請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55134
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊泮池,施金元 | |
dc.contributor.author | Tzu-Hsiu Tsai | en |
dc.contributor.author | 蔡子修 | zh_TW |
dc.date.accessioned | 2021-06-16T03:48:28Z | - |
dc.date.available | 2015-03-12 | |
dc.date.copyright | 2015-03-12 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-01-27 | |
dc.identifier.citation | Aisner DL, Marshall CB. Molecular pathology of non-small cell lung cancer: A practical guide. Am J Clin Pathol. 2012 Sep;138(3):332-46.
Alberg AJ, Samet JM. Epidemiology of lung cancer. Chest. 2003 Jan;123(1 Suppl):21S-49S. Antony VB, Loddenkemper R, Astoul P, et al. Management of malignant pleural effusions. Eur Respir J. 2001 Aug;18(2):402-19. Baselga J, Rischin D, Ranson M, et al. Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol. 2002 Nov 1;20(21):4292-302. Bergethon K, Shaw AT, Ou SH, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012 Mar 10;30(8):863-70. Blackhall F, Ranson M, Thatcher N. Where next for gefitinib in patients with lung cancer? Lancet Oncol. 2006 Jun;7(6):499-507. Brabender J, Danenberg KD, Metzger R, et al. Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer is correlated with survival. Clin Cancer Res. 2001 Jul;7(7):1850-5. Brambilla E, Travis WD, Colby TV, et al. The new World Health Organization classification of lung tumours. Eur Respir J. 2001 Dec;18(6):1059-68. Brambilla E, Travis WD. Lung cancer. In: World Cancer Report, Stewart BW, Wild CP (Eds), World Health Organization, Lyon 2014. Brevet M, Arcila M, Ladanyi M. Assessment of EGFR mutation status in lung adenocarcinoma by immunohistochemistry using antibodies specific to the two major forms of mutant EGFR. J Mol Diagn. 2010 Mar;12(2):169-76. Cadranel J, Zalcman G, Sequist L. Genetic profiling and epidermal growth factor receptor-directed therapy in nonsmall cell lung cancer. Eur Respir J. 2011 Jan;37(1):183-93. Camidge DR, Pao W, Sequist LV. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat Rev Clin Oncol. 2014 Aug;11(8):473-81. Cataldo VD, Gibbons DL, Pérez-Soler R, et al. Treatment of non-small-cell lung cancer with erlotinib or gefitinib. N Engl J Med. 2011 Mar 10;364(10):947-55. Chang TH, Tsai MF, Su KY, et al. Slug confers resistance to the epidermal growth factor receptor tyrosine kinase inhibitor. Am J Respir Crit Care Med. 2011 Apr 15;183(8):1071-9. Chowdhuri SR, Xi L, Pham TH, et al. EGFR and KRAS mutation analysis in cytologic samples of lung adenocarcinoma enabled by laser capture microdissection. Mod Pathol. 2012 Apr;25(4):548-55. Chung KP, Wu SG, Wu JY, et al. Clinical outcomes in non-small cell lung cancers harboring different exon 19 deletions in EGFR. Clin Cancer Res. 2012 Jun 15;18(12):3470-7. Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med. 2008 Mar 13;358(11):1160-74. Coate LE, John T, Tsao MS, et al. Molecular predictive and prognostic markers in non-small-cell lung cancer. Lancet Oncol. 2009 Oct;10(10):1001-10. Coghlin CL, Smith LJ, Bakar S, et al. Quantitative analysis of tumor in bronchial biopsy specimens. J Thorac Oncol. 2010 Apr;5(4):448-52. D'Angelo SP, Pietanza MC, Johnson ML, et al. Incidence of EGFR exon 19 deletions and L858R in tumor specimens from men and cigarette smokers with lung adenocarcinomas. J Clin Oncol. 2011 May 20;29(15):2066-70. Eberhard DA, Giaccone G, Johnson BE; Non-Small-Cell Lung Cancer Working Group. Biomarkers of response to epidermal growth factor receptor inhibitors in Non-Small-Cell Lung Cancer Working Group: standardization for use in the clinical trial setting. J Clin Oncol. 2008 Feb 20;26(6):983-94. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009 Jan;45(2):228-47. Ellison G, Zhu G, Moulis A, et al. EGFR mutation testing in lung cancer: a review of available methods and their use for analysis of tumour tissue and cytology samples. J Clin Pathol. 2013 Feb;66(2):79-89. Felip E, Gridelli C, Baas P, et al. Metastatic non-small-cell lung cancer: consensus on pathology and molecular tests, first-line, second-line, and third-line therapy: 1st ESMO Consensus Conference in Lung Cancer; Lugano 2010. Ann Oncol. 2011 Jul;22(7):1507-19. Fetsch PA, Abati A. Immunocytochemistry in effusion cytology: a contemporary review. Cancer. 2001 Oct 25;93(5):293-308. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial). J Clin Oncol. 2003 Jun 15;21(12):2237-46. Gazdar AF. Personalized medicine and inhibition of EGFR signaling in lung cancer. N Engl J Med. 2009 Sep 3;361(10):1018-20. Gallegos Ruiz MI, Floor K, Rijmen F, e al. EGFR and K-ras mutation analysis in non-small cell lung cancer: comparison of paraffin embedded versus frozen specimens. Cell Oncol. 2007;29(3):257-64. GeneCards V3. www.genecards.org/cgi-bin/carddisp.pl?gene=EGFR&search=EGFR Genova C, Rijavec E, Barletta G, et al. Afatinib for the treatment of advanced non-small-cell lung cancer. Expert Opin Pharmacother. 2014 Apr;15(6):889-903. Gow CH, Shih JY, Chang YL, et al. Acquired gefitinib-resistant mutation of EGFR in a chemonaive lung adenocarcinoma harboring gefitinib-sensitive mutation L858R. PLoS Med. 2005 Sep;2(9):e269. Gridelli C, Peters S, Sgambato A, et al. ALK inhibitors in the treatment of advanced NSCLC. Cancer Treat Rev. 2014 Mar;40(2):300-6. Greulich H, Chen TH, Feng W, et al. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med. 2005 Nov;2(11):e313. Hergott CA, Tremblay A. Role of bronchoscopy in the evaluation of solitary pulmonary nodules. Clin Chest Med. 2010 Mar;31(1):49-63. Herbst RS, Maddox AM, Rothenberg ML, et al. Selective oral epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 is generally well-tolerated and has activity in non-small-cell lung cancer and other solid tumors: results of a phase I trial. J Clin Oncol. 2002 Sep 15;20(18):3815-25. Hidalgo M, Siu LL, Nemunaitis J, et al. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J Clin Oncol. 2001 Jul 1;19(13):3267-79. Hirsch FR, Varella-Garcia M, Bunn PA Jr, et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol. 2003 Oct 15;21(20):3798-807. Hirsch FR, Varella-Garcia M, Bunn PA Jr, et al. Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced non-small-cell lung cancer. J Clin Oncol. 2006 Nov 1;24(31):5034-42. Hirsch FR, Jänne PA, Eberhardt WE, et al. Epidermal growth factor receptor inhibition in lung cancer: status 2012. J Thorac Oncol. 2013 Mar;8(3):373-84. Hirsh V, Cadranel J, Cong XJ, et al. Symptom and quality of life benefit of afatinib in advanced non-small-cell lung cancer patients previously treated with erlotinib or gefitinib: results of a randomized phase IIb/III trial (LUX-Lung 1). J Thorac Oncol. 2013 Feb;8(2):229-37. Huang CT, Tsai YJ, Liao WY, et al. Endobronchial ultrasound-guided transbronchial biopsy of peripheral pulmonary lesions: how many specimens are necessary? Respiration. 2012;84(2):128-34. Hung MS, Lin CK, Leu SW, et al. Epidermal growth factor receptor mutations in cells from non-small cell lung cancer malignant pleural effusions. Chang Gung Med J. 2006 Jul-Aug;29(4):373-9. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005 May;5(5):341-54. Ilie MI, Hofman V, Bonnetaud C, et al. Usefulness of tissue microarrays for assessment of protein expression, gene copy number and mutational status of EGFR in lung adenocarcinoma. Virchows Arch. 2010 Oct;457(4):483-95. Inoue A, Kobayashi K, Usui K, et al. First-line gefitinib for patients with advanced non-small-cell lung cancer harboring epidermal growth factor receptor mutations without indication for chemotherapy. J Clin Oncol. 2009 Mar 20;27(9):1394-400. Inukai M, Toyooka S, Ito S, et al. Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer. Cancer Res. 2006 Aug 15;66(16):7854-8. Jackman D, Pao W, Riely GJ, et al. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol. 2010 Jan 10;28(2):357-60. Janku F, Stewart DJ, Kurzrock R. Targeted therapy in non-small-cell lung cancer - is it becoming a reality? Nat Rev Clin Oncol. 