請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55071
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 盧中仁 | |
dc.contributor.author | "Chiang, Kuo-Yuan" | en |
dc.contributor.author | 江國源 | zh_TW |
dc.date.accessioned | 2021-06-16T03:46:13Z | - |
dc.date.available | 2017-03-13 | |
dc.date.copyright | 2015-03-13 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2015-02-03 | |
dc.identifier.citation | 1. Wu, T.Y., Fish Swimming and Bird/Insect Flight. Annual Review of Fluid Mechanics, 2011. 43(1): pp. 25-58.
2. Wang, Z.J., Dissecting insect flight. Annual Review of Fluid Mechanics, 2005. 37(1): pp. 183-210. 3. Shyy, W., Berg, M., and Ljungqvist, D., Flapping and flexible wings for biological and micro air vehicles. Progress in Aerospace Sciences, 1999. 35(5): pp. 455-505. 4. Taha, H., Hajj, M., and Nayfeh, A., Flight dynamics and control of flapping-wing MAVs: a review. Nonlinear Dynamics, 2012. 70(2): pp. 907-939. 5. Ansari, S.A., Żbikowski, R., and Knowles, K., Aerodynamic modelling of insect-like flapping flight for micro air vehicles. Progress in Aerospace Sciences, 2006. 42(2): pp. 129-172. 6. Walker, S.M., Thomas, A.L.R., and Taylor, G.K., Deformable wing kinematics in free-flying hoverflies. Journal of The Royal Society Interface, 2010. 7(42): pp. 131-142. 7. Koehler, C., Liang, Z., Gaston, Z., Wan, H., and Dong, H., 3D reconstruction and analysis of wing deformation in free-flying dragonflies. J Exp Biol, 2012. 215(Pt 17): pp. 3018-3027. 8. Mountcastle, A. and Daniel, T., Aerodynamic and functional consequences of wing compliance. Experiments in Fluids, 2009. 46(5): pp. 873-882. 9. Mountcastle, A.M. and Combes, S.A., Wing flexibility enhances load-lifting capacity in bumblebees. Proceedings of the Royal Society B: Biological Sciences, 2013. 280(1759). 10. Vanella, M., Fitzgerald, T., Preidikman, S., Balaras, E., and Balachandran, B., Influence of flexibility on the aerodynamic performance of a hovering wing. Journal of Experimental Biology, 2009. 212(1): pp. 95-105. 11. Young, J., Walker, S.M., Bomphrey, R.J., Taylor, G.K., and Thomas, A.L.R., Details of Insect Wing Design and Deformation Enhance Aerodynamic Function and Flight Efficiency. Science, 2009. 325(5947): pp. 1549-1552. 12. Wang, Z.J., Dragonfly flight. Physics Today, 2008. 61(10): pp. 74-75. 13. Somps, C. and Luttges, M., Dragonfly flight: novel uses of unsteady separated flows. Science, 1985. 228(4705): pp. 1326-1329. 14. Wakeling, J. and Ellington, C., Dragonfly flight. III. Lift and power requirements. J Exp Biol, 1997. 200(Pt 3): pp. 583-600. 15. Wakeling, J. and Ellington, C., Dragonfly flight. II. Velocities, accelerations and kinematics of flapping flight. J Exp Biol, 1997. 200(Pt 3): pp. 557-582. 16. Wakeling, J. and Ellington, C., Dragonfly flight. I. Gliding flight and steady-state aerodynamic forces. J Exp Biol, 1997. 200(Pt 3): pp. 543-556. 17. Sun, J. and Bhushan, B., The structure and mechanical properties of dragonfly wings and their role on flyability. Comptes Rendus Mecanique, 2012. 340(1–2): pp. 3-17. 18. R.F. Chapman, S.J.S., A.E. Douglas, The Insects: Structure and Function. 2013. 19. Sudo, S., Tsuyuki, K., Ikohagi, T., Ohta, F., Shida, S., and Tani, J., A Study on the Wing Structure and Flapping Behavior of a Dragonfly. JSME International Journal Series C, 1999. 42(3): pp. 721-729. 20. ke Norberg, R., The pterostigma of insect wings an inertial regulator of wing pitch. Journal of comparative physiology, 1972. 81(1): pp. 9-22. 21. Dickinson, M.H., Lehmann, F.-O., and Sane, S.P., Wing Rotation and the Aerodynamic Basis of Insect Flight. Science, 1999. 284(5422): pp. 1954-1960. 22. Ennos, A.R., The Inertial Cause of Wing Rotation in Diptera. Journal of Experimental Biology, 1988. 140(1): pp. 161-169. 23. Tong, J., Zhao, Y., Sun, J., and Chen, D., Nanomechanical properties of the stigma of dragonfly Anax parthenope julius Brauer. Journal of Materials Science, 2007. 42(8): pp. 2894-2898. 24. Li, Z.-X., Shen, W., Tong, G.-S., Tian, J.-M., and Vu-Quoc, L., On the vein-stiffening membrane structure of a dragonfly hind wing. Journal of Zhejiang University SCIENCE A, 2009. 10(1): pp. 72-81. 25. Chung, C.-T., Effects of pterostigma on deformation of flapping wings in dragonflies. 2010. 26. Ellington, C.P., The Aerodynamics of Hovering Insect Flight. V. A Vortex Theory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1984. 305(1122): pp. 115-144. 27. Azuma, A., Azuma, S., Watanabe, I., and Furuta, T., Flight Mechanics of a Dragonfly. Journal of Experimental Biology, 1985. 116(1): pp. 79-107. 28. Lighthill, M.J., On the Weis-Fogh mechanism of lift generation. Journal of Fluid Mechanics, 1973. 60(01): pp. 1-17. 29. Minotti, F.O., Unsteady two-dimensional theory of a flapping wing. Phys Rev E Stat Nonlin Soft Matter Phys, 2002. 66(5 Pt 1): pp. 051907. 30. Hsieh, C.T., Chang, C.C., and Chu, C.C., Revisiting the aerodynamics of hovering flight using simple models. Journal of Fluid Mechanics, 2009. 623: pp. 121-148. 31. Liu, H. and Kawachi, K., A Numerical Study of Insect Flight. Journal of Computational Physics, 1998. 146(1): pp. 124-156. 32. Sun, M. and Tang, J., Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. Journal of Experimental Biology, 2002. 205(1): pp. 55-70. 33. Ramamurti, R. and Sandberg, W.C., A three-dimensional computational study of the aerodynamic mechanisms of insect flight. Journal of Experimental Biology, 2002. 205(10): pp. 1507-1518. 34. Jensen, M., Biology and Physics of Locust Flight. III. The Aerodynamics of Locust Flight. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1956. 239(667): pp. 511-552. 35. Okamoto, M., Yasuda, K., and Azuma, A., Aerodynamic characteristics of the wings and body of a dragonfly. The Journal of Experimental Biology, 1996. 199(2): pp. 281-294. 36. Sane, S.P. and Dickinson, M.H., The control of flight force by a flapping wing: lift and drag production. Journal of Experimental Biology, 2001. 204(15): pp. 2607-2626. 37. Zhao, L., Huang, Q., Deng, X., and Sane, S.P., Aerodynamic effects of flexibility in flapping wings. Journal of The Royal Society Interface, 2009. 38. Coelho, J.R. and Hoagland, J., Load-Lifting Capacities of Three Species of Yellowjackets (Vespula) Foraging on Honey-Bee Corpses. Functional Ecology, 1995. 9(2): pp. 171-174. 39. Marden, J.H., Maximum Lift Production During Takeoff in Flying Animals. Journal of Experimental Biology, 1987. 130(1): pp. 235-258. 40. Dillon, M.E. and Dudley, R., Allometry of maximum vertical force production during hovering flight of neotropical orchid bees (Apidae: Euglossini). J Exp Biol, 2004. 207(Pt 3): pp. 417-425. 41. Buchwald, R. and Dudley, R., Limits to vertical force and power production in bumblebees (Hymenoptera: Bombus impatiens). J Exp Biol, 2010. 213(3): pp. 426-432. 42. Cloupeau, M., Devillers, J.F., and Devezeaux, D., Direct Measurements of Instantaneous Lift in Desert Locust; Comparison with Jensen'S Experiments on Detached Wings. Journal of Experimental Biology, 1979. 80(1): pp. 1-15. 43. Buckholz, R.H., Measurements of Unsteady Periodic Forces generated by the Blowfly Flying in a Wind Tunnel. Journal of Experimental Biology, 1981. 90(1): pp. 163-173. 44. Wilkin, P.J., The Instantaneous Force on a Desert Locust, Schistocerca gregaria (Orthoptera: Acrididae), Flying in a Wind Tunnel. Journal of the Kansas Entomological Society, 1990. 63(2): pp. 316-328. 45. Sunada, S., Song, D., Meng, X., Wang, H., Zeng, L., and Kawachi, K., Optical Measurement of the Deformation, Motion, and Generated Force of the Wings of a Moth, Mythimna Separata (Walker). JSME International Journal Series B Fluids and Thermal Engineering, 2002. 45(4): pp. 836-842. 46. Sunada, S., Zeng, L., and Kawachi, K., The Relationship Between Dragonfly Wing Structure and Torsional Deformation. Journal of Theoretical Biology, 1998. 193(1): pp. 39-45. 47. Combes, S.A. and Daniel, T.L., Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. Journal of Experimental Biology, 2003. 206(17): pp. 2989-2997. 48. Hamamoto, M., Ohta, Y., Hara, K., and Hisada, T., Basic Design Strategy for Stiffness Distribution on a Dragonfly-Mimicking Wing for a Flapping Micro Aerial Vehicle. Advanced Robotics, 2010. 24(5-6): pp. 861-877. 49. Xiao, K., Bai, K., Wang, W., and Song, F., Experimental study on the microstructure and nanomechanical properties of the wing membrane of dragonfly. Acta Mechanica Sinica, 2007. 23(3): pp. 281-285. 50. C.H. Chang, K.T., K.T. Chen, Study on nanomechanical properties of dragonfly wing. Advanced Materials Research, 2009. 79-82: pp. 1325-1328. 51. Zeng, L., Matsumoto, H., Sunada, S., Ohnuki, T., and Kawachi, K., Two-dimensional, noncontact measurement of the natural frequencies of dragonfly wings using a quadrant position sensor. Optical Engineering, 1995. 34(4): pp. 1226-1231. 52. Chen, J.-S., Chen, J.-Y., and Chou, Y.-F., On the natural frequencies and mode shapes of dragonfly wings. Journal of Sound and Vibration, 2008. 313(3–5): pp. 643-654. 53. Lee, J.C. and Chou, Y.F., Driven-Base Modal Parameter Estimation for Continuous Structures. Proceedings of the Florence Modal Analysis Conference,Florence, Italy,Sept, 1991: pp. 789-796. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55071 | - |
dc.description.abstract | 本論文研究蜻蜓的翅痣對振翅力與翅膀動態特性的影響。振翅力方面,利用自行設計的三維測力計配合雷射位移計量測蜻蜓在固定姿態下三方向的平均力。在翅膀動態特性方面,依據基底振盪法以振盪器與雷射位移計量測蜻蜓翅膀上數個指定點的頻率響應函數,由曲線嵌合得到自然頻率與對應的振形。我們實際量測去除翅痣前後,在翅痣處增加質量後,蜻蜓的振翅力和翅膀的動態特性。另外利用頻率響應函數合成法推導蜻蜓翅膀基頻對不同位置處質量變化的靈敏度,藉此預測在翅膀不同位置處增減質量所導致的基頻的變化量,並和實驗結果相比對。我們詳細說明測力計的設計原理、量測蜻蜓振翅力的步驟、翅膀動態特性的量測方法,展示翅痣處增減質量前後的實驗結果並討論翅痣的效應。 | zh_TW |
dc.description.abstract | The main object of this thesis is to study the effect of a dragonfly’s pterostigma on its lift force and the dynamical properties of its wings. To measure the lift force, we designed and made a three-dimensional load cell. The deformation of the load cell was measured by laser displacement sensors. To obtain the dynamical properties of a dragonfly’s wing, we used a shaker to excite the wing and a laser displacement sensor to measure the displacement at specified points according to the base excitation method. In this way, a complete set of frequency response functions of the wing were obtained. The natural frequencies and the associated mode shapes were then determined through a curve fitting process. We measured the lift force and wings’ dynamical properties before and after the removal of the pterostigma, and after the adding of some UV glue at the location of the pterostigma, respectively. Moreover, the frequency response function synthesis method was used to calculate the sensitive of the wing’s fundamental frequency to the change of mass at different locations. With the calculated sensitivity, the change of the fundamental frequency due to the removal of petrostigma was estimated and compared with the experimental results. We described in detail the design process of the load cell, experimental procedure to measure the dragonfly’s lift, and method to determine the dynamical properties of the wings; presented experimental results and discussed the effects of a dragonfly’s petrostigma. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:46:13Z (GMT). No. of bitstreams: 1 ntu-103-R01522526-1.pdf: 4969185 bytes, checksum: 65598e8bbffb1d382cfb0f7136fa3558 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv 目錄 vi 圖目錄 viii 表目錄 xi 第一章 導論 1 1.1研究動機 1 1.2文獻回顧 2 第二章 量測方法 6 2.1 三維測力計 6 2.1.1 設計規格 6 2.1.2 三維測力計的製作方式 8 2.1.3 有限元素法分析 9 2.1.4 測力計校正與頻域分析 14 2.2 基底振盪原理 21 2.3 靈敏度分析 23 第三章 實驗方法 29 3.1 蜻蜓振翅力的量測 29 3.1.1 蜻蜓的捕捉與固定方式 29 3.1.2 實驗裝置與流程 34 3.2 蜻蜓翅膀模態的量測 37 3.2.1 翅膀的固定方式 37 3.2.2 實驗裝置與流程 38 第四章 結果討論 40 4.1 翅痣對振翅力的影響分析 40 4.1.1 移除翅痣的影響 47 4.1.2 加重翅痣的影響 52 4.1.3 挖除翅痣前後與增加質量前後的比較 57 4.2 翅痣對翅膀模態的影響分析 61 4.2.1 移除翅痣的影響 66 4.2.2 加重翅痣的影響 71 4.2.3 翅痣處質量變化對翅膀動態特性的影響 74 4.2.4 各量測點自然頻率對質量變化的靈敏度預估 76 第五章 結論 78 參考文獻 80 附錄 86 APPENDIX I 實驗器具規格 86 APPENDIX II 蜻蜓振翅力數據 91 APPENDIX III 翅膀模態數據 92 APPENDIX IV靈敏度預測結果(挖除翅痣後基頻的變化量) 96 APPENDIX V 蜻蜓翅膀特性紀錄 98 | |
dc.language.iso | zh-TW | |
dc.title | 蜻蜓翅痣對振翅力與翅膀動態特性的效應 | zh_TW |
dc.title | The effects of a dragonfly’s pterostigmata on the lift and the modal properties of its wings | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 伍次寅,蘇春? | |
dc.subject.keyword | 蜻蜓,翅痣,振翅力量測,模態分析,靈敏性分析, | zh_TW |
dc.subject.keyword | dragonfly,pterotisgma,lift measurement,modal analysis,sensitivity analysis, | en |
dc.relation.page | 99 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-02-03 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 4.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。