請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55063完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李明穗(Ming-Sui Lee) | |
| dc.contributor.author | Tzu-Chun Chen | en |
| dc.contributor.author | 陳姿君 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:45:57Z | - |
| dc.date.available | 2020-03-13 | |
| dc.date.copyright | 2015-03-13 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-02-03 | |
| dc.identifier.citation | [1] Kaiming He, Jian Sun, and Xiaoou Tang. Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(12):2341–2353, 2011. [2] Jean-Philippe Tarel and Nicolas Hautière. Fast visibility restoration from a single color or gray level image. In Proceedings of IEEE International Conference on Computer Vision, pages 2201–2208, Kyoto, Japan, 2009. [3] Chunxia Xiao and Jiajia Gan. Fast image dehazing using guided joint bilateral filter. The Visual Computer, 28(6-8):713–721, 2012. [4] Chia-Hung Yeh, Li-Wei Kang, Ming-Sui Lee, and Cheng-Yang Lin. Haze effect removal from image via haze density estimation in optical model. Optics express, 21(22):27127–27141, 2013. [5] RaananFattal.Singleimagedehazing.ACMTransactionsonGraphics(Proceedings of SIGGRAPH 2008), 27(3):72:1–72:9, August 2008. [6] RobbyT.Tan.Visibilityinbadweatherfromasingleimage.InProceedingsofIEEE Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2008. [7] Jin-Hwan Kim, Won-Dong Jang, Jae-Young Sim, and Chang-Su Kim. Optimized contrast enhancement for real-time image and video dehazing. Journal of Visual Communication and Image Representation, 2013. [8] Y. H. Shiau, P. Y. Chen, H. Y. Yang, C. H. Chen, and S. S. Wang. Weighted haze removal method with halo prevention. J. Vis. Comun. Image Represent., 25(2):445– 453, February 2014. [9] Yoav Y Schechner, Srinivasa G Narasimhan, and Shree K Nayar. Instant dehazing of images using polarization. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, vol- ume 1, pages I–325. IEEE, 2001. [10] Sarit Shwartz, Einav Namer, and Yoav Y Schechner. Blind haze separation. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 1984–1991. IEEE, 2006. [11] Srinivasa G Narasimhan and Shree K Nayar. Chromatic framework for vision in bad weather. In Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on, volume 1, pages 598–605. IEEE, 2000. [12] Srinivasa G. Narasimhan and Shree K. Nayar. Contrast restoration of weather de- graded images. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25(6):713–724, 2003. [13] Shree K Nayar and Srinivasa G Narasimhan. Vision in bad weather. In Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, volume 2, pages 820–827. IEEE, 1999. [14] JohannesKopf,BorisNeubert,BillyChen,MichaelCohen,DanielCohen-Or,Oliver Deussen, Matt Uyttendaele, and Dani Lischinski. Deep photo: Model-based photo- graph enhancement and viewing. In ACM Transactions on Graphics (TOG), vol- ume 27, page 116. ACM, 2008. [15] Xingyong Lv, Wenbin Chen, and I-fan Shen. Real-time dehazing for image and video. In Proceedings of 18th Pacific Conference on Computer Graphics and Applications, pages 62–69. IEEE, 2010. [16] Soo-Chang Pei and Tzu-Yen Lee. Nighttime haze removal using color transfer pre-processing and dark channel prior. In Proceedings of 19th IEEE International Conference on Image Processing (ICIP), pages 957–960. IEEE, 2012. [17] Dubok Park, David K Han, and Hanseok Ko. Single image haze removal with wls-based edge-preserving smoothing filter. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2469– 2473. IEEE, 2013. [18] Chao-Tsung Chu and Ming-Sui Lee. A content-adaptive method for single image dehazing. In Advances in Multimedia Information Processing-PCM 2010, pages 350–361. Springer, 2011. [19] J-P Tarel, Nicolas Hautiere, Aurélien Cord, Dominique Gruyer, and Houssam Hal- maoui. Improved visibility of road scene images under heterogeneous fog. In Proceedings of Intelligent Vehicles Symposium (IV), pages 478–485. IEEE, 2010. [20] J-P Tarel, Nicolas Hautière, Laurent Caraffa, Aurélien Cord, Houssam Halmaoui, and Dominique Gruyer. Vision enhancement in homogeneous and heterogeneous fog. Intelligent Transportation Systems Magazine, 4(2):6–20, 2012. [21] XuanDong,GuanWang,YiPang,WeixinLi,JiangtaoWen,WeiMeng,andYaoLu. Fast efficient algorithm for enhancement of low lighting video. In Proceedings of IEEE International Conference on Multimedia and Expo (ICME), pages 1–6. IEEE, 2011. [22] A. Cantor. Optics of the atmosphere–scattering by molecules and particles. IEEE Journal of Quantum Electronics, 14(9):698–699, 1978. [23] Anat Levin, Dani Lischinski, and Yair Weiss. A closed-form solution to natural image matting. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(2):228–242, 2008. [24] H. D. Cheng, X. H. Jiang, and Jingli Wang. Color image segmentation based on ho- mogram thresholding and region merging. Pattern Recognition, 35:373–393, 2002. [25] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image filtering. In Proceedings of the 11th European conference on Computer vision, pages 1–14, Berlin, Heidelberg, 2010. [26] Ming-Sui Lee Chiu, Yu-Hsiang and Wei-Kai Liaou. Voting-based depth map re- finement and propagation for 2d to 3d conversion. In Proceedings of Signal and Information Processing Association Annual Summit and Conference. IEEE, 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55063 | - |
| dc.description.abstract | 這篇論文提供了一個全新的除霧的方法與概念,利用我們所提出 的最小值圖做為依據,對於不同的區塊進行不同程度的除霧,進而達 到最佳的除霧效果。最小值圖代表該點在 RGB 色彩空間中,擁有最 小值的色彩通道 (Channel) 為何,我們發現一張圖擁有許多不同顏色的 區域,而這些區域除了會在最小值圖上呈現外,也會顯現出不同的特 性。基於此觀察,對於不同的區域我們會各自計算屬於該區域的大氣 光 (atmospheric light) 值,利用區域合併、大氣光估算以及平滑化濾波 器來計算出最好的整張圖的最佳大氣光值;而對於大氣幕 (atmospheric veil),我們則是先利用最小值圖求出每個點的最小值後,利用均值濾 波器、雙邊濾波器、引導濾波器,我們將可以獲得適當的大氣幕,在 有了大氣光與大氣幕後,我們可以利用影像霧模型成功地將有霧的影 像還原成沒有霧的真實景。對於影片,我們使用了空間時間濾波器對 影片進行優化,使影片可以同時保有時間上與空間上的一致性。實驗 結果顯示出我們提出的方法,可以有效地對影像實現去霧,與他人的 影像結果相比,我們結果更為自然、色彩飽和,對於細節也有良好的 去霧能力;對於影片也可以達到一致性,輸出高品質的影片。 | zh_TW |
| dc.description.abstract | A novel image and video haze removal method based on minmap is pro- posed in this paper. Minmap is defined as the channel which contains the minimal component of three RGB color channels. Because one image may contain many regions which differ in color, minmap contains different regions which show the different properties. Based on this observation, atmospheric light is estimated by region growing, dark channel prior and smooth filter we proposed separately for each minmap region. To compute veil, we estimate the whiteness based on minmap first. Then, median filter, bilateral filter and guided filter are used on whiteness to get appropriate veil. After atmospheric light and veil are computed, the hazy images can be successfully recovered using haze image model. For video version, space-time filter is proposed to ensure the temporal and spatial coherence. Compared with exiting state of the art methods, our method could have better haze removal effects. The image results demonstrate that the results are vivid and have the properly contrast in all of the regions. The video results show that the video is high quality with temporal and spatial coherence. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:45:57Z (GMT). No. of bitstreams: 1 ntu-104-R01922019-1.pdf: 94509084 bytes, checksum: 0536b97c966eece80cc43e099babfa91 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract ii Contents iii List of Figures v 1 Introduction 1 1.1 Introduction of haze removal........................ 1 1.2 Thesis Organization............................. 5 2 Background 6 2.1 Haze image model ............................. 6 2.2 Dark channel prior ............................. 7 2.3 Veil estimation ............................... 8 2.4 Haze density analysis............................ 11 3 Methodology 13 3.1 Modified haze model ............................ 13 3.2 System overview .............................. 14 3.3 Minmap estimation ............................. 15 3.4 Atmospheric light Estimation........................ 16 3.4.1 Region growing........................... 16 3.4.2 Atmospheric light computation................... 17 3.4.3 Smooth............................... 17 3.5 Veil estimation ............................... 19 3.6 Transmission estimation .......................... 19 3.7 Restoration ................................. 20 3.8 Video smoothness.............................. 21 4 Experimental results 23 4.1 Resultant images .............................. 23 4.2 Comparison with classic work ....................... 23 4.3 Comparison with recent work........................ 24 4.4 Video results ................................ 24 4.5 Other application .............................. 25 5 Conclusion 33 Bibliography 34 | |
| dc.language.iso | en | |
| dc.subject | 影片去霧化 | zh_TW |
| dc.subject | 單一影像去霧化 | zh_TW |
| dc.subject | 影像增強 | zh_TW |
| dc.subject | 影像回復 | zh_TW |
| dc.subject | Video Dehazing | en |
| dc.subject | Image Restoration | en |
| dc.subject | Image Enhancement | en |
| dc.subject | Single Image Dehazing | en |
| dc.title | 基於最小值圖實現影像與影片去霧 | zh_TW |
| dc.title | Minmap-based Image and Video Haze Removal | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王傑智(Chieh-Chih Wang),葉家宏(Chia-Hung Yeh) | |
| dc.subject.keyword | 單一影像去霧化,影片去霧化,影像增強,影像回復, | zh_TW |
| dc.subject.keyword | Single Image Dehazing,Video Dehazing,Image Restoration,Image Enhancement, | en |
| dc.relation.page | 37 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-02-03 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 92.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