2010 Jul;7(7):401-14. Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010. CA Cancer J Clin. 2010 Sep-Oct;60(5):277-300. Ji H, Li D, Chen L, et al. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell. 2006 Jun;9(6):485-95. John T, Liu G, Tsao MS. Overview of molecular testing in non-small-cell lung cancer: mutational analysis, gene copy number, protein expression and other biomarkers of EGFR for the prediction of response to tyrosine kinase inhibitors. Oncogene. 2009 Aug;28 Suppl 1:S14-23. Jurinke C, Oeth P, van den Boom D. MALDI-TOF mass spectrometry: a versatile tool for high-performance DNA analysis. Mol Biotechnol. 2004 Feb;26(2):147-64. Kanaji N, Bandoh S, Ishii T, et al. Detection of epidermal growth factor receptor mutations in a few cancer cells from transbronchial cytologic specimens by reverse transcriptase-polymerase chain reaction. Mol Diagn Ther. 2011 Dec 1;15(6):353-9. Kanaji N, Bandoh S, Ishii T, et al. Detection of EML4-ALK fusion genes in a few cancer cells from transbronchial cytological specimens utilizing immediate cytology during bronchoscopy. Lung Cancer. 2012 Aug;77(2):293-8. Katakami N, Atagi S, Goto K, et al. LUX-Lung 4: a phase II trial of afatinib in patients with advanced non-small-cell lung cancer who progressed during prior treatment with erlotinib, gefitinib, or both. J Clin Oncol. 2013 Sep 20;31(27):3335-41. Kato Y, Peled N, Wynes MW, et al. Novel epidermal growth factor receptor mutation-specific antibodies for non-small cell lung cancer: immunohistochemistry as a possible screening method for epidermal growth factor receptor mutations. J Thorac Oncol. 2010 Oct;5(10):1551-8. Kawahara A, Yamamoto C, Nakashima K, et al. Molecular diagnosis of activating EGFR mutations in non-small cell lung cancer using mutation-specific antibodies for immunohistochemical analysis. Clin Cancer Res. 2010 Jun 15;16(12):3163-70. Kawahara A, Azuma K, Sumi A, et al. Identification of non-small-cell lung cancer with activating EGFR mutations in malignant effusion and cerebrospinal fluid: Rapid and sensitive detection of exon 19 deletion E746-A750 and exon 21 L858R mutation by immunocytochemistry. Lung Cancer. 2011 Oct;74(1):35-40. Keedy VL, Temin S, Somerfield MR, et al. American Society of Clinical Oncology provisional clinical opinion: epidermal growth factor receptor (EGFR) mutation testing for patients with advanced non-small-cell lung cancer considering first-line EGFR tyrosine kinase inhibitor therapy. J Clin Oncol. 2011 May 20;29(15):2121-7. Kim ES, Hirsh V, Mok T, et al. Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial. Lancet. 2008 Nov 22;372(9652):1809-18. Kimura H, Fujiwara Y, Sone T, et al. High sensitivity detection of epidermal growth factor receptor mutations in the pleural effusion of non-small cell lung cancer patients. Cancer Sci. 2006 Jul;97(7):642-8. Kimura H, Fujiwara Y, Sone T, et al. EGFR mutation status in tumour-derived DNA from pleural effusion fluid is a practical basis for predicting the response to gefitinib. Br J Cancer. 2006 Nov 20;95(10):1390-5. Kitamura A, Hosoda W, Sasaki E, et al. Immunohistochemical detection of EGFR mutation using mutation-specific antibodies in lung cancer. Clin Cancer Res. 2010 Jul 1;16(13):3349-55. Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005 Feb 24;352(8):786-92. Kozu Y, Tsuta K, Kohno T, et al. The usefulness of mutation-specific antibodies in detecting epidermal growth factor receptor mutations and in predicting response to tyrosine kinase inhibitor therapy in lung adenocarcinoma. Lung Cancer. 2011 Jul;73(1):45-50. Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005 Jul 14;353(2):172-87. Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA. 2003 Oct 22;290(16):2149-58. Kwak EL, Sordella R, Bell DW, et al. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7665-70. Kwak EL, Bang YJ, Camidge DR, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010 Oct 28;363(18):1693-703. Ladd AC, O'Sullivan-Mejia E, Lea T, et al. Preservation of fine-needle aspiration specimens for future use in RNA-based molecular testing. Cancer Cytopathol. 2011 Apr 25;119(2):102-10. Lam WK. Lung cancer in Asian women-the environment and genes. Respirology. 2005 Sep;10(4):408-17. Light RW. Pleural Diseases. 4th ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2001:87. Linardou H, Dahabreh IJ, Bafaloukos D, et al. Somatic EGFR mutations and efficacy of tyrosine kinase inhibitors in NSCLC. Nat Rev Clin Oncol. 2009 Jun;6(6):352-66. LoRusso PM, Herbst RS, Rischin D, et al. Improvements in quality of life and disease-related symptoms in phase I trials of the selective oral epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 in non-small cell lung cancer and other solid tumors. Clin Cancer Res. 2003 Jun;9(6):2040-8. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004 May 20;350(21):2129-39. Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010 Jun 24;362(25):2380-8. Maheswaran S, Sequist LV, Nagrath S, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med. 2008 Jul 24;359(4):366-77. Malapelle U, Bellevicine C, Zeppa P, et al. Cytology-based gene mutation tests to predict response to anti-epidermal growth factor receptor therapy: A review. Diagn Cytopathol. 2011 Sep;39(9):703-10. Mitsudomi T, Kosaka T, Endoh H, et al. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J Clin Oncol. 2005 Apr 10;23(11):2513-20. Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010 Feb;11(2):121-8. Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009 Sep 3;361(10):947-57. Mok TS. Personalized medicine in lung cancer: What we need to know. Nat Rev Clin Oncol. 2011 Aug 23;8(11):661-8. Morita S, Okamoto I, Kobayashi K, et al. Combined survival analysis of prospective clinical trials of gefitinib for non-small cell lung cancer with EGFR mutations. Clin Cancer Res. 2009 Jul 1;15(13):4493-8. Nakamura H, Mochizuki A, Shinmyo T, et al. Immunohistochemical detection of mutated epidermal growth factor receptors in pulmonary adenocarcinoma. Anticancer Res. 2010 Dec;30(12):5233-7. Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis. Eur J Cancer. 2001 Sep;37 Suppl 4:S9-15. Non-small Cell Lung Cancer Collaborative Group. Chemotherapy in non-small cell lung cancer: a meta-analysis using updated data on individual patients from 52 randomised clinical trials. BMJ. 1995 Oct 7;311(7010):899-909. Ohsaki Y, Tanno S, Fujita Y, et al. Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression. Oncol Rep. 2000 May-Jun;7(3):603-7. Paez JG, Jänne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004 Jun 4;304(5676):1497-500. Pao W, Miller V, Zakowski M, et al. EGF receptor gene mutations are common in lung cancers from 'never smokers' and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13306-11. Pao W, Miller VA, Politi KA, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005 Mar;2(3):e73. Pao W, Ladanyi M. Epidermal growth factor receptor mutation testing in lung cancer: searching for the ideal method. Clin Cancer Res. 2007 Sep 1;13(17):4954-5. Pao W, Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer. 2010 Nov;10(11):760-74. Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 2011 Feb;12(2):175-80. Paone G, Nicastri E, Lucantoni G, et al. Endobronchial ultrasound-driven biopsy in the diagnosis of peripheral lung lesions. Chest. 2005 Nov;128(5):3551-7. Papadopoulos N, Kinzler KW, Vogelstein B. The role of companion diagnostics in the development and use of mutation-targeted cancer therapies. Nat Biotechnol. 2006 Aug;24(8):985-95. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin. 2005 Mar-Apr;55(2):74-108. Pérez-Soler R, Chachoua A, Hammond LA, et al. Determinants of tumor response and survival with erlotinib in patients with non--small-cell lung cancer. J Clin Oncol. 2004 Aug 15;22(16):3238-47. Pham D, Kris MG, Riely GJ, et al. Use of cigarette-smoking history to estimate the likelihood of mutations in epidermal growth factor receptor gene exons 19 and 21 in lung adenocarcinomas. J Clin Oncol. 2006 Apr 10;24(11):1700-4. Pirker R, Herth FJ, Kerr KM, et al. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop. J Thorac Oncol. 2010 Oct;5(10):1706-13. Politi K, Zakowski MF, Fan PD, et al. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev. 2006 Jun 1;20(11):1496-510. Putnam EA, Yen N, Gallick GE, et al. Autocrine growth stimulation by transforming growth factor-alpha in human non-small cell lung cancer. Surg Oncol. 1992 Feb;1(1):49-60. Ranson M, Hammond LA, Ferry D, et al. ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol. 2002 May 1;20(9):2240-50. Rapp E, Pater JL, Willan A, et al. Chemotherapy can prolong survival in patients with advanced non-small-cell lung cancer--report of a Canadian multicenter randomized trial. J Clin Oncol. 1988 Apr;6(4):633-41. Reck M, Hermes A, Tan EH, et al. Tissue sampling in lung cancer: a review in light of the MERIT experience. Lung Cancer. 2011 Oct;74(1):1-6. Riely GJ, Politi KA, Miller VA, et al. Update on epidermal growth factor receptor mutations in non-small cell lung cancer. Clin Cancer Res. 2006 Dec 15;12(24):7232-41. Rivera MP, Mehta AC; American College of Chest Physicians. Initial diagnosis of lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest. 2007 Sep;132(3 Suppl):131S-148S. Rusch V, Baselga J, Cordon-Cardo C, et al. Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res. 1993 May 15;53(10 Suppl):2379-85. Riely GJ, Marks J, Pao W. KRAS mutations in non-small cell lung cancer. Proc Am Thorac Soc. 2009 Apr 15;6(2):201-5. Rodig SJ, Mino-Kenudson M, Dacic S, et al. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res. 2009 Aug 15;15(16):5216-23. Rosell R, Moran T, Queralt C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 2009 Sep 3;361(10):958-67. Salto-Tellez M, Tsao MS, Shih JY, et al. Clinical and testing protocols for the analysis of epidermal growth factor receptor mutations in East Asian patients with non-small cell lung cancer: a combined clinical-molecular pathological approach. J Thorac Oncol. 2011 Oct;6(10):1663-9. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006 Dec 14;355(24):2542-50. Sasaki T, Rodig SJ, Chirieac LR, et al. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer. 2010 Jul;46(10):1773-80. Savic S, Tapia C, Grilli B, et al. Comprehensive epidermal growth factor receptor gene analysis from cytological specimens of non-small-cell lung cancers. Br J Cancer. 2008 Jan 15;98(1):154-60. Scagliotti GV, Parikh P, von Pawel J, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008 Jul 20;26(21):3543-51. Schiller JH, Harrington D, Belani CP, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002 Jan 10;346(2):92-8. Sequist LV, Bell DW, Lynch TJ, et al. Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J Clin Oncol. 2007 Feb 10;25(5):587-95. Sequist LV, Martins RG, Spigel D, et al. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J Clin Oncol. 2008 May 20;26(15):2442-9. Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011 Mar 23;3(75):75ra26. Sequist LV, Yang JC, Yamamoto N, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 2013 Sep 20;31(27):3327-34. Sharma SV, Bell DW, Settleman J, et al. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007 Mar;7(3):169-81. Sharma SV, Settleman J. Oncogene addiction: Setting the stage for molecularly targeted cancer therapy. Genes Dev. 2007 Dec 15;21(24):3214-31. Shaw AT, Yeap BY, Mino-Kenudson M, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009 Sep 10;27(26):4247-53. Shaw AT, Hsu PP, Awad MM, et al. Tyrosine kinase gene rearrangements in epithelial malignancies. Nat Rev Cancer. 2013 Nov;13(11):772-87. Shaw AT, Kim DW, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013 Jun 20;368(25):2385-94. Shaw AT, Kim DW, Mehra R, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014 Mar 27;370(13):1189-97. Shaw AT, Ou SH, Bang YJ, et al. Crizotinib in ROS1-Rearranged Non-Small-Cell Lung Cancer. N Engl J Med. 2014 Nov 20;371(21):1963-71. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005 Jul 14;353(2):123-32. Shigematsu H, Lin L, Takahashi T, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst. 2005 Mar 2;97(5):339-46. Shih JY, Gow CH, Yu CJ, et al. Epidermal growth factor receptor mutations in needle biopsy/aspiration samples predict response to gefitinib therapy and survival of patients with advanced nonsmall cell lung cancer. Int J Cancer. 2006 Feb 15;118(4):963-9. Simonetti S, Molina MA, Queralt C, et al. Detection of EGFR mutations with mutation-specific antibodies in stage IV non-small-cell lung cancer. J Transl Med. 2010 Dec 18;8:135. Smouse JH, Cibas ES, Jänne PA, et al. EGFR mutations are detected comparably in cytologic and surgical pathology specimens of nonsmall cell lung cancer. Cancer. 2009 Feb 25;117(1):67-72. Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007 Aug 2;448(7153):561-6. Soda M, Isobe K, Inoue A, et al. A prospective PCR-based screening for the EML4-ALK oncogene in non-small cell lung cancer. Clin Cancer Res. 2012 Oct 15;18(20):5682-9. Soh J, Toyooka S, Aoe K, et al. Usefulness of EGFR mutation screening in pleural fluid to predict the clinical outcome of gefitinib treated patients with lung cancer. Int J Cancer. 2006 Nov 15;119(10):2353-8. Solomon BJ, Mok T, Kim DW, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014 Dec 4;371(23):2167-77. Steinfort DP, Khor YH, Manser RL, et al. Radial probe endobronchial ultrasound for the diagnosis of peripheral lung cancer: Systematic review and meta-analysis. Eur Respir J. 2011 Apr;37(4):902-10. Su KY, Chen HY, Li KC, et al. Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non-small-cell lung cancer. J Clin Oncol. 2012 Feb 1;30(4):433-40. Suzuki S, Dobashi Y, Sakurai H, et al. Protein overexpression and gene amplification of epidermal growth factor receptor in nonsmall cell lung carcinomas. An immunohistochemical and fluorescence in situ hybridization study. Cancer. 2005 Mar 15;103(6):1265-73. Taguchi F, Solomon B, Gregorc V, et al. Mass spectrometry to classify non-small-cell lung cancer patients for clinical outcome after treatment with epidermal growth factor receptor tyrosine kinase inhibitors: a multicohort cross-institutional study. J Natl Cancer Inst. 2007 Jun 6;99(11):838-46. Testa JR, Siegfried JM. Chromosome abnormalities in human non-small cell lung cancer. Cancer Res. 1992 May 1;52(9 Suppl):2702s-2706s. Thomas RK, Baker AC, Debiasi RM, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007 Mar;39(3):347-51. Thatcher N, Chang A, Parikh P, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet. 2005 Oct 29-Nov 4;366(9496):1527-37. Tokumo M, Toyooka S, Kiura K, et al. The relationship between epidermal growth factor receptor mutations and clinicopathologic features in non-small cell lung cancers. Clin Cancer Res. 2005 Feb 1;11(3):1167-73. Tsai TH, Su KY, Wu SG, et al. RNA is favourable for analysing EGFR mutations in malignant pleural effusion of lung cancer. Eur Respir J. 2012 Mar;39(3):677-84. Travis WD, Brambilla E, Noguchi M, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011 Feb;6(2):244-85. Wu CC, Hsu HY, Liu HP, et al. Reversed mutation rates of KRAS and EGFR genes in adenocarcinoma of the lung in Taiwan and their implications. Cancer. 2008 Dec 1;113(11):3199-208. Wu JY, Yu CJ, Yang CH, et al. First- or second-line therapy with gefitinib produces equal survival in non-small cell lung cancer. Am J Respir Crit Care Med. 2008 Oct 15;178(8):847-53. Wu JY, Yu CJ, Chang YC, et al. Effectiveness of tyrosine kinase inhibitors on 'uncommon' epidermal growth factor receptor mutations of unknown clinical significance in non-small cell lung cancer. Clin Cancer Res. 2011 Jun 1;17(11):3812-21. Wu SG, Gow CH, Yu CJ, et al. Frequent epidermal growth factor receptor gene mutations in malignant pleural effusion of lung adenocarcinoma. Eur Respir J. 2008 Oct;32(4):924-30. Wu SG, Chang YL, Hsu YC, et al. Good response to gefitinib in lung adenocarcinoma of complex epidermal growth factor receptor (EGFR) mutations with the classical mutation pattern. Oncologist. 2008 Dec;13(12):1276-84. Wu SG, Kuo YW, Chang YL, et al. EML4-ALK translocation predicts better outcome in lung adenocarcinoma patients with wild-type EGFR. J Thorac Oncol. 2012 Jan;7(1):98-104. Wu YL, Zhou C, Hu CP, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 2014 Feb;15(2):213-22. Yang CH, Yu CJ, Shih JY, et al. Specific EGFR mutations predict treatment outcome of stage IIIB/IV patients with chemotherapy-naive non-small-cell lung cancer receiving first-line gefitinib monotherapy. J Clin Oncol. 2008 Jun 1;26(16):2745-53. Yasuda H, Kobayashi S, Costa DB. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncol. 2012 Jan;13(1):e23-31. Yu J, Kane S, Wu J, Benedettini E, et al. Mutation-specific antibodies for the detection of EGFR mutations in non-small-cell lung cancer. Clin Cancer Res. 2009 May 1;15(9):3023-8. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55134 | - |
dc.description.abstract | 標靶治療的發展是非小細胞肺癌治療的重大進展。近來一些重要的臨床試驗顯示腫瘤細胞的特定基因變異,是決定某些非小細胞肺癌標靶藥物效果的重要預測因子。據此,以臨床檢體進行基因檢測,已成為晚期非小細胞肺癌患者診治的重要環節。然而由於考慮標靶治療的患者處於無法手術治療的疾病晚期,因而診斷檢體常侷限於小的生檢切片或細胞學檢體,而這些檢體往往不足以進行分子檢驗。因應這樣的挑戰,發展能以微小或非組織學檢體檢測腫瘤基因變異的方法,將有助於篩選更多能對標靶治療產生反應的患者。
惡性肋膜積水是非小細胞肺癌常見的併發症,而積水的採檢相對容易、較不具侵襲性、而且可以反覆進行。然而,以惡性肋膜積水的細胞基因體DNA進行Sanger氏定序,已被證實無法靈敏的檢測EGFR基因突變。事實上,由於非腫瘤細胞的干擾,以異質性檢體進行直接定序以偵測腫瘤細胞基因變異並不靈敏。由於惡性肋膜積水中的非腫瘤細胞不表現EGFR基因,或僅有低度表現,我們因而假設以細胞RNA作為初始模版的EGFR基因定序,可能可以減少非腫瘤細胞的干擾。在我們的研究中,我們平行比較了三種方法(以細胞的RNA進行定序、以及以基因體DNA進行定序或質譜儀分析),用於肺腺癌惡性肋膜積水檢體的EGFR基因突變檢測。其結果顯示以RNA進行EGFR基因定序,可以大幅改善從惡性肋膜積水檢體偵測EGFR基因突變的靈敏度。而由於RNA 定序的突變偵測率較佳,伴隨著對第一線EGFR酪氨酸激酶抑制劑臨床療效的預測也較準確。對於發生後天抗藥性的患者,以RNA進行的EGFR基因定序對續發性T790M突變的偵測結果也令人滿意。 雖然我們證實RNA定序適用於惡性肋膜積水檢體的EGFR基因突變檢測,然而由於 RNA 本質不穩定,以及廣泛存在於環境的核糖核酸酶,因此應用此技術必須審慎的進行檢體的處理,也因此限制其在臨床實務的普及性與用途。免疫細胞化學染色是已經確立的技術,而且經常做為惡性肋膜積水的輔助評估方法。最近已發展出對兩種主要突變形式(L858R 點突變與第19外顯子的E746-A750剔除)的EGFR蛋白質具有專一性結合,可以應用於免疫染色的兔子單株抗體。我們的研究顯示,以這兩種突變專一性抗體進行惡性肋膜積水的免疫細胞染色,對設定檢測的EGFR基因突變,具有相當不錯的偵測靈敏度與精確性。相對於患者的臨床特性,積水的免疫細胞染色對第一線EGFR酪氨酸激酶抑制劑的腫瘤治療反應與無進展存活期,也提供了較好的預測。 過去十年來,微型圓徑探頭支氣管內超音波的發展,已大幅改進以軟性支氣管鏡檢查評估周邊型肺癌的成效。這個進展帶來的一個新的議題,亦即這項技術提供的檢體是否也能夠用於分子檢驗。由於我們證實以RNA為模版的Sanger氏定序,非常適用於細胞學檢體的突變分析。在本研究中,我們也探討利用支氣管內超音波輔助取得的剩餘刷取檢體,評估以RNA的Sanger氏定序進行多基因(EGFR基因、KRAS基因、與EML4-ALK融合基因)分析之可行性。研究結果顯示實施此多基因檢測方式的成功率極高,而且突變的偵測結果也相當好。結合肺癌診斷中日益普及的高階支氣管鏡檢查技術,與此一有效檢測腫瘤基因變異的方法,將可有效的篩選更多的晚期非小細胞肺癌患者,依據其腫瘤細胞的分子特性,決定個別化標靶藥物的治療。 總結而言,我們的研究針主要著重如何使非小細胞肺癌標靶治療的預測性基因變異檢測能更有效與廣泛的應用。要根據腫瘤基因的變異篩選非小細胞肺癌的標靶治療,首先需要實際與有效的取得可用的檢體,並發展適合這些類型臨床檢體的基因檢測方法。值得注意的是,我們的研究顯示簡單的以細胞的RNA取代基因體DNA作為分析的初始模版,可以讓傳統的Sanger氏定序適用於以異質性檢體檢測標靶治療預測性的基因變異。除了改善Sanger氏定序的靈敏度,此種基因分析方式的其他特徵,如增加微小檢體的核酸量、對帶有多重外顯子的基因可以減少所需的的複製與定序反應次數、以及可以用相同的方法分析基因突變與重組等,使其進一步適用於多基因的檢測。 | zh_TW |
dc.description.abstract | The development of targeted therapy represents an important advance in the treatment of non-small cell lung cancer (NSCLC). Recent pivotal trials have demonstrated that the presence of specific genetic alterations in tumor cells is an important factor for individualizing treatment with some targeted agents in NSCLC. As a result, genetic assay in clinical samples has become an integral part of care for advanced NSCLC patients. However, as the cases considered for targeted therapy present at advanced stages, diagnostic materials are often limited to small biopsies or cytological specimens, which may be insufficient for molecular analysis. To this end, alternative approaches that can detect genetic alterations from minute or cytological samples must be explored to select more patients who are likely to respond to targeted therapy.
Malignant pleural effusion (MPE) is a common complication of NSCLC, and effusion sampling is easy, relatively non-invasive and repeatable. However, Sanger sequencing of cell-derived genomic DNA from MPE samples was found not sensitive for EGFR-mutation detection. It is known that direct sequencing is not exquisitely sensitive in heterogeneous samples because of the interference from non-tumor cells. As contaminated non-tumor cells within MPE may have no or lower EGFR expression, we hypothesized that EGFR sequencing using cell-derived RNA as the starting template could be less prone to interference from non-tumor cells. In the study, we compared three methods (sequencing from cell-derived RNA versus sequencing and mass-spectrometric analysis from genomic DNA) parallelly for EGFR-mutation detection from MPE samples of lung adenocarcinoma. The results demonstrated that EGFR sequencing using RNA as template greatly improves sensitivity for EGFR-mutation detection from samples of MPE. The better mutation-detection yield of sequencing from RNA was coupled with the superior prediction of efficacy to first-line EGFR tyrosine kinase inhibitors. In patients with acquired resistance, EGFR sequencing from RNA provided satisfactory detection of secondry T790M mutation. Despite the promise of using RNA for EGFR-mutation detection from MPE samples, the inherently labile nature of RNA, as well as the ubiquitous presence of RNase, warrants the requisite of prudent sample processing and limits its popular application in clinical practice. Immunocytochemistry is a well-established technique and frequently applied as an adjuvant method for the evaluation of MPE. Recently, two rabbit monoclonal antibodies binding specifically to the two major forms of mutant EGFR, L858R point mutation and E746-A750 deletion in exon 19, have been developed for immunostaining. In the study, we demonstrated that effusion immunocytochemistry with these two mutant-specific antibodies exhibited satisfactory sensitivity and specificity for identifying predefined EGFR mutations. Effusion immunocytochemistry also provided a superior prediction of tumor response and progression-free survival to first-line EGFR tyrosine kinase inhibitors than clinical characteristics. In the past decade, the advent of miniature radial-probe endobronchial ultrasound (EBUS) has greatly improved the capacity of flexible bronchoscopy in evaluating peripheral lung cancer. An issue accompanying with this advance is whether the specimens offered by this technique promise for molecular testing. In the study, we evaluated the feasibility of multi-gene analyses (EGFR, KRAS and EML4-ALK fusion) alternately from waste brushing content obtained by EBUS-assisted bronchoscopy, utilizing RNA-based Sanger sequencing which was found promising for mutational analyses from cytological samples. We demonstrated that multi-gene analysis could be implemented from cytology-proven brushing samples with a very high successful rate, and the yields for detecting these mutations were satisfactory. Coupled with the expansion use of advanced bronchoscopic technologies in the diagnosis of lung cancer, this approach could effectively recruit more patients to receive individualized targeted therapy according to the molecular characteristics of tumors cells. In summary, our research is directed at optimizing implication of genetic testing that is predictive for targeted therapy in advanced NSCLC. We reinforce that selection of targeted therapy in NSCLC based on tumor genetic characteristics requires practical system for obtaining clinical samples, along with exploring appropriate methods of genetic testing for the corresponding samples. Notably, our studies feature that simple substitution of cell-derived RNA for genomic DNA as the starting template could enable conventional Sanger sequencing as a suitable method for identifying predictive mutations from heterogeneous samples. Besides improving sensitivity with Sanger sequencing, other characterics, including more plenty of genetic content in small samples, fewer rounds of amplification/sequencing required for genes with multiple exons and detecting mutations and translocations in a similar manner, further enable RNA-based approach feasible for multi-gene analysis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:48:28Z (GMT). No. of bitstreams: 1 ntu-104-D96421004-1.pdf: 2093465 bytes, checksum: b6c60cd60ee7210475e40097fe43005d (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 中文摘要------1
英文摘要------4 第一章、緒論------7 第二章、研究材料與方法------39 第三章、結果------52 第四章、討論------65 第五章、展望------85 論文英文簡述------96 參考文獻------121 表------139 圖------155 附錄------165 | |
dc.language.iso | zh-TW | |
dc.title | 以RNA進行非小細胞肺癌標靶治療的基因檢驗:應用於惡性肋膜積水與支氣管鏡刷取等細胞學檢體 | zh_TW |
dc.title | RNA-based Genetic Testing for Targeted Therapy in Non-small Cell Lung Cancer: Application to Cytological Specimens of Malignant Pleural Effusion and Bronchoscopic Brushing | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳育民,林恆毅,余忠仁,何肇基 | |
dc.subject.keyword | 非小細胞肺癌,標靶治療,酪氨酸激?抑制劑,EGFR基因突變,EML4-ALK融合基因,預測性生物標記,分子診斷學,Sanger氏定序,反轉錄聚合?鏈反應, | zh_TW |
dc.subject.keyword | non-small cell lung cancer,targeted therapy,tyrosine kinase inhibitor,EGFR mutation,EML4-ALK fusion,predictive biomarker,molecular diagnostics,Sanger sequencing,reverse-transcription polymerase chain reaction, | en |
dc.relation.page | 165 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-01-27 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 2.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。