster J. Heinzmann A. Krueger M. TLR-4 and CD14 polymorphisms in respiratory syncytial virus associated disease. Dis Markers 2006;22:303-308. 142. Pybus OG. Rambaut A. Evolutionary analysis of the dynamics of viral infectious disease. Nat Rev Genet 2009;10:540-550. 143. Qazi KR. Wikman M. Vasconcelos NM. Berzins K. Stahl S. Fernandez C. Enhancement of DNA vaccine potency by linkage of Plasmodium falciparum malarial antigen gene fused with a fragment of HSP70 gene. Vaccine 2005;23:1114-1125. 144. Reading PC. Whitney PG. Barr DP. Wojtasiak M. Mintern JD. Waithman J. Brooks AG. IL-18, but not IL-12, regulates NK cell activity following intranasal herpes simplex virus type 1 infection. J Immunol 2007;179:3214-3221. 145. Retief JD. Phylogenetic analysis using PHYLIP. Methods Mol Biol 2000;132:243-258. 146. Robbie GJ. Zhao L. Mondick J. Losonsky G. Roskos LK. Population pharmacokinetics of palivizumab, a humanized anti-respiratory syncytial virus monoclonal antibody, in adults and children. Antimicrob Agents Chemother 2012;56:4927-4936. 147. Robinson D. Shibuya K. Mui A. Zonin F. Murphy E. Sana T. Hartley SB. Menon S. Kastelein R. Bazan F. O'Garra A. IGIF does not drive Th1 development but synergizes with IL-12 for interferon-gamma production and activates IRAK and NFkappaB. Immunity 1997;7:571-581. 148. Robinson HL. Hunt LA. Webster RG. Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA. Vaccine 1993;11:957-960. 149. Robinson HL. Montefiori DC. Villinger F. Robinson JE. Sharma S. Wyatt LS. Earl PL. McClure HM. Moss B. Amara RR. Studies on GM-CSF DNA as an adjuvant for neutralizing Ab elicited by a DNA/MVA immunodeficiency virus vaccine. Virology 2006;352:285-294. 150. Rock MT. Crowe JE, Jr. Identific | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55178 | - |
| dc.description.abstract | 人類呼吸道融合病毒的感染會引起細支氣管炎和肺炎等下呼吸道感染,而且是嬰兒與年幼兒童的首要住院原因。RSV相關住院發生率的高峰出現在1個月大到6個月大之間。在具有明確RSV流行季節的溫帶國家中,約有50%的RSV相關住院事件都是發生在未滿6個月大的嬰兒身上,幾乎所有兒童在2歲時都已經至少感染過RSV一次。發生嚴重RSV疾病的前置因子包括年齡較小、早產、慢性肺病(CLD)、先天性心臟病(CHD)、神經肌肉障礙、免疫缺乏,以及唐氏症等。RSV的流行模式會因地理位置而異:在溫帶氣候中,RSV的流行常出現於秋季並持續流行至春季,而在熱帶地區則通常與雨季一致。RSV呼吸道疾病的治療主要為支持性治療。目前一般建議在冬季期間對高風險兒童每個月施用一次palivizumab以預防RSV感染。對於在台灣針對高風險嬰兒施行的RSV免疫預防療程而言,所謂的「RSV流行季節」可能與RSV感染有季節性高峰的其他國家(如美國)有所不同。台灣的全國性流行病學數據有限,且RSV感染帶來的整體疾病負荷仍未有具體的數據。因此,本研究的目的包括:1. 進行人口群研究以測定台灣RSV相關住院事件的嚴重性、危險因子、季節性以及醫療費用。2. 針對過去連續10季在北台灣分離出之臨床病毒株的RSV F蛋白基因,探討其親緣關係、演化變異性及族群動力學特性。3. 測定連續6個月每月施用palivizumab一次的新型預防療程,在高風險早產兒中預防RSV感染時的臨床有效性及安全性。
首先,我們利用台灣的全民健康保險資料庫,針對台灣未滿5歲兒童自2004年至2007年間因RSV而住院的案例,分析其人口群(population-based)年發生率、共存疾病及各項特性。本研究總共探討11081名曾經歷RSV相關住院事件的兒童。人口群平均年住院率在未滿6個月大和未滿5歲的兒童中,分別為每100,000人年1077和232例。發生率尖峰值出現在1個月和2個月大之間。發生風險的男女比為1.4:1(P<0.001)。依季節區分時有顯著的分布模式:每年一致以春季和秋季為高峰(P<0.001)。共有373例(3.3%)曾再次感染RSV。患有共存疾病的943名兒童(8.5%)年齡較大(P =0.001)、必須在加護病房(ICU)內住較長的時間(P <0.001)、氣管插管的發生率較高(P <0.05),且醫療費用較高(P <0.001)。共有888名病患(8%)需要住進加護病房。年齡較小(P <0.001)和患有共存疾病(P <0.001)是需要住進加護病房的獨立預測因子。結論是在台灣RSV感染每年會有兩波流行(春季和秋季達到高峰)。患有共存疾病者,其住院天數、加護病房住院天數會比較長,醫療費用也比較高。年齡較小、早產、先天性心臟病和腦性麻痺都是入住加護病房的預測因子。 接著,我們研究2000-2010年間於北台灣分離出的臨床RSV病毒株,測定F蛋白基因的分子流行病學特性和種系演變特性。針對於2000年7月和2010年6月間因急性下呼吸道感染就診的兒童身上所分離出之RSV病毒株,首先根據F蛋白基因序列進行分型。接著利用鄰接法(neighbor-joining (NJ) method)和最大概似法(maximum likelihood (ML) method)進行親緣關係的重建和評估。RSV F蛋白基因的種系演變模式係以貝氏馬可夫鏈蒙地卡羅框架(Bayesian Markov Chain Monte Carlo framework)分析而得。F蛋白基因所承受的天擇壓力,乃利用Datamonkey網站的介面進行偵測。總數為325株的臨床RSV病毒株中,親緣分析顯示83種A亞群病毒株(RSV-A)可進一步分成3群,而58種B亞群病毒株(RSV-B)則無顯著的分群現象。在細胞毒性T淋巴細胞(CTL)的HLA-B*57和HLA-A*01限制性表位上,可觀察到RSV-A和RSV-B之間有三個胺基酸不同(111、113和114號位置)。在RSV-B中可觀察到一處發生正向選擇(positive selection)的位置,而RSV-A中則無。病毒的演化速率在2000年以前幾乎無變動,接著於2000年和2005年之間減速,並於2005年之後出現顯著較快的演化現象。在每次流行中最主要的RSV-A亞型都會在下一次的流行中被其他亞型取代。結論是在2004年以前,RSV-A感染參與了數次小規模流行,而且只有極少數的病毒株得以演化而在往後數年中再次興起。2005年以後,流通於人群中的RSV-A病毒株明顯有別於前幾年的病毒株,並持續演化至2010年。種系演變模式顯示RSV的演化歧異性在最近5年內顯著上升。這些觀察結果對於疫苗的設計和流行病學研究可能十分具有價值。 台灣自2010年12月開始,一項每月施用一劑palivizumab、連續施用6劑的新型RSV感染預防療程已獲准用於高風險早產兒。為了研究此項新型療程預防RSV感染時的臨床有效性及安全性。我們從2011年4月開始至2013年3月為止,於馬偕紀念醫院小兒科部進行一項前瞻性觀察研究。我們收錄接受palivizumab預防療法的高風險嬰兒作為研究組,並進行12個月的追蹤。我們以傾向分數配對的方式,找出於2000年7月和2008年6月間於同一所醫院內出生並接受追蹤的歷史對照組。主要評估指標為RSV相關住院事件,而次要評估指標包括住院天數和加護病房(ICU)住院天數。這段時間內,我們收錄了127名嬰兒 (108名於妊娠週數≤28週時出生的嬰兒,加上19名妊娠週數為29-35週時出生且患有慢性肺病〔CLD〕的嬰兒)。他們已按照時程完成6劑的palivizumab療程。在研究組內,RSV相關住院事件在出院後6個月內有2件(1.6%),在12個月內有5件(3.9%)。我們以傾向分數配對的方式,為研究組內127名嬰兒配對出對照組內的 127名嬰兒。RSV相關住院率的降幅在出院後6個月內為86%(10.2%比上1.6%,P =0.002),在出院後12個月內則為78%(15.7%比上3.9%,P =0.004)。相較於對照組,加護病房住院率在出院後6個月內由7.1%顯著降為0.8%(P =0.024),在出院後12個月內則由7.9%顯著降為0.8%(P =0.014)。在6.4%的注射次數中曾記錄到不良事件。結論是在RSV感染案例無單季高峰期的地區(如台灣),連續6個月、每月一次的palivizumab肌肉內注射療法能有效預防高危險群病人RSV相關住院。 為了能讓大多數沒有潛在疾病的健康嬰兒也能預防呼吸道融合病毒感染,建立呼吸道融合病毒DNA疫苗之研究平台。我們選用了C57/BL6的小鼠品系作為實驗對象:DNA疫苗由大腿肌肉注射,每次注射100μg (兩腿各50μg),間隔10天後再注射一次,合計共免疫三針。每次注射前自小鼠尾端採血並保存血清,第三次免疫的10天後,犧牲部份小鼠取得脾臟細胞進行免疫學分析,剩餘的小鼠以106 PFUs RSV經呼吸道感染後記錄體重變化。我們以小鼠血清做為一級抗體 (primary antibody)進行同樣的分析時,三種DNA疫苗的組合都偵測不到F蛋白,實驗顯示小鼠經過三次F蛋白的DNA疫苗注射後,無法產生能辨認F蛋白的抗體。除了中和抗體的生成外,我們也藉分析細胞性免疫反應 (cellular immune responses)來評估疫苗的效果。實驗結果顯示,同時注射F蛋白及GM-CSF的重組DNA時,樹突細胞和巨噬細胞表面的MHC class II皆有上升的趨勢。顯示CD4 T細胞有一定程度的活化,也呼應了抗原呈獻細胞MHC class II表現量上升的結果。然而,進一步分析T細胞產生干擾素(interferon-γ)的能力時,卻看不到干擾素-γ表現量上升,經過抗CD3抗體刺激後,CD4和CD8 T細胞的增生能力也沒有顯著提高。經由以上的實驗結果,我們可以知道,同時注射F蛋白和GM-CSF的重組DNA時,脾臟中CD4 T細胞和抗原呈獻細胞會部分活化,但其程度可能沒有高到會促進細胞增生,而且由於干擾素-γ表現量沒有增加,表示CD4 T細胞免疫反應可能不是往Th1的方向。至於如何藉由改變與調整DNA的劑量、佐劑的使用、注射疫苗的次數,以及評估時使用的檢驗方法是否適宜,以期能得到效果更顯著的疫苗,則需要參考更多文獻和進行更進一步實驗。 | zh_TW |
| dc.description.abstract | Human respiratory syncytial virus (RSV) causes lower respiratory tract infection such as bronchiolitis and pneumonia and is the leading cause of hospitalization of infants and young children. The peak incidence of RSV-related hospitalization is between the second and the sixth month of age. In countries with temperate climates that have well defined RSV seasons, approximately 50% of RSV-related hospitalization occurs in infants younger than 6 months and almost all children are infected by RSV at least once by 2 years of age. Predisposing conditions for the development of serious RSV disease include young age, prematurity, chronic lung disease (CLD), congenital heart disease (CHD), neuromuscular impairment, immunodeficiency, and Down syndrome. RSV epidemics occur depending on geographic location; they cluster during the autumn and last until spring in temperate climate and generally coincide with the rainy season in tropical areas. Treatment of RSV respiratory illness is mainly supportive. Monthly palivizumab is currently recommended to high-risk children as a prophylaxis for RSV infection during winter season. The so-called “RSV season” for RSV immunoprophylaxis in high-risk infants in Taiwan might be different from other country with defined seasonal peaks of RSV infections such as United States. The nationwide epidemiologic data are limited and the total burden of RSV infection remains undefined in Taiwan Therefore, the aims of my study include: 1. Perform a population-based study to determine severity, risk factors, seasonality, and medical cost of RSV-associated hospitalization in Taiwan. 2. To investigate the phylogenetic relationship, evolutionary variability, CTL epitopes and population dynamics of the RSV F protein gene of clinical isolates in northern Taiwan over ten consecutive seasons. 3. To determine the clinical effectiveness and safety of the novel six consecutive monthly doses of palivizumab prophylaxis protocol for the prevention of RSV infection in high-risk preterm infants. 4. To estabilish the RSV DNA vaccine platform.
