Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55127
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張帆人(Fan-Ren Chang)
dc.contributor.authorI-Chun Chaoen
dc.contributor.author趙逸群zh_TW
dc.date.accessioned2021-06-16T03:48:13Z-
dc.date.available2018-03-13
dc.date.copyright2015-03-13
dc.date.issued2014
dc.date.submitted2015-01-27
dc.identifier.citation[1] Symmetricom. Accurately Measuring One-Way Delay in Packet-Based Networks. [Online]. http://walkerfirst.com/uploads/files/literature/Symmetricom%20One-way%20Delay.pdf
[2] Rony Kay. Pragmatic Network Latency Engineering Fundamental Facts and Analysis. [Online]. http://cpacket.com/wp-content/files_mf/introductiontonetworklatencyengineering.pdf
[3] G. Texier, and L. Toutain J. Corral, 'End-to-end active measurement architecture in IP networks (SATURNE),' in Proc. PAM Workshop, La Jolla, CA, USA, 2003, pp. 241-247.
[4] S. Rapuano, and L. Tomaciello L. D. Vito, 'One-Way Delay Measurement: State of the Art,' IEEE Trans. Instrum. Meas., vol. 57, no. 12, pp. 2742-2750, Dec. 2008.
[5] L. D. Vito, and S. Rapuano L. Tomaciello, 'One-Way Delay Measurement: State of Art,' in Proc. IMTC, Sorrento, Italy, Apr. 2006, pp. 218-223.
[6] A. Hernandes and E. Magana, 'One-way Delay Measurement and Characterization,' in Proc. ICNS, Athens, Greece, Jun., 2007, pp. 114-210.
[7] H. T. Mertodimedjo, G. Hooghiemstra, H. Uijtervaal, and P. Van Mieghem C. J. Bovy, 'Analysis of End-to-end Delay Measurements in Internet,' in Proc. PAM Workshop, Fort Collins, CO, USA, Mar. 2002, pp. 26-33.
[8] A. P. Jayasumana, and H. Smith N. M. Piratla, 'Overcoming the effects of correlation in packet delay measurements using inter-packet gaps,' in Proc. ICON, Singapore, Nov. 2004, pp. 233-238.
[9] M. Bjorkmann, and P. Gunningberg B. Melander, 'A new end-to-end probing and analysis method for estimating bandwidth bottlenecks,' in Proc. GLOBECOM, San Francisco, CA, USA, Nov. 2002, pp. 415-420.
[10] N. Hu and P. Steenkiste, 'Evaluation and Characterization of Available Bandwidth Probing Techniques,' IEEE Jour. Sele. Areas Comm., vol. 21, no. 6, pp. 879 -894, Aug 2003.
[11] K. Salehin and R. Rojas-Cessa, 'Ternary-Search-Based Scheme to Measure Link Available-Bandwidth in Wired Networks,' in Proc. GLOBECOM, Miami, FL, USA, Dec. 2010, pp. 1-5.
[12] C. S. Lu and H. K. Wu Y. C. Huang, 'Available bandwidth estimation via one-way delay jitter and queuing delay propagation model,' in Proc. WCNC, vol. 1, Las Vegas, NV, USA, Apr. 2006, pp. 112-121.
[13] K. M. Salehin and R. Rojas-Cessa, 'Combined methodology for measurement of available bandwidth and link capacity in wired packet networks,' IET Comm., vol. 4, no. 2, pp. 240-252, Jan. 2010.
[14] S. Moon, C. Fraleigh, P. Thiran, and C. Diot K. Papagiannaki, 'Measurement and analysis of single-hop delay on an IP backbone network,' IEEE Jour. Sele. Areas Comm., vol. 21, no. 6, pp. 908-921, Aug. 2003.
[15] R. Perera, R. Chandramouli, and K. Subbalakshmi Z. Dong, 'Network measurement based modeling and optimization for IP geolocation,' Comput. Netw., vol. 51, no. 1, pp. 85-98, Jan. 2012.
[16] M. Gondree and P. Zachary, 'Geolocation of data in the cloud,' in Proc. ACM CODASPY, San Antonio, TX, USA, Feb. 2013, pp. 25-36.
[17] M. Zangrilli and B. B. Lowekamp, 'Using passive traces of application traffic in a network monitoring system,' in Proc. HPDC, Honolulu, HI, USA, Jun. 2004, pp. 77-86.
[18] M. Park, D. Oh, B. Kim, and J. Lee M. Shin, 'Clock Synchronization for One-Way Delay Measurement: A Survey,' in Proc. ACN, vol. 199, Brno, Czech Republic, Aug. 2011, pp. 1-10.
[19] M. Park, D. Oh, B. Kim, and J. Lee M. Shin, 'Survey on the Clock Synchronization Schemes for Propagation Delay Measurement,' Int. Jour. Adv. Sci. Tech., vol. 35, pp. 138-148, Oct. 2011.
[20] R. Exel, P. Loschmidt, T. Bigler, and N. Kero_ N. Simanic, 'Compensation of Asymmetrical Latency for Ethernet Clock Synchronization,' in Proc. ISPCS, Munich, Germany, Sept. 2011, pp. 19-24.
[21] J. H. Hwang, W. Y. Chung, S. W. Lee, and T. S. Lee J. W. Park, 'Design time stamp hardware unit supporting IEEE 1588 standard,' in Proc. ISOCC, Jeju, Korea , Nov. 2011, pp. 345 - 348.
[22] J. Yang, G. Xie, Z. Li, and M. Zhou J. Wang, 'On-line estimating skew in one-way delay measurement,' in Proc. PDCAT, Chengdu, China, Aug. 2003, pp. 430-436.
[23] R. Exel, A. Nagy, G. Gaderer P. Loschmidt, 'Limits of synchronization accuracy using hardware support in IEEE 1588,' in Proc. ISPCS, Ann Arbor, MI, USA, Sept. 2008, pp. 12-16.
[24] T. Yamashita and S. Ono, 'A statistical method for time synchronization of computer clocks with precisely frequency-synchronized oscillators,' in Proc. ICDCS, Amsterdam, Netherlands, May 1998, pp. 32-39.
[25] R. Rojas-Cessa, and S. G. Ziavras K. M. Salehin, 'A Method to Measure Packet Processing Time of Hosts Using High-Speed Transmission Lines,' IEEE Sys. Jour., no. 99, pp. 1-4, Jan 2014.
[26] K. M. Salehin and R. Rojas-Cessa, 'Measurement of packet processing time of an Internet host using asynchronous packet capture at the data-link layer,' in Proc. ICC, Budapest, Hungary, Jun 2013, pp. 2550-2554.
[27] N. Simar, 'A First Step in the World of IP QoS,' DANTE IN PRINT, Cambridge, UK, Sept. 2001.
[28] and R. Prior J. Laine and S. Saaristo. RUDE & CRUDE. [Online]. http://rude.sourceforge.net/
[29] M. Murray, C. Dovrolis, and K. Claffy R. Prasad, 'Bandwidth Estimation: Metrics, Measurement Techniques, and Tools,' IEEE Netw., vol. 17, no. 6, pp. 27-35, Nov.-Dec. 2003.
[30] A. Dainotti, and A. Pescape A. Botta, 'Do you trust your software-based traffic generator?,' IEEE Comm. Magaz., vol. 48, no. 9, pp. 158-165, Sept. 2010.
[31] IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems, IEEE Std. 1588-2008, July 2008.
[32] L. Cosart, 'Precision Packet Delay Measurements Using IEEE 1588v2,' in Proc. ISPCS, Vienna, Austria, Oct. 2007, pp. 85-91.
[33] C. C. Lin, M. Caesar C. Y. Hong, 'Clockscalpel: Understanding root causes of Internet clock synchronization inaccuracy,' in Proc. PAM, Atlanta, GA, Mar. 2011, pp. 204-213.
[34] Spirent Communications, Spirent White Paper: Remote Distributed Testing.
[35] R. T. Sauter, and H. Muhr G. Gaderer, 'Extending IEEE 1588 to fault tolerant clock synchronization ,' in Proc. IWFCS, Vienna, Austria, Sept. 2004, pp. 353-357.
[36] D. L. Mills, Network Time Protocol version 3, Specification, Implementation and Analysis, RFC 1305, Mar. 1992.
[37] V. Smotlacha, 'One-way delay measurement using NTP synchronization,' in Proc. TNC, Zagreb, Croatia, May 2003.
[38] P. Carlsson, A. Popescu, and A. A. Nilsson D. Constantinescu, 'Measurement of one-way Internet packet delay ,' in Proc. NTS , Oslo, Norway, Aug. 2004.
[39] T. Pfeiffenberger, and B. Hechenleitner U. Hofmann, 'One-way-delay measurements with CM toolset,' in Proc. IPCCC, Phoenix, AZ, USA, Feb. 2000, pp. 41-47.
[40] S. Ubik and V. Smotlacha, 'Precise measurement of one-way delay and analysis of synchronization issues,' in Proc. TNC, Zagreb, Croatia, May 2003.
[41] D. Mills and P.H. Kamp, 'The Nanokernel,' in Proc. PTTI, Reston, VA, USA, Nov. 2000, pp. 423-430.
[42] D. Mills, A Kernel Model for Precision Timekeeping, RFC 1589 , Mar. 1994.
[43] R. G. Garroppo, S. Giordano, and S. Lucci D. Adami, 'On synchronization technique: Performance and impact on time meter moitoring,' vol. 16, no. 4, pp. 273-290, May 2003.
[44] M. Molina, F. Raspall, and S. Tartarelli S. Niccolini, 'Design and implementation of a one way delay passive measurement system,' in Proc. NOMS, Seoul, Korea, Apr. 2004, pp. 469-482.
[45] M. Venkateswarlu, and M. Raghavendra B. Mahesh, 'End-to-end Congestion Control Techniques for Router,' in Proc. CSNT, Katra, Jammu, Jun. 2011, pp. 157-161.
[46] E. B. Rodrigues, and F. R. P. Cavalcanti A. R. Braga, 'Packet Scheduling for Voice over IP over HSDPA in Mixed Traffic Scenarios with Different End-to-End Delay Budgets,' in Proc. ITS, Fortaleza, Ceara, 2006, pp. 83-88.
[47] N. Talwalkar, C. P. Yue, and S. S. Wong R. T. Chang, 'Near speed-of-light signaling over on-chip electrical interconnects,' IEEE Jour. Solid-State Circuits, vol. 38, no. 5, pp. 834-838, May 2003.
[48] K. W. Ross J. F. Kurose, Computer Networking: A Top-Down Approach, 6th ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2012.
[49] Symmetricom SA.22c-LN Atomic Rubidium Clock. [Online]. http://www.chronos.co.uk/files/pdfs/mic/sa22cLN.pdf
[50] Stanford Research Systems SR620 Frequency Counters. [Online]. http://www.thinksrs.com/downloads/PDFs/Catalog/SR620c.pdf
[51] J. C. Eidson and K. Lee, 'Sharing a common sense of time,' IEEE Inst. Meas. Magaz. , vol. 6, no. 1, pp. 26-32, Mar 2003.
[52] D. W. Allan, D. A. Howe, and F. L. Walls D. B. Sullivan, 'Characterization of Clocks and Oscillators,' National Institute of Standards and Technology, Boulder, CO, USA, NIST Technical Note 1337 Mar 1990.
[53] International Telecommunication Union Telecommunication Standardization Sector (ITU-T), G. 810, Definitions and terminology for synchronization, Aug. 1996.
[54] International Telecommunication Union Telecommunication Standardization Sector (ITU-T), G.811, Timing characteristics of primary reference clocks, Sept. 1997.
[55] Oregano Systems. syn1588R PCIe NICs. [Online]. http://www.oreganosystems.at/?page_id=71
[56] Prayson Pate. (2013, Sept) Ethernet Academy.net. [Online]. http://www.ethernetacademy.net/Ethernet-Academy-Articles/architecting-the-metro-edge-for-accurate-one-way-frame-delay-measurements
[57] M. Miranian, J. Jeffries, P. J. Wheeler, and W. Powell W. J. Klepczynski, 'Comparison of two-way satellite time transfers and GPS common view time transfers,' in Proc. FCS, Denver, CO, USA, Jun 1989, pp. 199-201.
[58] J. Bolot, 'End-to-end packet delay and loss behavior in the Internet,' in Proc. ACM SIGCOMM, San Francisco, CA, USA, Sept. 1993, pp. 289-298.
[59] S. Larsen and P. Sarangam, 'Architectural Breakdown of End-to-End Latency in a TCP/IP Network,' in Proc. SBAC-PAD, Rio Grande do Sul, Brazil, Oct. 2007, pp. 95-202.
[60] I. C. Chao, S. Y. Lin, K. B. Lee, F. Proctor, C. C. Shen, and F. R.Chang, 'Precise Latency Measurement of Unidirectional-Data-Flow Network Equipment,' in Proc. IFCS, Taipei, Taiwan, May, 2014.
[61] Network Instruments nTAP. [Online]. http://www.networkinstruments.com/products/ntaps/index.php?tab=aggregator
[62] The libpcap project. Sourceforge. [Online]. http://sourceforge.net/projects/libpcap/
[63] SR620 User Manual. Stanford Research Systems. [Online]. http://www.thinksrs.com/downloads/PDFs/Manuals/SR620m.pdf
[64] H. Pucha, Y. Zhang, Y.C. Hu, and Z.M. Mao A. Pathak, 'A Measurement Study of Internet Delay Asymmetry,' in Proc. PAM, Cleveland, Ohio, USA, Apr. 2008, pp. 182-191.
[65] S. Kalidindi, and M. Zekauskas G. Almes, A One-Way Delay Metric for IPPM, RFC 2679, Sept. 1999.
[66] International Telecommunication Union Telecommunication Standardization Sector (ITU-T), OAM functions and mechanisms for Ethernet based networks, Y.1731, Nov. 2013.
[67] S. Kalidindi, and M. Zekauskas G. Almes, A Round-Trip Delay Metric for IPPM, RFC 2681, Sept. 1999.
[68] Z. Shu and K. Kobayashi, 'HOTS: An OWAMP-Compliant Hardware Packet Timestamp Recorder,' in Proc. ICAS-ICNS, Papeete, Tahiti, Oct. 2005, pp. 35-39. [Online]. http://sourceforge.net/projects/iperf/
[69] Iperf. Openforge. [Online]. http://sourceforge.net/projects/iperf/
[70] A. Willig, 'Recent and Emerging Topics in Wireless Industrial Communications: A Selection,' IEEE Trans. Ind. Informat., vol. 4, no. 2, pp. 102-124, May 2008.
[71] J. R. Moyne and D. M. Tilbury, 'The Emergence of Industrial Control Networks for Manufacturing Control, Diagnostics, and Safety Data,' Proc. IEEE, vol. 95, no. 1, pp. 29-47, Jan. 2007.
[72] A. Mahmood and F. Ring, 'Clock synchronization for IEEE 802.11 based wired-wireless hybrid networks using PTP,' in Proc. ISPCS, San Francisco, CA, USA, Sept. 2012, pp. 1-6.
[73] B. Galloway and G. P. Hancke, 'Introduction to Industrial Control Network,' IEEE Comm. Surveys & Tutorials, vol. 15, no. 2, pp. 860-880, Second Quarter 2013.
[74] M. M. Gutzmann and H. M. Libati W. Erhard, 'Network traffic analysis and security monitoring with UniMon,' in Proc. ATM, Heidelberg, German, Jun. 2000, pp. 439-446.
[75] C. H. Bissell and J. G. Hummel, 'The traffic flow regulator,' Jour. Elec. Eng., vol. 51, no. 4, pp. 266-267, Apr 1932.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55127-
dc.description.abstract摘要
網路系統中之點對點延遲資訊對於各種在電信、電力、自動化以及財務資訊系統領域中具有 QoS (Quality of Service) 要求的應用或服務都相當重要。欲達成各式應用服務的品質要求,更精確的網路延遲時間量測方法則是關鍵。此外,如何在不影響一個運作中網路系統的前提,即時並有彈性的對網路中任意線段或是節點進行高精度知延遲資訊的量測亦是刻不容緩需要解決的需求。
對於無法量測或觀察到的資訊或是變化,吾人是不可能對其進行改善以及控制。因此,在本論文中基於上述的觀點,將主要的量測方法設計考量專注在量測精度的提升。在符合奈妙精度的要求下,提高量測方法的彈性及方便性。最後,在將提出的高精度點對點延遲量測展示於具有前瞻性的網路應用。
本論文提出一次差分可攜式點對點延遲量測方法 (SD-PELM)。一次差分之量測演算可以針對由底層硬體電路以及同步傳輸不對稱性造成的時間延遲偏差進行修正,使得量測結果之不準確度可維持在十倍奈秒等級以下。同時該提出量測方法以可滿足在不影響各種網路應用服務運作前提下,即時並富有伸縮彈性地量測網路系統中任意節點延遲資訊的需求。
本論文同時透過採用高精確量測方法 SD-PELM 展示相關前瞻性的量測應用。第一個應用是網路通訊設備之高精度量測。本論文針對兩台封包轉送之延遲效能不同的網路交換器進行實測,並從量測結果驗證所提出之量測方法可以精確的獲得其設備的封包轉送延遲資訊。第二個應用是流量指標器。該指標器可以精確的分辨所量測節點之間目前的即時流量資訊,其流量的辨識能力可大至數百 Mbps、小至數 Mbps。
zh_TW
dc.description.abstractAbstract
The end-to-end latency information is valuable to many networked applications and services, such as telecommunication, power utility, automation, and financial systems, that demand stringent Qualify of Service (QoS). To meet the performance requirements of a diverse set of applications and services, there are strong demands to achieve more accurate latency measurement with more precise resolution than ever before. Additionally, it is critical that such timing information can be flexibly and robustly measured without negatively affecting the network operations.
It is reasonable that people can control and improve something only if they can measure or observe it. In this dissertation, we investigate the precision issue of end-to-
end latency measurement in Ethernet networks, and design high precision measurement solutions to achieve flexible and robust measurements. We then demonstrate few promising applications that utilize the high precision latency information.
Specifically, this dissertation proposes the approach of Single-Difference Portable End-to-end Latency Measurement (SD-PELM). The SD calculation in the proposed approach can eliminate major elements of the offset caused by the lower-
layer hardware circuits and the effect of synchronization between measured nodes so that the measured latency can be precise in the resolution of nanoseconds. In addition to the improved measurement precision, PELM facilitates the feature of measuring any arbitrary pair of nodes in an Ethernet network without negatively impacting the operations of the measured network. SD-PELM can be regarded as a plug-and-play latency meter.
The dissertation demonstrates several promising measurement applications that utilize the proposed SD-PELM. The first application is the precise switch measurement. The result shows that the latency of switch ranging from microsecond to nanosecond can be measured for further uses. The second application is the traffic indicator, which can differentiate the traffic loads between Probing Points (PPs). The traffic indicator demonstrates the capability of SD-PELM to clearly identify traffic loads ranging from few Mbps to hundreds of Mbps.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:48:13Z (GMT). No. of bitstreams: 1
ntu-103-D98921007-1.pdf: 4768942 bytes, checksum: 714dec22b6536c9205a96ca922a114fb (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsContents
誌謝 I
摘要 III
Abstract IV
Contents VI
List of Figures VIII
List of Tables
Chapter 1 1
Introduction 1
1.1 High Precision End-to-End Latency Measurement 1
1.2 Literature Survey 2
1.3 Objective and Scope of Research 4
1.4 Dissertation Organization 6
Chapter 2 7
State-of-the-Art and Problems of End-to-End Latency Measurement 7
2.1 State of the Art of End-to-End Latency Measurement 7
2.2 Problems Description of End-to-End Latency Measurement 11
2.3 PPS-Based Propagation Latency Measurement for Ethernet Cables 13
Chapter 3 17
PTP-Based Out-of-Band Direct End-to-End Latency Measurement (DELM) and Portable End-to-End Latency Measurement (PELM) 17
3.1 Time Synchronization and Hardware Time-Stamping Units (TSUs) 17
3.1.1 Precision Time Protocol (PTP) Synchronization 18
3.1.2 Evaluation of Time Synchronization 20
3.1.3 Fluctuation of Software Stack and Locations of TSUs 22
3.1.4 MAC Hardware Time-Stamps 24
3.1.5 PHY Latency and Other Hardware Circuit Latency 27
3.2 PTP-Based Out-of-Band DELM 28
3.2.1 In-Band Method and Out-of-Band Method 29
3.2.2 PTP-Based Out-of-Band DELM 30
3.3 Portable End-to-End Latency Measurement (PELM) 34
3.3.1 Drawbacks of PTP-Based Out-of-Band DELM 34
3.3.2 Network Test Access Points (TAPs) 34
3.3.3 Architecture of PELM 36
3.3.4 Pros and Cons of PELM 39
3.4 Design of Probing Nodes (PNs) 40
3.4.1 Internal Design of PNs 40
3.4.2 Software Design in PNs 42
3.4.3 Internal Synchronization and PTP Synchronization of PNs 44
3.5 Evaluation of PTP-Based Out-of-Band DELM and PELM 48
Chapter 4 53
Single-Difference (SD) Measurement Calculation 53
4.1 Design of SD Measurement Calculation 54
4.2 Definition of End-to-End Latency in SD Measurement Calculation 57
4.3 Single-Difference PELM (SD-PELM) 60
4.4 Evaluation of SD Measurement Calculation 63
Chapter 5 64
Experimental Results and Uncertainty Analysis 64
5.1 PTP-Based Out-of-Band DELM and SD-DELM 65
5.1.1 PTP-Based Out-of-Band DELM 65
5.1.2 Synchronization-Compensated PTP-Based Out-of-Band DELM 73
5.1.3 SD-DELM 75
5.1.4 Synchronization-Compensated SD-DELM 79
5.2 Single-Difference PELM (SD-PELM) 82
5.2.1 Cable Latency Based on SD-PELM 82
5.2.2 Network Switch Latency Based on SD-PELM 90
5.2.3 Application of SD-PELM: Traffic Indicator 101
Chapter 6 106
Conclusions and Future Work 106
6.1 Conclusions 106
6.2 Future Work 107
Bibliography 109
dc.language.isoen
dc.subject高精度時間同步協定zh_TW
dc.subject點對點時間延遲zh_TW
dc.subject一次差分可攜式網路延遲量測zh_TW
dc.subjectSingle-Difference Portable End-to-end Latency Measurement (SD-PELM)en
dc.subjectEnd-to-End Latencyen
dc.subjectPrecision Time Protocol (PTP)en
dc.title一次差分可攜式網路延遲量測方法之設計與實現zh_TW
dc.titleDesign and Realization of Single-Difference Portable End-to-End Latency Measurement (SD-PELM) for Computer Networksen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.coadvisor沈建中(Chien-Chung Shen)
dc.contributor.oralexamcommittee李祖添(Tsu-Tian Lee),王勝德(Sheng-De Wang),連豊力(Feng-Li Lian),廖嘉旭(Chia-Shu Liao),丁培毅(Pei-Yi Ding)
dc.subject.keyword一次差分可攜式網路延遲量測,點對點時間延遲,高精度時間同步協定,zh_TW
dc.subject.keywordSingle-Difference Portable End-to-end Latency Measurement (SD-PELM),End-to-End Latency,Precision Time Protocol (PTP),en
dc.relation.page113
dc.rights.note有償授權
dc.date.accepted2015-01-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved