請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55119完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 久米朋宣(Tomonori Kume) | |
| dc.contributor.author | Tzu-Yao Su | en |
| dc.contributor.author | 蘇子堯 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:47:55Z | - |
| dc.date.available | 2015-03-13 | |
| dc.date.copyright | 2015-03-13 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-01-28 | |
| dc.identifier.citation | Bryant ML, Bhat S and Jacobs JM (2005) Measurements and modeling of throughfall variability for five forest communities in the southeastern US. Journal of Hydrology 312: 95-108.
Cheng J, Lin J, Lu S, Huang L and Wu H (2008) Hydrological characteristics of betel nut plantations on slopelands in central Taiwan. Hydrological Sciences Journal 53(6): 1208-1220. Chiwa M, Onozawa Y and Otsuki K (2010) Hydrochemical characteristics of throughfall and stemflow in a Moso-bamboo (Phyllostachys pubescens) forest. Hydrological Processes 24: 2924-2933. Deguchi A, Hattori S, Park HT (2006) The influence of seasonal changes in canopy structure on interception loss: application of the revised Gash model. Journal of Hydrology 318: 80-102. Durocher MG (1990) Monitoring spatial variability of forest interception. Hydrological Processes 4: 215-229. Gerrits AMJ (2000) The role of interception in the hydrological cycle. PhD thesis. Netherlands: Delft University of Technology. Holwerda F, Scatena FN, Bruijnzeel LA (2006) Throughfall in a Puerto Rican lower montane rain forest: A comparison of sampling strategies. Journal of Hydrology 327: 592-602. Huang J, Hu H, Zhang J and Zhang J (2009) Canopy interception characteristics of bamboo forests in northern China. Journal of Nanjing Forestry University (Natural Science Edition) 33(2): 31-44. Keim RF, Skaugset AE, Weiler M (2005) Temporal persistence of spatial patterns in throughfall. Journal of Hydrology 314: 263-274. Komatsu H, Shinohara Y, Kume T and Otsuki K (2008) Relationship between annual rainfall and interception ratio for forests across Japan. Forest Ecology and Management 256: 1189-1197. Kuraji K and Tanaka O (2003) Rainfall interception studies in the tropical forests. Journal of the Japanese Forest Society 85: 18-28. Levia DF, Keim RF, Carlyle-Moses DE and Frost EE (2011) Throughfall and stemflow in wooded ecosystems. Forest Hydrology and Biogeochemistry Ecological Studies 216: 425-443. Lin T, Hamburg S, King H and Hsia Y (2000) Throughfall patterns in a subtropical rain forest of northeastern Taiwan. Journal of Environmental Quality 29(4): 1186-1193. Lloyd CR and Marques ADO (1988) Spatial variability of throughfall and stemflow measurements in Amazonian rainforest. Agricultural and Forest Meteorology 42: 63-73. Loescher HW, Powers JS, Oberbauer SF (2002) Spatial variation of throughfall volume in an old-growth tropical wet forest, Costa Rica. Journal of Tropical Ecology 18:397-407. Lu S, Liu C, Hwang L and Wang C (2007) Hydrological characteristics of a makino bamboo woodland in central Taiwan. Taiwan Journal of Forest Science 22(1): 81-93. Maxim L, Shyam P, Marco P, Hong R and Junqi W (2007) World bamboo resources. Food and Agriculture Organization of the Unite Nations Rome 2007. Onozawa Y, Chiwa M, Komatsu H and Otsuki K (2009) Rainfall interception in a moso bamboo (Phyllostachys pubescens) forest. Journal of Forest Research 14: 111-116. Pedersen LB (1992) Throughfall chemistry of Sitka spruce stands as influenced by tree spacing. Scandinavian Journal of Forest Research 7: 433-444. Raat KJ, Draaijers GPJ, Schaap MG, Tietema A and Verstraten JM (2002) Spatial variability of throughfall water and chemistry and forest floor water content in a Douglas fir forest stand. Hydrology and Earth System Science 6(3): 363-374. Seiler J and Matzner E (1995) Spatial variability of throughfall chemistry and selected soil properties as influenced by stem distance in a mature Norway spruce (Picea-abies, Karst) stand. plant and soil 176: 139-147. Shen H, Wang X, Jiang Y and You W (2011) Spatial variations of throughfall through secondary succession of evergreen broad-leaved forests in eastern China. Hydrological Processes 26(11): 1739-1747. Shinohara Y, Komatsu H, Kuramoto K and Otsuki K (2012) Characteristics of canopy interception loss in Moso bamboo forests of Japan. Hydrological Processes 27(14): 2041-2047. Shinohara Y, Onozawa Y, Chiwa M, Kume T, Komatsu H and Otsuki K (2010) Spatial variations in throughfall in a Moso bamboo forest: sampling design for the estimates of stand-scale throughfall. Hydrological Processes 24: 253-259. Silva I, and Okumura T (1996) Rainfall partitioning in a mixed white oka forest with dwarf bamboo undergrowth. Journal of Environmental Hydrology 4: 1-16. Sun X, Wang G, Lin Y, Lin L and Gao Y (2013) Intercepted rainfall in Abies fabri forest with different-age stand in southwestern China. Turkish Journal of Agriculture and Forestry 37: 495-504. Tanaka O, Kuraji K, Shiraki K, Suzuki M, Suzuki M, Ohta T and Suzuki (2005) Throughfall, stemflow and rainfall interception at mature Cryptomeria japonica and Chamaecyparis obtuse stands in Fukuroyamasawa watershed. Bulletin of the Tokyo University Forests 113: 197-204. Toba T and Ohta T (2005) An observational study of the factors that influence interception loss in boreal and temperate forests. Journal of Hydrology 313: 208-220. Vernimmen R, Bruijnzeel LA, Romdoni A, Proctor J (2007) Rainfall interception in three contrasting lowland rain forest types in Central. Kalimantan, Indonesia. Journal of Hydrology 340: 217-232. Wang W, Ma Z, and Peng C (2011) Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environmental Reviews 19: 418-428. Wang Y and Liu Y (1995) Hydrological Characteristics of a moso-bamboo (Phyllostachys pubescens) forest in south China. Hydrological Processes 9: 797-808. Wei X, Liu S, Zhou G and Wang C (2005) Hydrological processes in major types of Chinese forest. Hydrological Processes 19: 63-75. Whelan MJ, Sanger LJ, Baker M and Anderson JM (1998) Spatial patterns of throughfall and mineral ion deposition in a lowland Norway spruce (Picea abies) plantation at the plot scale. Atmospheric Environment 32: 3493-3501. Zhao F (2005) The study of forest coronal intercepting rainfall of five variety tree in Liaodong area. Journal of Dandong Textile College 12(1): 24-25. Zimmermann A, Wilcke W, Elsenbeer H (2007) Spatial and temporal patterns of throughfall quantity and quality in a tropical montane forest in Ecuador. Journal of Hydrology 343: 80-96. 王馨、張一平、劉文杰 (2006) Gash模型在熱帶季節雨林林冠截留研究中的應用。 生態學報26(3): 722-729。 林登秋、夏禹九、金恆鑣 (1996) 臺灣東北部天然闊葉林林內降雨及林冠截留之研究。台灣林業科學11(4): 393-400。 金佐蒔 (2012) 合歡山台灣冷杉林截留作用之研究。碩士論文。台北:國立台灣大學森林環境暨資源學研究所。 党宏忠、董鐵獅、趙雨林 (2007) 紅松林對降水的截留特徵。東北林業大學學報35(10): 4-6。 高世俊 (2011) 台灣山地與平地之降雨時空變異研究。台北:國立台灣大學森林環境暨資源學研究所。 國立台灣大學生物多樣性研究中心 (2006) 台灣的自然資源與生態資料庫—III 農林漁牧。台北市,行政院農業委員會林務局。 常志勇、包維凱、何丙輝、楊以翠、何其華 (2006) 岷江上游油松與華山松人工混交林對降雨的截留分配效益。水土保持學報20(6): 37-40。 常學向、趙愛芬、王金葉、常宗強、金博文 (2002) 祁連山林區大氣降水特徵與森林對降水的截留作用。高原氣象21(3): 274-280。 張一平、王馨、劉文杰 (2004) 熱帶森林林冠對降水再分配作用的研究綜述。福建林學院學報24(3): 274-282。 張建華、王麗、黃岩、孟曉華 (2006) 冀北山地華北落葉松人工林對降水截留效應的初步研究。內蒙古林業科技2: 25-27。 曹根群 (1991) 毛竹林冠層對降雨的截留作用。福建林學院學報11(1): 37-43。 陳財輝、許博行、張峻德 (1999) 四湖海岸木麻黃林分降水、幹流水及穿落水之養分含量與輸入。台灣林業科學14(4): 419-435。 陳耀德 (2003) 鴛鴦湖森林生態系大氣養分輸入之探討。碩士論文。花蓮:國立東華大學自然資源管理研究所。 陸象豫、唐凱軍 (1995) 台灣中部地區天然闊葉林降雨截留量之探討。林業試驗所研究報告季刊10(4): 447-457。 陸象豫、黃良鑫、博鶴翹 (1999) 檳榔園水文特性之研究。台灣林業科學14(2): 211-221。 陸象豫、黃良鑫、劉瓊霦 (2005) 檳榔園水文特性及其對環境的影響。中華水土保持學報36(1): 19-27。 溫遠光、劉世荣 (1995) 我國主要森林生態系統類型降水截留規律的數量分析。林業科學31(4): 289-298。 賈永正、胡海波、張家洋 (2011) 蘇南丘陵區毛竹林冠截留降雨分布格局。生態學報31(12): 3537-3542。 蔡體久、朱道光、盛后財 (2006) 原始紅松林和次生白樺林降雨截留分配效應研究。中國水土保持科學4(6): 61-65。 鮑文、包維凱、何丙輝,、丁德蓉 (2004) 岷江上游油松人工林對降雨的截留分配效益。北京大學林業學報26(5): 10-16。 薛美莉 (2009) 烏石坑地區18年生台灣杉人工林雨水之質量組成。特有生物研究中心11(1): 1-19。 魏聰輝、陳信雄、劉維 (2009) 塔塔加地區台灣鐵杉天然林冠層截留量之研究。中華水土保持學報40(1): 105-111。 羅明慧 (2013) 利用樹液流觀測探討台灣孟宗竹林之蒸散特性。碩士論文。台北:國立台灣大學森林環境暨資源學研究所。 譚俊磊、馬明國、車濤、白云洁 (2009) 基於不同鬱閉度的青海雲杉冠層截留特徵研究。地球科學進展24(7): 825-833。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55119 | - |
