請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55110完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林巍聳(Wei-Song Lin) | |
| dc.contributor.author | Zih-Chien Du | en |
| dc.contributor.author | 都子謙 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:47:35Z | - |
| dc.date.available | 2025-01-28 | |
| dc.date.copyright | 2015-03-13 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-01-28 | |
| dc.identifier.citation | Filippov, A.F. (1988). Differential Equations with Discontinuous Righthand Sides. Dordrecht,Boston,London: Kluwer Academic.
Furuta, Katsuhisa. (1990). Sliding mode control of a discrete system. Systems & Control Letters, 14(2), 145-152. doi: http://dx.doi.org/10.1016/0167-6911(90)90030-X Haykin, S.S. (1999). Neural Networks: A Comprehensive Foundation: Prentice Hall International. Hung, J. Y., Gao, W., & Hung, J. C. (1993). Variable structure control: a survey. Industrial Electronics, IEEE Transactions on, 40(1), 2-22. doi: 10.1109/41.184817 Lewis, F.L., Vrabie, D., & Syrmos, V.L. (2012). Optimal Control: Wiley. Lin, Wei-Song. (2011). Optimality and convergence of adaptive optimal control by reinforcement synthesis. Automatica, 47(5), 1047-1052. doi: http://dx.doi.org/10.1016/j.automatica.2011.01.060 Lin, Wei-Song, & Zheng, Chen-Hong. (2011). Energy management of a fuel cell/ultracapacitor hybrid power system using an adaptive optimal-control method. Journal of Power Sources, 196(6), 3280-3289. doi: http://dx.doi.org/10.1016/j.jpowsour.2010.11.127 Milosavljevic, C. (1985). General conditions for the existence of a quasisliding mode on the switching hyperplane in discrete variable structure systems. Automatic Remote Control, 46, 307-314. Paul V. Yee, Simon Haykin. (2001). Regularized Radial Basis Function Networks: Theory and Applications (1 ed.): Wiley-Interscience. Prokhorov, Danil, & Wunsch, Don. (1997). Adaptive Critic Designs. IEEE Transactions on Neural Networks, 8. Sarpturk, S., Istefanopulos, Y., & Kaynak, O. (1987). On the stability of discrete-time sliding mode control systems. Automatic Control, IEEE Transactions on, 32(10), 930-932. doi: 10.1109/TAC.1987.1104468 Slotine, J. J., & Sastry, S. S. (1983). Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators†. International Journal of Control, 38(2), 465-492. doi: 10.1080/00207178308933088 Utkin, V. (1977). Variable structure systems with sliding modes. Automatic Control, IEEE Transactions on, 22(2), 212-222. doi: 10.1109/TAC.1977.1101446 Webros, Paul J. (1990). A menu of designs for reinforcement learning over time. In W. Thomas Miller, III, S. S. Richard & J. W. Paul (Eds.), Neural networks for control (pp. 67-95): MIT Press. Xu, S. D., Liang, Y. W., & Chiou, S. W. (2008). Discrete-time quasi-sliding-mode control for a class of nonlinear control systems. Electronics Letters, 44(17), 1008-1010. doi: 10.1049/el:20081070 林祐宇. (2009). 動態輻狀基底函數類神經網路建構之研究. (碩士), 國立政治大學. 張晉棠. (2011). 適應最佳控制為基礎之工業控制系統循序優化技術. (碩士), 國立臺灣大學. 陳永平, 張浚林. (2002). 可變結構控制器設計: 全華出版社. 戴念儒. (2013). Design of Self-Optimizing Fuzzy PID Controller for High Efficiency Traction of Electric Vehicle. National Taiwan University. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55110 | - |
| dc.description.abstract | 本篇論文採用適應性最佳控制法求解仿射非線性系統順滑模控制器設計的問題,藉由適應性最佳控制法優化順滑模控制的等效控制訊號求得最佳控制器參數。傳統非線性系統的順滑模控制器設計多利用線性化求解,而線性化會降低控制精凖度且不適用於高度非線性的系統,適應性最佳控制的特點是可以依照指定的成本函數優化控制器,使用者可選擇特定的成本函數來規劃系統軌跡進入順滑模態後的系統響應行為,適應性最佳控制法把最佳控制的極小值原理的逆向演算轉換為順向循序演算的強化學習機制,以此架構來循序優化各類型的非線性控制器。本論文針對仿射非線性系統提出最佳順滑模控制器的設計方法,在離散型順滑模控制器的等效控制設計當中,導入適應性最佳控制法,透過循序優化的強化學習機制來優化等效控制的參數,實現仿射非線性系統之適應性最佳順滑模控制器的設計,透過例題的電腦模擬來驗證此求解方法的成效,其結果顯示適應性最佳控制法確實可以透過學習程序來循序優化控制器參數,使成本函數趨近極小值,求得仿射非線性系統的順滑模控制器的近似最佳解。 | zh_TW |
| dc.description.abstract | This thesis presents an adaptive optimal control algorithm (AOCA) dedicated to solve the optimal sliding mode control problems of affine nonlinear systems by sequential optimization. Concerning with sliding model control of nonlinear systems, designers are used to linearize the system model about an operating point in order to solve for the sliding mode controller under linear environment. However, the linearization may introduce large model error while shifting between operating points that, as a result, leads to bad control performance or even fails to work in systems with severe nonlinearity. In contrast, the AOCA deals with the nonlinear model directly to optimize the equivalent control law in terms of minimizing a specified cost function. The AOCA organizes the optimality conditions derived from the minimum principle in the architecture of reinforcement learning to achieve sequential optimization. The proposed design is dedicated to use in affine nonlinear systems, and the effectiveness has been investigated in several bench-mark examples by computer simulations. The results show that the design can find out the optimal equivalent control laws of sliding model control systems. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:47:35Z (GMT). No. of bitstreams: 1 ntu-104-R01921060-1.pdf: 2522819 bytes, checksum: 544b97ca7f7e6feb668c1eee35f6a87a (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 論文架構 4 第二章 順滑模控制 5 2.1 連續型順滑模控制 5 2.2 離散型順滑模控制 11 2.3 等效控制 18 2.4 順滑函數選取 23 第三章 適應性最佳順滑模控制 26 3.1 最佳控制必要條件 28 3.2 適應性最佳控制訓練策略 31 3.3 輻狀基底函數類神經網路 37 3.3.1 輻狀基底函數類神經網路 37 3.3.2 誤差倒傳遞演算法 41 3.4 適應性最佳順滑模控制器 43 3.4.1 問題描述 43 3.4.2 適應性最佳順滑模控制器 46 第四章 電腦模擬與驗證 50 4.1 線性順滑模函數設計 50 4.1.1 範例ㄧ 50 4.1.2 範例二 55 4.1.3 範例三 60 4.1.4 範例四 65 4.2 非線性順滑模函數設計 68 4.2.1 範例一 ...72 4.2.2 範例二 76 4.2.3 範例三 79 4.2.4 範例四 82 第五章 結論與未來展望 90 參考文獻 91 | |
| dc.language.iso | zh-TW | |
| dc.subject | 順滑模控制 | zh_TW |
| dc.subject | 循序優化 | zh_TW |
| dc.subject | 等效控制 | zh_TW |
| dc.subject | 仿射非線性系統 | zh_TW |
| dc.subject | 適應性最佳控制 | zh_TW |
| dc.subject | equivalent control | en |
| dc.subject | adaptive optimal control | en |
| dc.subject | sliding mode control | en |
| dc.subject | sequential optimization | en |
| dc.subject | Affine nonlinear systems | en |
| dc.title | 仿射非線性系統之適應性最佳順滑模控制器 | zh_TW |
| dc.title | Adaptive Optimal Sliding Mode Controller of Affine Nonlinear Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張帆人(Fan-ren Chang),鍾鴻源(Hung-Yuan Chung) | |
| dc.subject.keyword | 仿射非線性系統,適應性最佳控制,順滑模控制,等效控制,循序優化, | zh_TW |
| dc.subject.keyword | Affine nonlinear systems,adaptive optimal control,sliding mode control,equivalent control,sequential optimization, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-01-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