Firstly, we analyzed the annual population-based incidence, underlying diseases and characteristics of hospitalizations due to RSV in Taiwanese children under 5 years of age from 2004 to 2007 by using Taiwan’s National Health Insurance database. A total of 11081 children with RSV-associated hospitalization were studied. Average annual population-based hospitalization incidences were 1077 and 232 per 100,000 children-year in children under 6 months and under 5 years of age, respectively. The peak incidence was between one and two month of age. The male-to-female incidence risk ratio was 1.4:1 (P<0.001). There was a significant seasonal distribution with consistent peaks in the spring and autumn every year (P <0.001). A total of 373 (3.3%) had repeated RSV infection. The 943 children (8.5%) with underlying diseases were older (P =0.001), required longer intensive care unit (ICU) stays (P <0.001), higher rate of endotracheal intubation (P<0.05), and higher medical cost (P <0.001). A total of 888 (8%) patients required ICU care. The younger age (P < 0.001) and underlying diseases (P < 0.001) were independent predictors of requiring ICU care. RSV infection occurred biennially with peaks in spring and fall in Taiwan. Patients with underlying diseases needed longer hospital stay, ICU stay and higher medical cost. Younger age, prematurity, congenital heart disease and cerebral palsy are predictors of ICU care. Secondly, we studied the molecular epidemiology and phylodynamics of the F protein gene in clinical RSV strains isolated in northern Taiwan from 2000–2010. RSV isolates from children presenting with acute respiratory symptoms between July 2000 and June 2010 were typed based on F protein gene sequences. Phylogeny construction and evaluation were performed using the neighbor-joining (NJ) and maximum likelihood (ML) methods. Phylodynamic patterns in RSV F protein genes were analyzed using the Bayesian Markov Chain Monte Carlo framework. Selection pressure on the F protein gene was detected using the Datamonkey website interface. From a total of 325 clinical RSV strains, phylogenetic analysis showed that 83 subgroup A strains (RSV-A) could be further divided into three clusters, whereas 58 subgroup B strains (RSV-B) had no significant clustering. Three amino acids were observed to differ between RSV-A and -B (positions 111, 113, and 114) in CTL HLA-B*57- and HLA-A*01-restricted epitopes. One positive selection site was observed in RSV-B, while none was observed in RSV-A. The evolution rate of the virus had very little changed before 2000, then slowed down between 2000 and 2005, and significantly evolved faster after 2005. The dominant subtypes of RSV-A in each epidemic were replaced by different subtypes in the subsequent epidemic. We found that before 2004, RSV-A infections were involved in several small epidemics and only very limited numbers of strains evolved and re-emerged in subsequent years. After 2005, the circulating RSV-A strains were clearly different from those of the previous years and continued evolving through 2010. Phylodynamic pattern showed the evolutionary divergence in RSV has significantly increased in recent 5 years. These observations may be valuable for vaccine design and epidemiological studies. Thirdly, a novel six consecutive monthly doses of palivizumab for RSV prevention protocol has been approved for high risk preterm infants since December 2010. We conducted an observational prospective study at Department of Pediatrics of Mackay Memorial Hospital from April 2011 to March 2013 to determine the clinical effectiveness and safety of this novel protocol for the prevention of RSV infection. We enrolled high-risk infants who received palivizumab prophylaxis as study group and followed up for 12 months. Historic control, those who were born and followed up in the same hospital between July 2000 and June 2008, were enrolled for propensity score matching. Primary endpoint was RSV-related hospitalization, and secondary endpoints included the length of hospital stay and intensive care unit (ICU) care. During the study period, we enrolled 127 infants (108 infants born at ≤ 28 weeks and 19 infants born at 29–35 weeks with CLD). They completed 6-dose palivizumab as scheduled. Among the study group, the RSV-related hospitalizations were 2 (1.6%) within 6 months and 5 (3.9%) within 12 months after discharge. We