Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5508
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳正平(Jen-Ping Chen)
dc.contributor.authorTzu-Chin Tsaien
dc.contributor.author蔡子衿zh_TW
dc.date.accessioned2021-05-15T18:01:05Z-
dc.date.available2014-09-12
dc.date.available2021-05-15T18:01:05Z-
dc.date.copyright2014-09-12
dc.date.issued2014
dc.date.submitted2014-09-09
dc.identifier.citationAvramov, A., and J. Y. Harrington, 2010: Influence of parameterized ice habit on simulated mixed phase Arctic clouds, J. Geophys. Res., 115, D03205.
Baumgardner, D., H. Jonsson, W. Dawson, D. O’Connor, and R. Newton, 2001: The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations, Atmos. Res., 59, 251–264.
Bailey, M.P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: confirmation from the laboratory, AIRS II, and other field studies, J. Atmos. Sci., 66, 2888–2899.
Beard, K. V., and H. R. Pruppacher, 1971: A wind tunnel investigation of the rate of evaporation of small water drops falling at terminal velocity in air. J. Atmos. Sci., 28, 1455–1464.
Bigg, E. K., 1953: The supercooling of water. Proc. Phys. Soc. London., B66, 688–694.
Byers, H. R., 1965: Elements of Cloud Physics. The University of Chicago Press, 191 pp.
Chen, J.-P., and D. Lamb, 1994a: The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition. J. Atmos. Sci., 51, 1206–1221.
——, and ——, 1994b: Simulation of cloud microphysical and chemical processes using a multi-component framework. Part I: Description of the microphysical model, J. Atmos. Sci., 51, 2613–2630.
——, and S.-T. Liu, 2004: Physically-based two-moment bulk-water parameterization for warm cloud microphysics, Q. J. Royal Meteor. Soc., 130, 51–78.
——, A. Hazra, and Z. Levin, 2008: Parameterizing ice nucleation rates using contact angle and activation energy derived from laboratory data. Atmos. Chem. Phys., 8, 7431–7449.
——, I.-C. Tsai, and Y.-C. Lin, 2013: A statistical-numerical aerosol parameterization scheme. Atmos. Chem. Phys., 13, 10483–10504.
Cheng, C.-T., W.-C. Wang, and J.-P. Chen, 2007: A modeling study of aerosol impacts on cloud microphysics and radiative properties. Q. J. R. Meteorol. Soc., 133, 283–297.
——, ——, and ——, 2010: Simulation of the effects of increasing cloud condensation nuclei on mixed-phase clouds and precipitation of a front system, Atmos. Res., 96, 461–476.
Chou, M. D., and Suarez, M. J., 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Memo, 104606, 40.
——, K.-T. Lee, and P. Yang, 2002: Parameterization of shortwave cloud optical properties for a mixture of ice particle habits for use in atmospheric models, J. Geophys. Res., 107, 4600.
Clark, T.L., 1974: A study in cloud phase parameterization using the gamma distribution. J. Atmos. Sci., 31, 142–155.
Cober, S. G., and R. List, 1993: Measurements of the heat and mass transfer parameters characterizing conical graupel growth. J. Atmos. Sci., 50, 1591–1609.
Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Mongr., 43, Amer. Meteor. Soc., 29–32.
Cotton, W. R., et al. 1982: “The Colorado State University three-dimensional cloud/mesoscale model-1982. Part II: An ice phase parameterization.” J. Rech. Atmos., 16.4, 295–320.
——, G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 1658–1680.
Dearden, C., P. J. Connolly, G. Lloyd, J. Crosier, K. N. Bower, T. W. Choularton, and G. Vaughan, 2014: Diabatic heating and cooling rates derived from in-situ microphysics measurements: A case study of a wintertime UK cold front. Mon. Wea. Rev., in press.
DeMott, P. J., M. P. Meyers, and W. R. Cotton, 1994: Parameterization and impact of ice initiation processes relevant to numerical model simulations of cirrus clouds. J. Atmos. Sci., 51, 77–90.
——, A. J. Prenni, X. Liu, S. M. Kreidenweis, M. D. Petters, C. H. Twohy, M.S. Richardson, T. Eidhammer, and D. C. Rogers, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proceedings of the National Academy of Sciences, 107, 11217–11222.
Ferrier, B. S., W. K. Tao, and J. Simpson, 1995: A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. J. Atmos. Sci., 52, 1001–1033.
Field, P. R., M‥ohler, O., Connolly, P., Kr‥amer, M., Cotton, R.,Heymsfield, A. J., Saathoff, H., and Schnaiter, M., 2006: Some ice nucleation characteristics of Asian and Saharan desert dust, Atmos. Chem. Phys., 6, 2991–3006.
Fletcher, N. H., 1962: Physics of Rain Clouds, Cambridge University Press, 386 pp.
Hall, W. D., and H. R. Pruppacher, 1976: The survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci., 33, 1995–2006.
Hallett, J., and B. Mason, 1958: The influence of temperature and supersaturation on the habit of ice crystals grown from the vapor. Proc. Roy. Soc. London, 247A, 440–453.
——, and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 26–28.
Hashino, T., and G. J. Tripoli, 2007: The spectral ice habit prediction system (SHIPS). Part I: Model description and simulation of the vapor deposition process. J. Atmos. Sci., 64, 2210–2237.
Harrington, J. Y., M. P. Meyers, R. L. Walko, and W. R. Cotton, 1995: Parameterization of ice crystal conversion processes due to vapor deposition for mesoscale models using double moment basis functions. Part I: Basic formulation and parcel model results. J. Atmos. Sci., 52, 4344–4366.
——, J. Y., K. Sulia, and H. Morrison, 2013a: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349–364.
——, ——, and ——, 2013b: A method for adaptive habit prediction in bulk microphysical models. Part II: Parcel Model Corroboration. J. Atmos. Sci., 70, 365–376.
Heymsfield, A. J., and R. G. Knollenberg, 1972: Properties of cirrus generating cells. J. Atmos. Sci., 29, 1358–1366.
——, and L. J. Donner, 1990: A scheme for parameterizing ice cloud water content in general circulation models. J. Atmos. Sci., 47, 1865–1877.
——, A. Bansemer, and C. Twohy, 2007: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds: Part I: Temperature dependence. J. Atmos. Sci., 64, 1047–1067.
Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120.
——, Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.
——, and J.-O. J. Lim, 2006: The WRF single–moment 6–class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.
Hoose, C., J. E. Kristjánsson, J.-P. Chen and A. Hazra, 2010: A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model, J. Atmos. Sci., 67, 2483–2503.
Huffman, P. J., 1973: Supersaturation spectra of AgI and natural ice nuclei. J. Appl. Meteorol., 12, 1080–1082.
Iguchi, T., T. Matsui, J. J. Shi, W.-K. Tao, A. P. Khain, A. Hou, R. Cifelli, A. Heymsfield, and A. Tokay, 2012: Numerical analysis using WRF-SBM for the cloud microphysical structures in the C3VP field campaign: Impacts of supercooled droplets and resultant riming on snow microphysics, J. Geophys. Res., 117, D23206, doi:10.1029/2012JD018101.
Jakob, C., 2002: Ice clouds in numerical weather prediction models—Progress, problems and prospects. Cirrus, D. Lynch et al., Eds, Oxford University Press, 327–345.
Jayaweera, K. O. L. F., and T. Ohtake, 1974: Properties of columnar ice crystals precipitating front layer clouds. J. Atmos. Sci., 31, 280–286.
Ji, W., and P.-K. Wang, 1999: Ventilation coefficients of falling ice crystals at low-intermediate Reynolds numbers. J. Atmos. Sci., 56, 829–836.
Kain, John S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181.
Kessler, E., 1969: On the distribution and continuity of water substance in atmospheric circulations. Meteor. Monogr., 10, Amer. Meteor. Soc. Boston, USA.
Khvorostyanov, V. I., 1995: Mesoscale processes of cloud formation, cloud-radiation and their modeling with explicit microphysics. Atmos. Res., 39, 1–67.
——, J. A. Curry, J. O. Pinto, M. Shupe, B. A. Baker, and K. Sassen, 2001: Modeling with explicit spectral water and ice microphysics of a two-layer cloud system of altostratus and cirrus observed during the FIRE Arctic Clouds Experiment. J. Geophys. Res., 106, 15 099–15 112.
——, V. I., and J. A. Curry, 2002: Terminal velocities of droplets and crystals: Power laws with continuous parameters over the size spectrum. J. Atmos. Sci., 59, 1872–1884.
Kinne, S., and K. N. Liou, 1989: The effects of the nonsphericity and size distribution of ice crystals on the radiative properties of cirrus clouds. Atmos. Res., 24, 273–284.
Kobayashi, T., 1961: The growth of snow crystals at low supersaturation. Philos. Mag., 6, 1363–1370.
Lance, S., C.A. Brock, D. Rogers, J.A. Gordon, 2010: Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC, Atmos. Meas. Tech., 3, 1683–1706, DOI: 10.5194/amt-3-1683-2010.
Lawson, R.P., D. O’Connor, P. Zmarzly, L. Weaver, B. Baker, Q. Mo, H. Jonsson, 2006: The 2D-S (Stereo) probe: design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe, J. Atmos. Oceanic Technol., 23, 1462–1477, DOI: 10.1175/JTECH1927.1.
Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double–moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612.
Lin, Y. L., R. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.
Lin, Y. L., and B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature–dependent ice characteristics. Mon. Wea. Rev., 139, 1013–1035.
Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 2185–2197.
Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171–194.
McFarquhar, G. M., J. Heymsfield, J. Spinhirne, and B. Hart, 2000: Thin and subvisual tropopause tropical cirrus: Observations and radiative impacts. J. Atmos. Sci., 57, 1841–1853.
Meyers, M. P., DeMott, P. J., and Cotton, W. R., 1992: New primary ice nucleation parameterizations in an explicit cloud model, J. Appl. Meteorol., 31, 708–721.
Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051–3064.
——, and ——, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three moment closure and scheme description. J. Atmos. Sci., 62, 3065–3081.
——, and H. Morrison, 2013: Prediction of Graupel Density in a Bulk Microphysics Scheme. J. Atmos. Sci., 70, 410–429.
Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 1710–1723.
——, and A. J. Heymsfield, 2005: The treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62, 1637–1644.
Morrison, H., and J. O. Pinto, 2005: Mesoscale modeling of springtime arctic mixed phase clouds using a new two-moment bulk microphysics scheme. J. Atmos. Sci., 62, 3683–3704.
——, G. Thompson, V. Tatarskii, 2009: Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One– and Two–Moment Schemes. Mon. Wea. Rev., 137, 991–1007.
Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud—The 19 July 1981 CCOPE cloud. J. Meteor. Soc. Japan, 68, 107–128.
Nakaya, Ukichiro, 1954: Snow Crystals: Natural and Artificial. Harvard University Press. ISBN 978-0-674-81151-5.
NOAA, cited 2001: National Oceanic and Atmospheric Administration Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis. [Available online at http://www.emc.ncep.noaa.gov/mmb/mmbpll/eta12tpb/.]
Passarelli, R. E., 1978: An approximate analytical model of the vapor deposition and aggregation growth of snowflakes. J. Atmos. Sci., 35, 118–124.
——, and R. C. Srivastava, 1978: A new aspect of snowflake aggregation theory. J. Atmos. Sci., 36, 484–493.
Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation, vol. 18, Kluwer Academic Publishers, Dordrecht, the Netherlands.
Sheridan, L. M., J. Y. Harrington, D. Lamb, and K. Sulia, 2009: Influence of ice crystal aspect ratio on the evolution of ice size spectra during vapor depositional growth, J. Atmos. Sci., 66, 3732–3743.
Shi, J. J., and Coauthors, 2010: WRF simulations of the 20–22 January 2007 snow events over eastern Canada: Comparison with in situ and satellite observations, J. Appl. Meteorol. Climatol., 49, 2246–2266.
Straka, Jerry M., and Edward R. Mansell., 2005: A bulk microphysics parameterization with multiple ice precipitation categories, J. Applied Meteorology, 44.4, 445–466.
Rasmussen, R. M., V. Levizzani, and H. R. Pruppacher, 1984: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. II: A theoretical study for frozen drops of radius< 500 μm. J. Atmos. Sci., 41, 374–380.
——, and A. J. Heymsfield, 1985: A generalized form for impact velocities used to determine graupel accretional densities. J. Atmos. Sci., 42, 2275–2279.
——, and ——, 1987a: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 2754–2763.
——, and ——, 1987b: Melting and shedding of graupel and hail. Part II: Sensitivity study. J. Atmos. Sci., 44, 2764–2782.
Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and m croscale structure and organization of clouds and precipitation in mid-latitude clouds. Part XII: A diagnostic modeling study of precipitation development in narrow cold frontal rainbands, J. Atmos. Sci., 41, 2949–2972.
