請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55131
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐治平 | |
dc.contributor.author | Heng-Soon Chee | en |
dc.contributor.author | 朱興順 | zh_TW |
dc.date.accessioned | 2021-06-16T03:48:22Z | - |
dc.date.available | 2015-03-13 | |
dc.date.copyright | 2015-03-13 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-01-27 | |
dc.identifier.citation | 1 S.S. Butcher, R.J. Charlson, G.H. Orians , Global biogeochemical cycles, London : Academic Press , 1992.
2 A. M. Wachinski, Membrane Processes for water reuse, McGraw-Hill Professional, 2012. 3 M. Mulder , Basic Principles of membrane technology,Kluwer Academic Publishers, The Netherlands, 1996 . 4 I. Pinnau, B.D. Freeman, Membrane formation and modification, American Chemical Society, Washington, DC, 2000. 5 S. Loeb and S. Sourirajan, Advan. Chem. Ser., 1962,38,117. 6 X.Y. Fu, T. Sotani, H. Matsuyama,Effect of membrane preparation method on the outer surface morphology of cellulose acetatebutyrate hollow fiber membrane, Desalination 2008, 233:10–18. 7 J.J. Kim, T.S. Jang, Y.D. Kwon, U.Y. Kim, S.S. Kim , Journal of Membrane Science, 1994, 93:209-215 8 P. Apel , Radiation Measurements , 2001, 34:559-566 9 H.H. Chang, L.C. Yao, D.J. Lina, L.P. Cheng, Preparation of microporous poly(VDF-co-HFP) membranes by template-leaching method, Separation and Purification Technology, 2010, 72:156-166. 10 T.H. Young , D.M. Wang, The effect of the second phase inversion on microstructures in phase inversion EVAL membranes, Journal of Membrane Science i.1998, 146:169-178. 11 H. Susanto, M. Ulbricht , Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives, Journal of Membrane Science, 2009, 327:125-135. 12 Z.Y. Cui, Y.Y. Xu, L.P. Zhu, J.Y. Wang, Z.Y. Xi, B.K. Zhu , Preparation of PVDF/PEO-PPO-PEO blend microporous membranes for lithium ion batteries via thermally induced phase separation process, Journal of membrane Science, 2008, 325:957-963. 13 S. Bonyadi, T.S. Chung , Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by a solvent-dope solution co-extrusion approach, Journal of Membrane Science, 2009, 331:66-74. 14 D.R. Lloyd, S.S. Kim, K.E. Kinzer, Microporous membrane formation via thermally-induced phase separation. II. Liquid—liquid phase separation, Journal of Membrane Science, 1991, 60:1-11. 15 H.C. Park, Y.P. Kim, H.Y. Kim, Y.S. Kang , Membrane formation by water vapor induced phase inversion, Journal of membrane Science,1999, 156:169-178. 16 T. Yamaguchi, H. Zhou, S. Nakazawa, N. Hara , An Extremely Low Methanol Crossover and Highly Durable Aromatic Pore-Filling Electrolyte Membrane for Direct Methanol Fuel Cells, Advanced materials, 2007, 19:592-596. 17 D.A. Musale, A. Kumar , Effects of surface crosslinking on sieving characteristics of chitosan/poly(acrylonitrile) composite nanofiltration membranes ,Separation and purification technology, 2000, 21:27-37. 18 J.E. Cadotte, R.S. King, R.J. Majer, R.J. Petersen , Interfacial Synthesis in the Preparation of Reverse Osmosis Membranes , Journal of Macromolecular Science: Part A - Chemistry ,1981,15:727-755. 19 A.J.B. Kemperman, H.H.M. Rolevink, D. Bargeman, T. Boomgaard, H. Strathmann, Stabilization of supported liquid membranes by interfacial polymerization top layers , Journal of Membrane Science, 1998, 138:43-55. 20 J.E. Cadotte , US Patent 4,277,344, 1981. 21 G. Henrici-Olive, S. Olive, Molecular interactions and macroscopic properties of polyacrylonitrile and model substances, Adv. Polym. Sci. 1979, 32:123-152. 22 C. Moreau, Ann. Chem. Phys. 1893, 2:186. 23 B.G. Colvin, P. Storr, The crystal structure of polyacrylonitrile . Eur Polym J, 1974,10: 337-340. 24 J. Beniska and E. Staudner, Study of the polymerization of acrylonitrile in dimethylformamide solution in the presence of tetramethyl thiuramdisulfide , Journal of Polymer Science: Polymer Symposia. 1973,42(1): 429-435. 25 I. Czajlik et al., Eur. Polym. J. , 1978, 14:1059; 1981, 17:131 . 26 I. Czajlik, T. Foldes-Berezsnich, T. Tudos, and E. Vertes, Kinetics of Copolymerization. III. Determination of the Rate of Initiation in the Copolymerization System Acrylonitrile/Methyl Acrylate/Dimethylformamide, J. Macromol. Sci. Chem. 1980. 14(8):1243-1254. 27 G. Vidotto, A. Grosatto-Arnaldi, and G. Talamini, Polymerization of acrylonitrile in the presence of different solvents, Die Makromolekulare Chemie , 1969, 122(1):91-104. 28 G. Vidotto, S. Brugnaro, and G. Talamini, Bulk and solution polymerization of vinyl-monomers in the presence of a chain transfer agent. Part II. Acrylonitrile, Die Makromolekulare Chemie, 1970,140(1):263 . 29 L.H. Peebles, Jr., Polyacrylonitrile prepared in ethylene carbonate solution. I. Kinetics at low conversion, J. Polym. Sci. A 1965,3(1): 341-351; L.H. Peebles, Jr., Polyacrylonitrile prepared in ethylene carbonate solution. II. Kinetics at high conversion , J. Polym. Sci. A ,1965,3(1): 353-360, L.H. Peebles, Jr., Polyacrylonitrile prepared in ethylene carbonate solution. III. Molecular parameters, J. Polym. Sci. A 361-368. 30 M. Yosida and K. Tonouchi, Solution Polymerization of Acrylonitrile in Zinc Chloride Aqueous Solution I. Kinetics of Polymerization, Kobunshi Kagaku, 1963, 20(221),:545-550 . 31 L.V. Smirnova, V.I. Zamelin, and Y.N. Kabanov, Purification of the effluent of the nitron fibre sector with ozone , Fibre Chemistry, 1972, 4(1):100-102. 32 W.J. Burlant, J.L. Parsons, Pyrolysis of polyacrylonitrile, Journal of Polymer Science, 1956, 22(101): 249-256. 33 M.S.A. Rahaman, A.F. Ismail, A. Mustafa, A review of heat treatment on polyacrylonitrile fiber, Polymer Degradation and Stability, 2007 ,92( 8):1421–1432. 34 T. Satoh, S. Suzuki, Y. Suzuki, Y. Miyaji, Z. Imai, Reduction of organic compounds with sodium borohydride-transition metal salt systems: Reduction of organic nitrile, nitro and amide compounds to primary amines, Tetrahedron Letters, 1969, 52: 4555-455. 35 Stela Drăgan, V. Bărboiu, I. Petrariu, M. Dima, Cationic polyelectrolytes. III. Nitrile‐group reaction of macromolecular compounds with N, N‐dialkylaminoalkylamines, Journal of Polymer Science: Polymer Chemistry Edition, 1981, 19(11):2869-2880. 36 E.V. Thompson, The thermal behavior of acrylonitrile polymers. I. On the decomposition of polyacrylonitrile between 250 and 325 °C, Polym Lett, 1966, 4 (5):361–366. 37 R.C. Houtz, Orlon acrylic fiber: chemistry and properties. Text Res J 1950;20(11):786-801. 38 R.K. Iler, The chemistry of silica : solubility, polymerization, colloid and surface properties, and biochemistry , Wiley, New York, 1979. 39 N.Grassie, in Encyclopedia of Polymer Science and Technology, Wiley, New York, 1966, 4: 667-671. 40 D. Pavia, G. Lampman, G. Kriz, Introduction to Spectroscopy, Third Eddition, Thomson Learning, 2001. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55131 | - |
dc.description.abstract | 在研究論文中,以聚丙烯腈(polyacrylonitrile,PAN)不對稱膜做為薄膜基材,在第一階段表面改質中,利用矽烷(silane)胺丙基三乙氧基矽烷((3-aminopropyl)triethoxysilane,APTES)在無水(anhydrous)狀態下使與PAN上的-CN官能基鍵結,以產生後續改質中的接枝點(grafting point),在第二階段表面改質中,利用silane 四乙氧基矽烷(tetraethylorthosilicate , TEOS)將第一階段分散的接枝點連結起來,在PAN_A表面產生一緻密立體網狀的二氧化矽(SiO2,silica)無機層,在第三階段表面改質中,利用不同種類silane(包括APTES 、3-環氧丙醇三甲氧基矽烷((3-glycidoxypropyl)trimethoxysilane,GPTMS)、與(3-巰基丙基)三甲氧基矽烷 ((3-mercaptopropyl)trimethoxysilane,MPTMS)),經水解(hydrolysis)反應後,在第二階段改質後的PAN_A_T薄膜表面二氧化矽無機層上鍵接,以製備新型奈米過濾(nanofiltration,NF)薄膜。由實驗結果分析重點主要得包括:(1)PAN基材製備時PAN厚度的過高會造成低層結構過於疏鬆,而透過SEM的截面分析可以決定成膜的最適厚度;(2)第一階段表面改質中,反應時間會對PAN表面化學結構與機械強度的影響,必須分析改質後薄膜特性以找出適當的反應時間;(3)分析第二階段和第三階段表面改質後,PAN表面緻密性,以及表面接上官能基特性;(4)分析PAN厚度與其表面親水性的改變,對於過濾水通量的影響。 | zh_TW |
dc.description.abstract | In this research thesis, asymmetric polyacrylonitrile (PAN) membrane as supporting material, in the first-phase surficial modification, (3-aminopropyl)triethoxysilane (APTES) is bonded with -CN on PAN under anhydrous state, to provide the grafting points for condensation reaction in subsequent surficial modification, in the second-phase surficial modification, reaction of tetraethyl orthosilicate (TEOS) will crosslink the scattered grafting points to become a tight, steric-mesh, inorganic silica (SiO2) film on PAN_A surface, in the third-phase surficial modification, silanes (including APTES, (3-glycidoxypropyl)trimethoxysilane (GPTMS), and (3-mercaptopropyl)trimethoxysilane, (MPTMS)), after hydrolysis and condensation, and are grafted onto SiO2 film on PAN_A_T surface, to prepare a new type of nanofiltration (NF) membrane. By mainly focused on analysis of experimental results include: (1) The preparation of PAN thickness is thick that will cause the lower substrate structure is very friable, and through cross-sectional SEM analysis can determine the optimum thickness of a membrane; (2) At first-phase surficial modification, chemical structure and mechanical strength are affected by reaction times, analysis relations between reaction times and membrane properties can find appropriate reaction times; (3) After the second-phase and three-phase surface modification, surface analysis of PAN membranes shows where density increase, and new functional groups change surface properties; (4) Analysis thickness and hydrophilicity of PAN membranes change, for filtered water flux influence. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:48:22Z (GMT). No. of bitstreams: 1 ntu-104-R01524093-1.pdf: 4011546 bytes, checksum: 29ffefb611b6eef058d27e0f14071850 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III ABSTRACT IV 目錄 V 圖目錄 VII 表目錄 IX 第一章緒論 1 1.1 水資源 1 1.2 薄膜分離簡介 2 1.3 奈米過濾的應用 4 1.4 基材薄膜的製備方法 6 1.5 奈米過濾膜製備方法 8 1.5.1 孔洞充填法 8 1.5.2 高分子掺合法 9 1.5.3 高分子共聚合法 10 1.5.4 交聯法 10 1.5.5 界面聚合法 10 1.6 聚丙烯腈簡介 12 1.6.1 PAN的反應 15 1.7 矽烷 16 1.7.1 Si(OR)4 16 1.7.2 矽烷交聯劑 16 1.7.3 矽烷的水解及縮和反應 16 1.7.4 聚合 18 1.7.5 影響聚合反應因素 18 1.8 研究動機與目的 19 第二章實驗 21 2.1實驗藥品 21 2.2實驗儀器 21 2.3實驗樣品命名 22 2.4實驗操作流程圖 23 2.5實驗步驟 24 2.5.1 PAN不對稱膜的製備 24 2.5.2 PAN不對稱膜一次改質 24 2.5.3 PAN不對稱膜二次及三次改質 25 2.5.4 各奈米過濾膜特性分析與測試 26 第三章 結果與討論 30 3.1 PAN與APTES的反應對PAN特性的影響 30 3.2 PAN_A與silane的二次改質和三次改質 32 3.3 不同PAN的通量測試 34 第四章 結論 52 參考文獻 53 | |
dc.language.iso | zh-TW | |
dc.title | 聚丙烯腈表面改質之探討 | zh_TW |
dc.title | Surface modification studies of polyacrylonitrile | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林松華,曾琇瑱,劉博滔 | |
dc.subject.keyword | 聚丙烯?,胺丙基三乙氧基矽烷,四乙氧基矽烷,3-環氧丙醇三甲氧基矽烷,(3-巰基丙基)三甲氧基矽烷,二階段改質,三階段改質,奈米過濾薄膜, | zh_TW |
dc.subject.keyword | polyacrylonitrile,(3-aminopropyl)trimethoxysilane,tetraethylorthosilicate,(3-glycidoxypropyl)trimethoxysilane,(3-mercaptopropyl)trimethoxysilane,second-phase modification,third-phase modification,nanofiltration membrane., | en |
dc.relation.page | 56 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-01-27 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。