| dc.description.abstract | Abstract
Bamboo forests accounted for 4.4% and 7% of the forests in Asia and Taiwan, respectively. Rainfall interception is an important process in the water cycle; however, little is known about rainfall interception in the bamboo forests compared with the other forest types. The aims of this study are to utilize the moso bamboo forest to: 1) quantify the spatial variability of the throughfall (Tf) and stemflow (Sf), 2) estimate the interception (Ic) of the forest after the Tf and Sf have been quantified, and 3) characterize Ic in the Taiwan bamboo forest by comparing it to other forests in the literature. This study estimated Ic in the bamboo forest in Xitou Nature Education Area in the National Taiwan University Experimental Forest by measuring precipitation (P), Tf and two methods of Sf from June 8, 2012 to August 1, 2013 on the events basis with the interval of two to three weeks and compared the estimations with those of other forests. Method 1 estimated the stand scale of Sf by measuring the crown project area (CPA) in the 10 samples and measuring the Sf in the 10 samples. The second method estimated the stand scale of Sf by using a linear relationship between DBH of the 10 samples and measuring the Sf in the the 10 samples. In addition, spatial variations were evaluated using the coefficient of variation (CV). CV in Tf was 20.3%. The CV decreased with increases in precipitation. While, CV in Sf was 37% which little decreased with increase in P. Total precipitation (P) during the period from July 26, 2012 to August 1, 2013 was 3826.2 mm, the total Tf was estimated as 81% of the total P. Sf in methods 1 and 2 were estimated as 4.5% and 9.1% of the total P, respectively, whereas the Ic was estimated as 14.5% and 9.9% of the total P, respectively. Compared with the other forests in the Mainland of China, Japan, and Taiwan, the bamboo forests showed a relatively higher Tf and Sf value, and a relatively smaller Ic value than other forest types. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:47:55Z (GMT). No. of bitstreams: 1 ntu-104-R00625025-1.pdf: 2242082 bytes, checksum: c7d222a6167414f8e246d1a0d2f6665a (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Abstract 5
Introduction 6 Rainfall Interception 6 Bamboo Forests 6 Purpose 7 Literature Review 8 Spatial Variations in Throughfall (Tf) 8 Rainfall Interception in the Bamboo Forests 9 Materials and Methods 11 Study Site 11 Measurements 13 Analysis 15 Results and Discussion 17 Estimation Precipitation 17 Temporal changes in precipitation (P), throughfall (Tf), and stemflow (Sf) 18 Spatial Variance in the Tf and Sf 21 Estimation of the Stand Scale Tf and Sf 25 Estimation of Total Rainfall Interception 27 Characteristics of the Rainfall Interception in the Bamboo Forests 29 Conclusion 43 References 45 Appendix……………………………………………………………………………..49 | |
| dc.language.iso | en | |
| dc.subject | 水收支 | zh_TW |
| dc.subject | 截留 | zh_TW |
| dc.subject | 竹 | zh_TW |
| dc.subject | Interception | en |
| dc.subject | Water balance | en |
| dc.subject | Bamboo | en |
| dc.title | 溪頭孟宗竹林降雨截留特徵 | zh_TW |
| dc.title | The Rainfall Interception Characteristics of a Moso Bamboo Forest in the National Taiwan University Experimental Forest | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳明杰(Ming-Chieh Chen),梁偉立(Wei-Li Liang) | |
| dc.subject.keyword | 截留,竹,水收支, | zh_TW |
| dc.subject.keyword | Interception,Bamboo,Water balance, | en |
| dc.relation.page | 49 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-01-28 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