matched 127 infants in the control group with 127 infants in the study group by propensity score matching. The reductions of RSV-related hospitalization rates were 86% (10.2% vs 1.6%, P =0.002) within 6 months after discharge and 78% (15.7% vs 3.9%, P =0.004) within 12 months after discharge. Compared to the control group, the rate of ICU care significantly decreased from 7.1% to 0.8% (P =0.024) within 6 months after discharge and from 7.9 % to 0.8% (P =0.014) within 12 months after discharge. Adverse events were recorded in 6.4% injections. This six monthly intramuscular administration of palivizumab is effective for prevention of RSV hospitalization in regions with no single seasonal peak of RSV infection such as Taiwan. Fourthly, in order to protect most of the healthy baby with no underlying disease from respiratory syncytial virus infection, the establishment of respiratory syncytial virus DNA vaccines research platform is needed. We chose the mouse strain C57 / BL6 as experimental subjects: DNA vaccine by intramuscular vaccination to bilateral thigh with a total 100 μg (each leg 50 μg), for a total of three times of immunizations with an interval of 10 days. To measure HRSV-specific serum IgG, sera will be obtained from blood samples collected from the tail prior to each immunization. Ten days after the third immunization, mice were sacrificed for immunological analysis of spleen cells. Mice was challenged with 106 PFUs RSV and then recorded for weight change daily. We used the mouse serum to assay for antibody response. The experiments showed that mice can not generate F protein antibody after three F protein DNA vaccines. We also analyzed cellular immune response to evaluate the effectiveness of the vaccine. Experimental results showed that when injected with the F protein DNA and recombinant GM-CSF, the dendritic cells and macrophages cell surface MHC class II were upregulated. That CD4 T cells display a certain degree of activation also echoes the increases of MHC class II expression. However, further analysis of interferon-γ by T cells falied to demonstrate the increase of interferon-γ performance and CD4 and CD8 T cell proliferative ability were not significant increased through the anti-CD3 antibody stimulation. From above experimental results, when F protein DNA vaccine and simultaneous injection of recombinant GM-CSF DNA, the spleen CD4 T cells and antigen presenting cells partially activated, but the degree might not be so high as to promote cell proliferation. There were no increase in the amount of interferon-γexpressed by CD4 T cells; this implied there might not be good Th1 immune response. In order to get a more significant effect of the vaccine, we need to adjust the dose by DNA, the adjuvant, or the protocol of vaccination. We also need to search more literature and conducted further experiments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:50:09Z (GMT). No. of bitstreams: 1 ntu-104-D97421016-1.pdf: 1815263 bytes, checksum: 764534702e1799d4064138246cc6f940 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 vii 第一章 緒論(Introduction) 1 第一節 人類呼吸道融合病毒感染 1 第二節 呼吸道融合病毒疫苗開發 7 第三節 發展人類呼吸道融合病毒 DNA 疫苗的理由 11 第四節 研究的假說與特定目的 13 第二章研究方法與材料 16 第一節 台灣兒童呼吸道融合病毒感染現況研究 16 第二節台灣呼吸道融合病毒分子流行病學研究 17 第三節台灣早產兒呼吸道融合病毒感染之預防研究 20 第四節 建立呼吸道融合病毒DNA疫苗之研究平台 23 第三章 結果 29 第一部分 呼吸道融合病毒感染流行病學研究 29 第二部分 吸道融合病毒分子流行病學研究 31 第三部分 高危險族群單株抗體有效性研究 33 第四部分 建立RSV F蛋白DNA疫苗的研究平台 36 第四章 討論 38 第五章 展望 47 第七章 參考文獻 65 第八章 附錄 79 附錄: 博士班修業期間所發表之相關論文清冊 109 | |
| dc.language.iso | zh-TW | |
| dc.subject | 人類呼吸道融合病毒 | zh_TW |
| dc.subject | F蛋白 | zh_TW |
| dc.subject | DNA疫苗 | zh_TW |
| dc.subject | 分子流行病學 | zh_TW |
| dc.subject | 預防 | zh_TW |
| dc.subject | human respiratory syncytial virus | en |
| dc.subject | molecular epidemiology | en |
| dc.subject | Fusion protein | en |
| dc.subject | prevention | en |
| dc.subject | DNA vaccine | en |
| dc.title | 呼吸道融合病毒感染之流行病學及預防 | zh_TW |
| dc.title | Epidemiology and Prevention of Respiratory Syncytial Virus Infections | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張鑾英,李燕晉(Yann-Jinn Lee),王弘毅,黃玉成 | |
| dc.subject.keyword | 人類呼吸道融合病毒,F蛋白,DNA疫苗,分子流行病學,預防, | zh_TW |
| dc.subject.keyword | human respiratory syncytial virus,DNA vaccine,molecular epidemiology,Fusion protein,prevention, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-01-22 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