Takano, Y., and K. N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part I. Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 3–19.
Tao, W.-K., J. Simpson, M. McCumber, 1989: An Ice–Water Saturation Adjustment. Mon. Wea. Rev., 117, 231–235.
——, and J. S. Simpson, 1993: Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Ocean. Sci., 4, 35–72.
——, J.-P. Chen, Z.-Q. Li, C. Wang and C.-D. Zhang, 2012: The impact of aerosol on convective cloud and precipitation. Rev. Geophys., 50, RG2001, doi:10.1029/2011RG000369.
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115.
Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large–scale models. Mon. Wea. Rev., 117, 1779–1800.
Wang, P. K., and W. Ji, 2000: Collision efficiencies of ice crystals at low–intermediate eynolds numbers colliding with supercooled cloud droplets: A numerical study. J. Atmos. Sci., 57, 1001–1009.
Whitby, K. T., 1978: The physical characteristics of sulfur aerosols. Atmos. Environ., 12, 135–159.
Yang, P., and Q. Fu, 2009: Dependence of ice crystal optical properties on particle aspect ratio. JQSRT, 72, 403–17.
Yankofsky, S. A., Levin, Z., Bertold, T., and Sandlerman, N., 1981: Some basic characteristics of bacterial freezing nuclei, J. Appl. Meteorol., 20, 1013–1019.
Young, K. C., 1974: The role of contact nucleation in ice phase initiation in clouds. J. Atmos. Sci., 31, 1735–1748.
——, 1993: Microphysical Processes in Clouds. Oxford University Press, 427 pp.
Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast pacific in ARW–WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 3489–3513.
Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part 1: Model development and preliminary testing. J. Atmos. Sci., 42, 1487–1509.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5508-
dc.description.abstract在雲模式中,冰晶複雜的形狀和其成長機制一直是冷雲參數法裡不易處理的物理過程。而本研究根據Chen and Lamb在1994年所提的冰晶成長理論參數法發展出一套冰晶形狀總體參數法,還建立一個具有六種雙矩量(質量和數量)水物且都是伽碼粒徑分佈的總體雲物理參數法。兩個新的參數法都已移植至WRF氣象模式,成為一個多矩量總體雲微物理參數法。在新的參數法中,更針對雲冰增加了冰晶形狀和體積兩個矩量來預報其成長習性和視密度,並提出一個使用第零、第二和第三矩量之矩量閉合方法。而冰晶形狀總體參數法的理論驗證是和細格(bin)方法作比較;氣塊(parcel)法零維計算的結果展示出粒徑譜形能彈性變化的重要性,以及冰晶形狀對其凝華成長的顯著影響,同時冰晶的成長習性能夠根據不同的環境條件及初始粒徑做出調整;總體三矩量方法和細格方法的結果較為一致。至於觀測驗證,分別選取C3VP和DIAMET兩個冬季觀測計畫之個案以WRF模式進行模擬,並分別假設球形和非球形的冰晶來評估其影響程度。C3VP個案模擬結果顯示出雲冰形狀在雲物理過程、地面降水和輻射通量的顯著影響及較為接近真實的冰晶成長習性演變。而DIAMET個案結果顯示,新的雲微物理參數法能準確地預報其鋒面狹長雨帶的降水結構和伴隨的天氣特徵,且模擬出柱狀和碟狀冰晶在不同溫度區間的垂直分布並記憶其形狀的演變,而和飛機雲物理觀測資料的比較亦顯示冰晶在其二次增殖生成的溫度區間,兩者在冰晶數量濃度、綜橫軸比例和其凝華加熱率具有高度的一致性。zh_TW
dc.description.abstractThe wide variety of ice crystal shapes and growth habits makes it a complicated issue in cloud models. This study developed the bulk ice adaptive habit parameterization based on the theoretical approach of Chen and Lamb (1994) and introduced a 6-class hydrometeors double-moment (mass and number) bulk microphysics scheme with gamma-type size distribution function. Both the proposed schemes have been implemented into the Weather Research and Forecasting model (WRF) model forming a new multi-moment bulk microphysics scheme. Two new moments of ice crystal shape and volume are included for tracking pristine ice’s adaptive habit and apparent density. A closure technique is developed to solve the time evolution of the bulk moments. For the verification of the bulk ice habit parameterization, some parcel-type (zero-dimension) calculations were conducted and compared with binned numerical calculations. The results showed that: a flexible size spectrum is important in numerical accuracy, the ice shape can significantly enhance the diffusional growth, and it is important to consider the memory of growth habit (adaptive growth) under varying environmental conditions. Also, the derived results with the 3-moment method were much closer to the binned calculations. Two field campaigns from the C3VP and DIAMET were selected to simulate in the WRF model for real-case studies. The simulations were performed with the traditional spherical ice and the new adaptive shape schemes to evaluate the effect of crystal habits. Realistic evolution of ice growth habits and great impacts on the ice-phase microphysical processes, surface precipitations, and radiation fluxes were found in the simulation results of C3VP case. For the DIAMET case, some main features of narrow rain band, as well as the embedded precipitation cells, in the cold front case were well captured by the model. The vertical variation of ice crystal shapes was nicely simulated. Furthermore, the simulations produced a good agreement in the microphysics against the aircraft observations in ice particle number concentration, ice crystal aspect ratio, and deposition heating rate especially within the temperature region of ice secondary multiplication production.en
dc.description.provenanceMade available in DSpace on 2021-05-15T18:01:05Z (GMT). No. of bitstreams: 1
ntu-103-D97229002-1.pdf: 12841174 bytes, checksum: e33ca2daa6a2e8dc2e331e5a41e8c825 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents摘要 I
ABSTRACT II
ACKNOWLEDGEMENTS IV
TABLE OF CONTENTS V
LIST OF TABLES VII
LIST OF FIGURES VIII
1. Introduction 1
1.1 Ice crystal habits 1
1.2 Bulk approaches 4
1.3 Microphysics schemes in WRF 6
1.4 Motivation 8
2. Methodology 10
2.1 An adaptive growth habit bulkwater parameterization 10
2.1.1 Bulk ice shape and volume moments 11
2.1.2 Deposition growth 14
2.1.3 Riming growth 19
2.1.4 Accretion rate by other particles 22
2.1.5 Aggregation among pristine ice 24
2.1.6 Mass-dimension and Area-dimension relationships 26
2.1.7 Terminal velocity-dimension relationships 29
2.1.8 Ventilation effect 32
2.1.9 3-moment closure technique 34
2.1.10 Orientation of crystal shape 36
2.1.11 Remarks 38
2.2 A new multi-moment microphysics scheme 38
2.2.1 Activation/deactivation 41
2.2.2 Nucleation/multiplication 43
2.2.3 Vapor diffusion/evaporation 47
2.2.4 Accretion/aggregation 48
2.2.5 Auto-conversion/ initiation of graupel/breakup 52
2.2.6 Hailstone growth/Shedding 54
2.2.7 Melting of frozen particles 57
2.2.8 Remarks 59
2.3 Summary 60
3. Zero-dimension calculations 62
3.1 The role of ice crystal shape and spectral index 63
3.2 Adaptive growth 67
3.3 Ice growth dependence on initial size 70
3.4 Ice growth with ventilation effect 72
3.5 Ice crystal shape effect on radiation flux 74
3.6 Summary 76
4. The WRF model simulation results 78
4.1 C3VP synoptic snowfall event 78
4.1.1 Model setup 80
4.1.2 Simulation results 82
4.1.3 Remarks 88
4.2 DIAMET cold-front event 89
4.2.1 Model setup 91
4.2.2 Simulation results 93
4.2.3 Remarks 106
4.3 Summary 107
5. Conclusions 109
5.1 Summary 109
5.2 Future perspective 110
References 112
Tables 119
Figures 124
Appendix A 162
Appendix B 165
dc.language.isoen
dc.title可預報冰晶成長習性和視密度之多矩量冷雲總體雲微物理參數法應用於WRF模式zh_TW
dc.titleA Multi-Moment Bulkwater Ice Microphysics Scheme with Consideration of the Adaptive Growth Habit and Apparent Density for Pristine Ice in the WRF Modelen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee隋中興(Chung-Hsiung Sui),王寶貫(Pao-Kuan Wang),楊明仁(Ming-Jen Yang),陳淑華(Shu-Hua Chen),陳維婷(Wei-Ting Chen)
dc.subject.keyword冰晶形狀,冰晶習性,WRF,雲物理參數法,C3VP,DIAMET,zh_TW
dc.subject.keywordcrystal shape,ice habit,WRF,cloud scheme,C3VP,DIAMET,en
dc.relation.page168
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-09-09
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf12.54 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved