Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55173
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳先琪(Shian-Chee Wu)
dc.contributor.authorJi Guoen
dc.contributor.author郭驥zh_TW
dc.date.accessioned2021-06-16T03:49:57Z-
dc.date.available2015-03-13
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-01-22
dc.identifier.citationCarlson, R. E. (1977). A trophic state index for lakes1. Limnology and oceanography, 22(2):361– 369.
Chang, H. and Yeung, D.-Y. (2006). Robust locally linear embedding. Pattern recognition,39(6):1053–1065.
Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychological bulletin, 70(4):213.
de Ridder, D. and Duin, R. P. (2002). Locally linear embedding for classification. Pattern Recognition Group, Dept. of Imaging Science & Technology, Delft University of Technology, Delft, The Netherlands, Tech. Rep. PH-2002-01, pages 1–12.
de Ridder, D., Kouropteva, O., Okun, O., Pietik‥ainen, M., and Duin, R. P. (2003). Supervised locally linear embedding. In Artificial Neural Networks and Neural Information Processing—ICANN/ICONIP 2003, pages 333–341. Springer.
Fan, Z., Qiu, F., Kaufman, A., and Yoakum-Stover, S. (2004). Gpu cluster for high performance computing. In Proceedings of the 2004 ACM/IEEE conference on Supercomputing, page 47. IEEE Computer Society.
Ge, S. S., Yang, Y., and Lee, T. H. (2008). Hand gesture recognition and tracking based on distributed locally linear embedding. Image and Vision Computing, 26(12):1607–1620.33
Gunn, S. R. et al. (1998). Support vector machines for classification and regression. ISIS technical report, 14.
Harish, P. and Narayanan, P. (2007). Accelerating large graph algorithms on the gpu using cuda. In High performance computing–HiPC 2007, pages 197–208. Springer.
Hsu, C.-W., Chang, C.-C., Lin, C.-J., et al. (2003). A practical guide to support vector classification. unpublished. Available at: https://www.cs.sfu.ca/people/Faculty/teaching/726/spring11/svmguide.pdf.
Hu, M.-K. (1962). Visual pattern recognition by moment invariants. Information Theory, IRE Transactions on, 8(2):179–187.
Kurmayer, R., Christiansen, G., and Chorus, I. (2003). The abundance of microcystin-producing genotypes correlates positively with colony size in microcystis sp. and determines its microcystin net production in lake wannsee. Applied and Environmental Microbiology, 69(2):787–
795.
Lahti, K., Rapala, J., F‥ardig, M., Niemel‥a, M., and Sivonen, K. (1997). Persistence of cyanobacterial
hepatotoxin, microcystin-lr in particulate material and dissolved in lake water. Water Research, 31(5):1005–1012.
Li, B., Zheng, C.-H., and Huang, D.-S. (2008). Locally linear discriminant embedding: An efficient method for face recognition. Pattern Recognition, 41(12):3813–3821.
Liang, D., Yang, J., Zheng, Z., and Chang, Y. (2005). A facial expression recognition system based on supervised locally linear embedding. Pattern Recognition Letters, 26(15):2374–2389. 34
Mosleh, M. A., Manssor, H., Malek, S., Milow, P., and Salleh, A. (2012). A preliminary study on automated freshwater algae recognition and classification system. BMC bioinformatics, 13(Suppl 17):S25.
Otsu, N. (1975). A threshold selection method from gray-level histograms. Automatica, 11(285-296):23–27.
Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326.
Saul, L. K. and Roweis, S. T. (2000). An introduction to locally linear embedding. unpublished.
Available at: http://www. cs. toronto. edu/˜ roweis/lle/publications. html.
Sinha, S. N., Frahm, J.-M., Pollefeys, M., and Genc, Y. (2006). Gpu-based video feature tracking and matching. In EDGE, Workshop on Edge Computing Using New Commodity Architectures, volume 278, page 4321.
Smits, J., Breedveld, L., Derksen, M., Kateman, G., Balfoort, H., Snoek, J., and Hofstraat, J. (1992). Pattern classification with artificial neural networks: classification of algae, based upon flow cytometer data. Analytica chimica acta, 258(1):11–25.
Taha, H. A. (2007). Operations Research: An Introduction. Prentice Hall.
Teng, X., Wu, B., Yu, W., and Liu, C. (2005). A hand gesture recognition system based on local linear embedding. Journal of Visual Languages & Computing, 16(5):442–454. 35
Thiel, S. U., Wiltshire, R. J., and Davies, L. J. (1995). Automated object recognition of blue-green algae for measuring water quality—a preliminary study. Water Research, 29(10):2398–2404.
Wang, J. (2011). Locally linear embedding. In Geometric Structure of High-Dimensional Data and Dimensionality Reduction, pages 203–220. Springer.
Welling, M. (2007). Support vector machines. Department of Computer science, University of Toronto, Canada. Available at: http://www.ics.uci.edu/˜ welling/classnotes/papers
class/SVM.pdf.
Wilkins, M., Boddy, L., Morris, C., and Jonker, R. (1999). Identification of phytoplankton from flow cytometry data by using radial basis function neural networks. Applied and environmental microbiology, 65(10):4404–4410.
Yang, G. (2012). Identification of Algae with Pattern Recogintion by Artificial Neural Network. Master’s thesis, Graduate Institute of Environment Engineering, National Taiwan University.
Yao, Z., Fei, M., Li, K., Kong, H., and Zhao, B. (2007). Recognition of blue-green algae in lakes using distributive genetic algorithm-based neural networks. Neurocomputing, 70(4):641–647.
Yeh, T. T., Chen, T.-Y., Chen, Y.-C., and Shih,W.-K. (2010). Efficient parallel algorithm for nonlinear
dimensionality reduction on gpu. In Granular Computing (GrC), 2010 IEEE International Conference on, pages 592–597. IEEE. 36
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55173-
dc.description.abstract本研究目的在於利用局部線性內嵌(locally linear embedding, LLE)和支持向量機(support vector machines, SVMs)建立有效的藻類識別系統。
總體上,之前的研究顯示,藻類識別系統的準確率大約是90%,但是對於不規則形狀藻類,辨識的準確率會較低。本研究希望延續楊格年代的研究,有效提高系統對不規則藻類的識別率。本系統軟體部分由Matlab 語言開發,用局部線性內嵌提取特徵值,並利用支持向量機進行自動識別。雖然本系統對於雜質部分的識別率較低,但是在不考慮雜質部分的情況下,系統對於非團聚(包括單胞藻、某種未能確認藻種的非團聚的藍綠藻、扭曲單殼縫藻、盤星藻、星鼓藻、柱胞藻)藻類的識別效果令人滿意,識別率都在80%以上。雖然對於未能辨別藻種的團聚的藍綠藻、平裂藻和微囊藻識別率較低,相比於楊格所開發的系統,識別率均有提高。其次本方法分類精度值κ係數為0.8099,也說明它是一種精度較高的方法。再次,利用計算統一設備架構(compute unified device architecture, CUDA)開發的局部線性內嵌的運行速度可提高約一倍。因而,利用基於計算統一設備架構的局部線性內嵌和支持向量機開發的藻類識別系統確實能有效識別藻類,並且比傳統方法更能節約時間。
本系統依然可以進一步改進。首先,在識別藻類之前去除雜質可有效提高識別精度,這極有可能是因為雜質所對應的點並不構成流形。其次,改進局部線性內嵌也有可能提高識別率。第三,在獲取藻類影像的時候應調整合適的景深和視野以提高影像清晰度。第四,稀釋水樣以避免藻類影像重疊。第五,樣本數量過大時,利用局部線性嵌入計算特徵值是非常耗時的,這時利用計算統一設備架構進一步加速局部線性內嵌的計算速度就是必不可少的。
zh_TW
dc.description.abstractThis article is aimed to construct an effective system to implement algae recognition by using CUDA(compute unified device architecture)-based locally linear embedding(LLE) and support vector machine (SVMs approaches).
In general, the previous pattern accuracy of algae recognition system is about 90% but it was lower for the recognition of some algae with irregular shapes in the natural water samples. Continuing Yang’s year study, I wanted to achieve a higher accuracy for the identification of the irregularly shaped algae. We used the images of algae captured from charge-coupled device (CCD) and only considered the algorithmic scheme. The algorithm of algal recognition system was constructed on Matlab. Features of algae were extracted by LLE, a manifold learning method, and then algae was classified by SVM, a classifier. Although the recognition accuracy for the unidentified objects is low, the accuracy for all the other algae is satisfactory. By deleting the unidentified objects first, the recognition rates for Chlorella, unidentified separatedCyanobacteria,Monoraphidium, Pediastrum,Cylindrospermum, Staurastrum are more than 80%. The recognition rates for unidentified agglomerated Cyanobacteria, Merismopedia, Microcystis are obviously lower, but they are still higher than the rates in Yang’s research. Besides, the k coefficient of the accuracy of recognition is 0.8099, which means that our recognition system is a method with high accuracy. Thirdly, LLE based on CUDA does accelerate the calculation. According to the results, this algal recognition system rlied on CUDA-based LLE and SVMs is proved to be more efficient and less time-consuming than the traditional method. Also, LLE with SVMs is better to recognize irregularly-shaped algae than explicit feature extraction method with ANN in natural water body.
This system can be improved. First, removal of unidentified objects before classification of algae helps to achieve a higher accuracy rate, probably because the corresponding points of these objects do not lie in a manifold. We may also improve accuracy by modifying the existing LLE. In addition we might be able to adjust the depth of field and visual field of microscope and CCD to obtain clear enough images of appointed algae. Also, we need to dilute the samples to avoid the overlapping of several algae. Besides, it is time-consuming to compute the features if the size of sample set of test set is very large. Hence using CUDA to accelerate the process
is essential and effective.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:49:57Z (GMT). No. of bitstreams: 1
ntu-104-R01541134-1.pdf: 14399856 bytes, checksum: df8e880ad1a22a5c7f3dbc452ac80353 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents1 Introduction 1
2 Background 3
2.1 Traditional Method of Algal Recognition . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Automatic Method of Algae Recognition . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Pattern Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.1 Locally Linear Embedding(LLE) . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 Classification Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.3 Support Vector Machines(SVMs) . . . . . . . . . . . . . . . . . . . . . . 7
3 Theory and Methods 8
3.1 Image Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1 Morphological image process . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Compensation of Uneven Exposure . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Binarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.4 Filling the Holes of Image . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.5 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.6 Image Resizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 An Example of LLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 The Procedure of LLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 GPU Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Results and Discussions 24
4.1 2-Dimension Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Comparison with Yang’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 CUDA-based LLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5 Conclusion 31
Appendices 37
A The Method of Lagrange Multipliers 37
B Trace of Matrix 37
C Cohen’s k coefficient 38
D Training Set of Algae 38
D.1 Chlorella . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
D.2 Unidentified Cyanobacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
D.3 Monoraphidium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
D.4 Pediastrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
D.5 Merismopedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
D.6 Microcystis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
D.7 Staurastrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
D.8 Cylindrospermum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
E Programs 50
E.1 LLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
E.2 Arranging Images to Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
E.3 Algae Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
E.4 k Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
dc.language.isozh-TW
dc.title基於局部線性嵌入和支持向量機的藻類識別zh_TW
dc.titleAlgal Recognition Based on Locally Linear Embedding and Support Vector Machineen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee?王琨,闕蓓德
dc.subject.keyword藻類識別,局部線性內嵌,支持向量機,不規則形狀藻類,κ係數,計算統一設備架構,zh_TW
dc.subject.keywordalgae recognition,LLE,SVMs,irregularly shaped algae,k coefficient,CUDA,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2015-01-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
14.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved