請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55116完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱錦洲 | |
| dc.contributor.author | Hsiang-Heng Chien | en |
| dc.contributor.author | 簡祥恆 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:47:48Z | - |
| dc.date.available | 2017-04-27 | |
| dc.date.copyright | 2015-04-27 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-01-28 | |
| dc.identifier.citation | [1] F. F. Reuss (1809), Charge-induced flow, Proceedings of the Imperial Society of Naturalists of Moscow,vol.3,pp.327-340
[2] R.J. Hunter (1981), Zeta potential in colloid science : principles and applications, Academic Press [3] D.Burgreen, F. R. Nakache (1964), Electrokinetic flow in ultrafine capillary slits, J. Physical Chemistry, vol.68, pp. 1084-1091 [4] Prashanta Dutta, Ali Beskok (2001), Analytical solution of combined electroos-motic/pressure driven flows in two-dimensional straight channels: Finite Debye layer effects, Anal. Chem., vol.73, pp. 1979-1986 [5] Jahrul Alam, John C. Bowman (2002), Energy-Conserving Simulation of Incompress-ible Electro-Osmotic and Pressure-Driven Flow, Theoretical and Computional Fluid Dynamics, pp. 1-17 [6] Siddhartha Das, Suman Charkrabotry (2006), Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian biofluid, Analytica Chimica Acta, vol.559, pp. 15-24 [7] Chien C. Chang, Chang Yi Wang (2008), Starting electroosmotic flow in an annulus and in a rectangular channel, Electrophoresis vol.29, pp. 2970–2979 [8] Chien C. Chang, Chang-Yi Wang (2009), Electro-osmotic flow in a sector microchannel, Physics of Fluids vol.21, pp.1-7 [9] Rong Chang Wu, Kyriakos D. Papadopoulos (2000), Electroosmotic flow through porous media: cylindrical and annular models, Colloids and Surfaces vol.161, pp.469–476 [10] Chang Yi Wang, Ying-Hong Liu, and Chien C. Chang (2008), Analytical solution of electro-osmotic flow in a semicircular microchannel, Physics of Fluids vol.20, pp.1-6 [11] Marcel Aguilella-Arzo, Vicente M. Aguilella (2005), Computing numerically the access resistance of a pore, Eur Biophys J vol.34, pp.314-322 [12] H.M. Park , J.S. Lee, T.W. Kim (2007), Nernst–Planck model and the Poisson–Boltzmann model for electroosmotic flows in microchannels, Journal of Colloid and Interface Science vol.315, pp.731–739 [13] C.Y.Wang(2001),Flow in a circular tube with a centred strip,IMA Journal of Applied Mathematics ,vol.66, pp. 259-267 [14] K. Krabbenhoft, J. Krabbenhoft (2008), Application of the Poisson–Nernst–Planck equations to the migration test, Cement and Concrete Research vol.38, pp.77–88 [15] Arman Sadeghi, Hadi Veisi, Mohammad Hassan Saidi1, Ali Asghar Mozafari (2013), Electroosmotic Flow of Viscoelastic Fluids Through a Slit Microchannel With a Step Change in Wall Temperature, Journal of Heat Transfer, vol.135, pp.1-12 [16] Chun-Fei Kung, Chang-Yi Wang, Chien C. Chang (2013), A periodic array of nano-scale parallel slats for high-efficiency electroosmotic pumping, Electrophoresis , vol.34, pp.3133–3140 [17] Chang-Yi Wang, Chien C. Chang(2011),Electro-osmotic flow in polygonal ducts, Electrophoresis ,vol.32, pp.1268-1272 [18] Yuejun Kang,Chun Yang,Xiaoyang Huang(2002),Electroosmotic Flow in a Capillary Annulus with High Zeta Potentials,Journal of Colloid and Interface Science ,vol.253,pp.285-294 [19] Hirofumi Daiguji,Peidong Yang,Andrew J.Szeri,Arun Majumdar(2004) ,Electro- Chemomechanical Energy Conversion in Nanofluidic Channels,vol.4,pp.2315-2321 [20] 林政彥.(2002).「微流體晶片之電滲流場分析與應用」:國立成功大學工程科學研究所碩士論文。 [21] 張志彰.(2003).「微管道電滲流流場之壓力分佈與混合機制分析」:國立成功大學工程科學研究所碩士論文。 [22] 黃冠達.(2004).「電滲流流場分析與離子濃度分佈探討」:國立成功大學工程科學研究所碩士論文。 [23] 郭勝修.(2008).「探討焦耳熱對微流道電滲流的影響」:國立臺灣大學工程科學及海洋工程研究所碩士論文。 [24] 王聖峰.(2013).「發展求解NS與PNP耦合方程之方法」:國立臺灣大學工程科學及海洋工程研究所所碩士論文。 [25] 張智雄.(2014).「以PB方程和PNP方程解析環形截面微流道之電滲流」:國立臺灣大學應用力學研究所碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55116 | - |
| dc.description.abstract | 本論文主要是從尋找解析解探討微流體在電滲效應下的流體行為,並探討在具有葉片狀的圓管微流道中之各項物理性質,所使用的物理模型包括Poisson-Boltzmann equation(PB)、Navier-Stokes equation和霍姆霍茲方程式(Helmholtz equation)等方程組。
電滲流的流動,主要是依靠壁面電位勢,及外加電場所產生的電位勢的交互作用所致。在本論文中將使用Poisson-Boltzmann equation和霍姆霍茲方程式(Helmholtz equation)來探討具有葉片狀圓管微流道中的電滲流,並藉由改變不同參數R(外徑)值和K值來進行分析。其中K為流道的半徑和德拜長度的比值。 流體假設在穩態時,藉由以上之參數,來分析流場內流速分布情形、流量大小和流況發展趨勢。探討微流道內不同葉片數時,流場的流速分佈圖及流量大小,並觀察其上述物理性質的變化。 由數值計算的結果可得知,在不同葉片數時,R值或K值較小時,流速分布較為鬆散且流量較小,但是當R值或K值變大時,流速分布較為密集且流量較大。 | zh_TW |
| dc.description.abstract | In this study, we focus on the analytical solution of electro-osmotic flow, and discusses the physical properties in the circular tube with a vaned core . We use Poisson-Boltzmann equations (PB) , Navier-Stokes equation ,and Helmholtz equation to solve the questions .
The electro-osmotic flow is mainly due to the interaction of wall electric potential and applied electric field . In this study, we use Poisson-Boltzmann equations (PB) and Helmholtz equations to analyze electro-osmosis flow in the circular tube with a vaned core by changing the different parameters R and K, where R is the outer radius ,K is the ratio of the radius of the micro-flow channels to the Debye length .We assume the flow is steady state, and we use these parameters to analyze the velocity distribution in the flow field, volume flow rate, and the flow field development trend. We discuss different vaned cores in the flow channels, the figure of flow field velocity and volume flow rate, then observe the physical properties. In conclusion, we can know that if R and K are smaller, the velocity and volume flow rate are small in any condition. But if R and Kare bigger, the velocity is concentrated and volume flow rate is bigger. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:47:48Z (GMT). No. of bitstreams: 1 ntu-104-R01543066-1.pdf: 6021906 bytes, checksum: 3b4c299df09ab2030bd31f81e8624f18 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 xi 第一章、緒論 1 1.1前言 1 1.2 研究動機 3 1.3文獻回顧 4 1.4 論文架構 7 第二章、理論背景 9 2.1 電動現象之起源 9 2.2 微流體 11 2.3 微流體生醫晶片之概述 12 2.4 電雙層之形成 14 2.5 電滲流之形成 16 2.6 界達電位(Zeta potential) 18 第三章、物理模型 19 3.1序論 19 3.2基本假設 20 3.3統御方程式 21 3.3.1 無因次化方程組之介紹 21 3.3.2 描述外加電場電位勢之Laplace方程式 22 3.3.3 描述壁面電位勢之Poisson-Boltzmann方程式 23 3.3.4 描述不可壓縮黏性流體之Navier-Stokes方程式 25 3.4 Debye–Huckel 理論之假設 27 第四章、解析幾何計算 28 4.1 簡介 28 4.2 解析推導 29 4.2.1 邊界條件之建立 29 4.2.2 統御方程式(I)的推導 30 4.2.3 統御方程式(II)的推導 38 4.3 流道接合面之計算 45 4.3.1 邊界條件之建立 45 4.3.2 接合面之求解 46 第五章、數值結果與討論 51 5.1 簡介 51 5.2 線性系統之建立 52 5.3 數值計算之結果 55 5.3.1 未知係數之結果 55 5.3.2 流場流速之結果 63 5.3.3 流速隨著R值改變 75 5.3.4 流速隨著K值改變 79 5.4 流場分析與流量之計算 84 5.4.1 流量計算 84 5.4.2 葉片數和流速之關係 92 5.4.3 流速最大值分析 93 第六章、結論與未來展望 98 6.1 結論 98 6.2 未來展望 99 參考文獻 100 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電雙層 | zh_TW |
| dc.subject | Poisson-Boltzmann方程式 | zh_TW |
| dc.subject | 界達電位 | zh_TW |
| dc.subject | 微流道 | zh_TW |
| dc.subject | 電滲流 | zh_TW |
| dc.subject | Hypergeometric Function | en |
| dc.subject | Electrical Double Layer | en |
| dc.subject | Zeta potential | en |
| dc.subject | Micro-flow channels | en |
| dc.subject | Vaned Core | en |
| dc.subject | Electro-osmosis Flow | en |
| dc.subject | Poisson-Boltzmann Equation | en |
| dc.title | 具有葉片的圓管縱向電滲流解析 | zh_TW |
| dc.title | Longitudinal Electro-Osmotic Flow in the Circular Tube with a Vaned Core | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張建成 | |
| dc.contributor.oralexamcommittee | 張家歐,陳國慶,郭志禹 | |
| dc.subject.keyword | 電滲流,電雙層,界達電位,微流道,Poisson-Boltzmann方程式, | zh_TW |
| dc.subject.keyword | Electro-osmosis Flow,Electrical Double Layer,Zeta potential,Micro-flow channels,Vaned Core,Hypergeometric Function,Poisson-Boltzmann Equation, | en |
| dc.relation.page | 102 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-01-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 5.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
