Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55169
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳智泓(Chyh-Hong Chern)
dc.contributor.authorChi-Hsun Wuen
dc.contributor.author吳奇勳zh_TW
dc.date.accessioned2021-06-16T03:49:47Z-
dc.date.available2015-03-13
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-01-23
dc.identifier.citationReference
1 Wingert, M. C. et al. Thermal conductivity of ge and ge-si core-shell nanowires in the phonon confinement regime. Nano letters11, 5507-5513 (2011).
2 Li, D. Y. et al. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett.83, 2934-2936 (2003).
3 Li, D. Y., Wu, Y., Fan, R., Yang, P. D. & Majumdar, A. Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett.83, 3186-3188 (2003).
4 Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature451, 163-165 (2008).
5 Chen, R. K. et al. Thermal conductance of thin silicon nanowires. Phys. Rev. Lett.101, 105501 (2008).
6 Dhar, A. Heat transport in low-dimensional systems. Adv. Phys.57, 457-537 (2008).
7 Lepri, S., Livi, R. & Politi, A. Thermal conduction in classical low-dimensional lattices. Phys Rep377, 1-80 (2003).
8 Shen, S., Henry, A., Tong, J., Zheng, R. T. & Chen, G. Polyethylene nanofibres with very high thermal conductivities. Nature Nanotech.5, 251-255 (2010).
9 Zhang, R. et al. Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACS nano7, 6156-6161 (2013).
10 Victor Lee. Probing the limit of one-dimensional heat transfer under extreme bending strain.
11 Zhang, G. & Li, B. Anomalous vibrational energy diffusion in carbon nanotubes. The Journal of chemical physics123, 014705 (2005).
12 Li, B. W. & Wang, J. Anomalous heat conduction and anomalous diffusion in one-dimensional systems. Physical review letters91 (2003).
13 Lepri, S., Livi, R. & Politi, A. Heat conduction in chains of nonlinear oscillators. Physical review letters78, 1896-1899 (1997).
14 Lepri, S., Livi, R. & Politi, A. On the anomalous thermal conductivity of one-dimensional lattices. Europhys Lett43, 271-276 (1998).
15 Hatano, T. Heat conduction in the diatomic Toda lattice revisited. Phys Rev E59, R1-R4 (1999).
16 Dhar, A. Heat conduction in a one-dimensional gas of elastically colliding particles of unequal masses. Physical review letters86, 3554-3557 (2001).
17 Pop, E. Energy Dissipation and Transport in Nanoscale Devices. Nano Res3, 147-169 (2010).
18 Hisamoto, D. et al. FinFET - A self-aligned double-gate MOSFET scalable to 20 nm. Ieee T Electron Dev47, 2320-2325 (2000).
19 Chang, C. W., Okawa, D., Garcia, H., Majumdar, A. & Zettl, A. Breakdown of Fourier's law in nanotube thermal conductors. Phys. Rev. Lett.101, 075903 (2008).
20 Li, B. W., Wang, L. & Casati, G. Thermal diode: Rectification of heat flux. Phys. Rev. Lett.93, 184301 (2004).
21 Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. Science314, 1121-1124 (2006).
22 Komatsu, T. S. & Ito, N. Thermal transistor utilizing gas-liquid transition. Phys Rev E83 (2011).
23 Wang, L. & Li, B. Thermal logic gates: Computation with phonons. Physical review letters99 (2007).
24 Wang, L. & Li, B. W. Thermal Memory: A Storage of Phononic Information. Physical review letters101 (2008).
25 Kubytskyi, V., Biehs, S. A. & Ben-Abdallah, P. Radiative Bistability and Thermal Memory. Physical review letters113 (2014).
26 Xie, R. G. et al. An Electrically Tuned Solid-State Thermal Memory Based on Metal-Insulator Transition of Single-Crystalline VO2 Nanobeams. Adv Funct Mater21, 1602-1607 (2011).
27 Ren, J., Hanggi, P. & Li, B. W. Berry-Phase-Induced Heat Pumping and Its Impact on the Fluctuation Theorem. Physical review letters104 (2010).
28 Zhang, L. F., Ren, J., Wang, J. S. & Li, B. W. Topological Nature of the Phonon Hall Effect. Physical review letters105 (2010).
29 Zhang, L. F., Ren, J., Wang, J. S. & Li, B. W. The phonon Hall effect: theory and application. J Phys-Condens Mat23 (2011).
30 Li, B. W., Wang, L. & Casati, G. Thermal diode: Rectification of heat flux. Physical review letters93 (2004).
31 Shi, L. et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat. Transfer.125, 881-888 (2003).
32 Hsiao, T. K. et al. Observation of room temperature ballistic thermal conduction persisting over 8.3 micrometers in SiGe nanowires. Nature Nanotech.8, 534-538 (2013).
33 Wingert, M. C., Chen, Z. C. Y., Kwon, S., Xiang, J. & Chen, R. K. Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge. Rev Sci Instrum83 (2012).
34 Huang, S. M., Maynor, B., Cai, X. Y. & Liu, J. Ultralong, well-aligned single-walled carbon nanotube architectures on surfaces. Adv Mater15, 1651-+ (2003).
35 Ding, L. et al. Direct preparation and patterning of iron oxide nanoparticles via microcontact printing on silicon wafers for the growth of single-walled carbon nanotubes. Chem Mater18, 4109-4114 (2006).
36 Soares, J. S., Barros, E. B., Shadmi, N., Joselevich, E. & Jorio, A. Raman study of nanotube-substrate interaction using single-wall carbon nanotubes grown on crystalline quartz. Phys Status Solidi B248, 2536-2539 (2011).
37 Li, Y. et al. How Catalysts Affect the Growth of Single-Walled Carbon Nanotubes on Substrates. Adv Mater22, 1508-1515 (2010).
38 Wang, X. S. et al. Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates. Nano letters9, 3137-3141 (2009).
39 Day, P. K. et al. Breakdown of Fourier's Law near the superfluid transition in He-4. Physical review letters81, 2474-2477 (1998).
40 Chang, C. W., Okawa, D., Garcia, H., Majumdar, A. & Zettl, A. Breakdown of Fourier's law in nanotube thermal conductors. Physical review letters101 (2008).
41 Narayan, O. & Ramaswamy, S. Anomalous heat conduction in one-dimensional momentum-conserving systems. Physical review letters89 (2002).
42 Yang, L., Grassberger, P. & Hu, B. Dimensional crossover of heat conduction in low dimensions. Phys Rev E74 (2006).
43 Lippi, A. & Livi, R. Heat conduction in two-dimensional nonlinear lattices. J Stat Phys100, 1147-1172 (2000).
44 Lepri, S. Relaxation of classical many-body Hamiltonians in one dimension. Phys Rev E58, 7165-7171 (1998).
45 Cao, A. J. & Qu, J. M. Size dependent thermal conductivity of single-walled carbon nanotubes. J Appl Phys112 (2012).
46 Mingo, N. & Broido, D. A. Length dependence of carbon nanotube thermal conductivity and the 'problem of long waves'. Nano letters5, 1221-1225 (2005).
47 Lindsay, L., Broido, D. A. & Mingo, N. Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and phonon-phonon scattering selection rules. Phys Rev B80 (2009).
48 Samani, M. K. et al. Thermal conductivity of individual multiwalled carbon nanotubes. Int J Therm Sci62, 40-43 (2012).
49 Pop, E., Mann, D., Wang, Q., Goodson, K. E. & Dai, H. J. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano letters6, 96-100 (2006).
50 Angelescu, D. E., Cross, M. C. & Roukes, M. L. Heat transport in mesoscopic systems. Superlattice Microst23, 673-689 (1998).
51 Rego, L. G. C. & Kirczenow, G. Quantized thermal conductance of dielectric quantum wires. Physical review letters81, 232-235 (1998).
52 Schwab, K., Henriksen, E. A., Worlock, J. M. & Roukes, M. L. Measurement of the quantum of thermal conductance. Nature404, 974-977 (2000).
53 Chiatti, O. et al. Quantum thermal conductance of electrons in a one-dimensional wire. Physical review letters97 (2006).
54 Mingo, N. & Broido, D. A. Carbon nanotube ballistic thermal conductance and its limits. Physical review letters95 (2005).
55 Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nature Mater.10, 569-581 (2011).
56 Terraneo, M., Peyrard, M. & Casati, G. Controlling the energy flow in nonlinear lattices: A model for a thermal rectifier. Physical review letters88 (2002).
57 Roberts, N. A. & Walker, D. G. A review of thermal rectification observations and models in solid materials. Int J Therm Sci50, 648-662 (2011).
58 Dubi, Y. & Di Ventra, M. Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. Rev Mod Phys83, 131-155 (2011).
59 Tian, H. et al. A Novel Solid-State Thermal Rectifier Based On Reduced Graphene Oxide. Sci Rep-Uk2 (2012).
60 Hayashi, H., Ito, Y. & Takahashi, K. Thermal rectification of asymmetrically-defective materials. J Mech Sci Technol25, 27-32 (2011).
61 Takahashi, K., Inoue, M. & Ito, Y. Defective Carbon Nanotube for Use as a Thermal Rectifier. Jpn J Appl Phys49 (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55169-
dc.description.abstract為探討聲子在熱傳導之機制,近年許多研究對低維度熱傳系統的實驗及理論多有探討,但基於高長度奈米物質製程上困難以及訊號強度隨長度遞減的問題,長度對聲子傳遞熱的影響的實驗仍是缺乏的。然而,由於奈米碳管製程技術的進步,現以氣流導向的化學氣相沉積法已能長出長至半米的單壁奈米碳管9,加之本實驗室所研發之高鑑別率的兩倍頻熱傳導量測方法10,使近似一維度的熱傳導實驗能夠完成。本文探討熱導率在奈米碳管隨長度的關係以及提出了量測熱傳導不對稱性之新的實驗方法。
在論文的一部分,將介紹奈米碳管的特性及製程,以及實驗樣品的製備和實驗原理。而後在第二章,我們量測不同長度(2μm~1mm)奈米碳管之熱導率,發現了其值隨長度發散的現象。這個現象打破了傅立葉定律的描述, 有助於我們對熱傳導理論有新的了解。我們亦將從各種方面嚴格檢視我們實驗結果,包含了對輻射熱發散,接觸電阻,量測電訊號之頻率影響多加探討,確立實驗結果的可靠信。
論文的第三章,我們提出了量測熱傳導不對稱性的四倍頻法,理論上其可大幅改進傳統測量方法。此方法相關的參數之間的關係被探討,並提供樣本量測結果。雖然仍有些問題需要克服,但我們認為此方法極有潛力在熱傳導不對稱性上帶給我們更多的發現。
zh_TW
dc.description.abstractTo investigate the mechanism of phonon in thermal transport, recently, many researches have studied1, both experimentally and theoretically, on heat conduction in low dimensional systems, but due to the difficulties of synthesis of long-length nanomaterial and the decay of signal with the length, the experiments on length dependence of heat conduction by phonons are still few. After the improvement on the synthesis of carbon nanotube (CNT), single wall carbon nanotube (SWCNT) with length about half meter can be produced by flow guided chemical vapor deposition9. Besides, the highly sensitive double frequency ( 2 ω ) method we invented10 made the experiment of heat conduction in quasi-one dimensional system possible. In this thesis, we investigated the length dependence of thermal conductivity and proposed a new method to measure the asymmetric phenomena on heat conduction.
In the second chapter of the thesis, the properties and synthesis of CNT will be introduced, followed by the sample preparation and experimental principle. In chapter three, we measured the thermal conductivity of CNTs with different length (2μm~1mm), and verified that the thermal conductivity diverges with increasing length. This phenomenon violates the Fourier’s law, which may help us understand thermal transport theory better. We also check our result carefully in many aspects, including the discussion on radiation heat dissipation, contact resistance, the frequency dependence of electric signals, to ensure the validity of experimental results.
In the fourth chapter, we proposed a 4ω method for detecting asymmetric heat conduction, which can theoretically improve traditional method significantly. The details of this method are discussed, and the experimental results are provided. Although there are some mysteries need to be understood, we believe that this method is promising for bringing new findings on asymmetric heat conduction.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:49:47Z (GMT). No. of bitstreams: 1
ntu-104-R01245009-1.pdf: 4596528 bytes, checksum: b5213f341aecf7e12d7d143e409f9846 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 1
中文摘要 2
ABSTRACT 3
CONTENTS 4
List of Figures 6
Chapter 1 Introduction 12
Chapter 2 The thermal measurement technique and sample preparation 15
2.1 The device for thermal measurement 15
2.1.1 Design of the device 15
2.1.2 Fabrication of the device 17
2.2 The synthesis of carbon nanotubes 20
2.2.1 Chemical vapor deposition 20
2.2.2 Transfer of the samples 24
2.3 Introduction of Lock-in Amplifier (Stanford Research 830) 28
Chapter 3 Non-Fourier heat conduction in ultralong single-wall CNT 30
3.1 Introduction 30
3.2 Method 32
3.3 Result and discussion 41
3.3.1 Background 41
3.3.2 Radiation correction 42
3.3.3 Contact resistance 53
3.3.4 Comparisons with other theory 56
3.3.5 Sensitivity of the 2ω measurement 58
Chapter 4 High sensitive method for asymmetric heat conduction 60
4.1 Introduction 60
4.2 Method 63
4.3 Result and discussion 67
Chapter 5 Conclusion 78
Reference 79
dc.language.isoen
dc.subject熱導率zh_TW
dc.subject熱傳導zh_TW
dc.subject奈米碳管zh_TW
dc.subject聲子zh_TW
dc.subject異常熱傳導zh_TW
dc.subject傅立葉定律zh_TW
dc.subject化學氣相沉積法zh_TW
dc.subjectphononen
dc.subjectanomalous heat conductionen
dc.subjectchemical vapor depositionen
dc.subjectFourier’s lawen
dc.subjectthermal conductivityen
dc.subjectheat conductionen
dc.subjectcarbon nanotubeen
dc.title探索一維熱傳導之現象zh_TW
dc.titleInvestigations of One Dimensional Heat Transporten
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.coadvisor張之威(Chih-Wei Chang)
dc.contributor.oralexamcommittee張怡玲(I-Ling Chang)
dc.subject.keyword聲子,奈米碳管,熱傳導,熱導率,傅立葉定律,化學氣相沉積法,異常熱傳導,zh_TW
dc.subject.keywordphonon,carbon nanotube,heat conduction,thermal conductivity,Fourier’s law,chemical vapor deposition,anomalous heat conduction,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2015-01-23
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
4.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved