請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55061
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王珮玲(Pei-Ling Wang) | |
dc.contributor.author | Tzu-Jung Cheng | en |
dc.contributor.author | 鄭資蓉 | zh_TW |
dc.date.accessioned | 2021-06-16T03:45:52Z | - |
dc.date.available | 2020-08-21 | |
dc.date.copyright | 2020-08-21 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-03 | |
dc.identifier.citation | 陳松春 (2013) 臺灣西南海域上部高屏斜坡泥貫入體及泥火山之分布及相關海床特徵,國立中央大學地球科學學系博士論文,共 132 頁。 陳松春、鐘三雄、王詠絢、魏正岳、陳柏淳 (2016) 台灣海域可燃冰調查。科學發展,524期,6-11頁。 楊燦堯、陳乃禎、莊佩涓、陳宣文、林曉武、孫智賢、鐘三雄、王詠絢 (2011) 臺灣西南海域天然氣水合物賦存區之氣體來源探討,天然氣水合物調查研究成果研討會。 劉品辰 (2015) 利用穩定同位素標定研究台灣西南海域甲烷氧化菌和甲基氧化菌,國立臺灣大學海洋研究所碩士論文,共 126 頁。 Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R., and Stahl, D. A., 1990, Combination of 16s Ribosomal-Rna-Targeted Oligonucleotide Probes with Flow-Cytometry for Analyzing Mixed Microbial-Populations: Applied and Environmental Microbiology, v. 56, no. 6, p. 1919-1925. Apprill, A., McNally, S., Parsons, R., and Weber, L., 2015, Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton: Aquatic Microbial Ecology, v. 75, no. 2, p. 129-137. Boetius, A., and Wenzhofer, F., 2013, Seafloor oxygen consumption fuelled by methane from cold seeps: Nature Geoscience, v. 6, no. 9, p. 725-734. Bohrmann, G., Greinert, J., Suess, E., and Torres, M., 1998, Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability: Geology, v. 26, no. 7, p. 647-650. Borjesson, G., Sundh, I., and Svensson, B., 2004, Microbial oxidation of CH4 at different temperatures in landfill cover soils: Fems Microbiology Ecology, v. 48, no. 3, p. 305-312. Boucher, O., Friedlingstein, P., Collins, B., and Shine, K. P., 2009, The indirect global warming potential and global temperature change potential due to methane oxidation: Environmental Research Letters, v. 4, no. 4. Buttigieg, P. L., and Ramette, A., 2014, A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses: Fems Microbiology Ecology, v. 90, no. 3, p. 543-550. Campbell, L., and Vaulot, D., 1993, Photosynthetic Picoplankton Community Structure in the Subtropical North Pacific-Ocean near Hawaii (Station Aloha): Deep-Sea Research Part I-Oceanographic Research Papers, v. 40, no. 10, p. 2043-2060. Chao, A., 1984, Nonparametric-Estimation of the Number of Classes in a Population: Scandinavian Journal of Statistics, v. 11, no. 4, p. 265-270. Chen, N.-C., Yang, T. F., Hong, W.-L., Chen, H.-W., Chen, H.-C., Hu, C.-Y., Huang, Y.-C., Lin, S., Lin, L.-H., Su, C.-C., Liao, W.-Z., Sun, C.-H., Wang, P.-L., Yang, T., Jiang, S.-Y., Liu, C.-S., Wang, Y., and Chung, S.-H., 2017, Production, consumption, and migration of methane in accretionary prism of southwestern Taiwan: Geochemistry, Geophysics, Geosystems, v. 18, no. 8, p. 2970-2989. Chen, S. C., Hsu, S. K., Wang, Y., Chung, S. H., Chen, P. C., Tsai, C. H., Liu, C. S., Lin, H. S., and Lee, Y. W., 2014, Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan: Journal of Asian Earth Sciences, v. 92, p. 201-214. Chen, T.-T., Paull, C. K., Liu, C.-S., Klaucke, I., Hsu, H.-H., Su, C.-C., Gwiazda, R., and Caress, D. W., 2020, Discovery of numerous pingos and comet-shaped depressions offshore southwestern Taiwan: Geo-Marine Letters, v. 40, no. 4, p. 407-421. Conrad, R., 2009, The global methane cycle: recent advances in understanding the microbial processes involved: Environmental Microbiology Reports, v. 1, no. 5, p. 285-292. Cordes, E. E., Carney, S. L., Hourdez, S., Carney, R. S., Brooks, J. M., and Fisher, C. R., 2007, Cold seeps of the deep Gulf of Mexico: Community structure and biogeographic comparisons to Atlantic equatorial belt seep communities: Deep-Sea Research Part I-Oceanographic Research Papers, v. 54, no. 4, p. 637-653. Crepeau, V., Bonavita, M. A. C., Lesongeur, F., Randrianalivelo, H., Sarradin, P. M., Sarrazin, J., and Godfroy, A., 2011, Diversity and function in microbial mats from the Lucky Strike hydrothermal vent field: Fems Microbiology Ecology, v. 76, no. 3, p. 524-540. Crépeau, V., Cambon Bonavita, M.-A., Lesongeur, F., Randrianalivelo, H., Sarradin, P.-M., Sarrazin, J., and Godfroy, A., 2011, Diversity and function in microbial mats from the Lucky Strike hydrothermal vent field: FEMS Microbiology Ecology, v. 76, no. 3, p. 524-540. Crevecoeur, S., Vincent, W. F., Comte, J., Matveev, A., and Lovejoy, C., 2017, Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds: PLOS ONE, v. 12, no. 11, p. e0188223. Dedysh, S. N., Berestovskaya, Y. Y., Vasylieva, L. V., Belova, S. E., Khmelenina, V. N., Suzina, N. E., Trotsenko, Y. A., Liesack, W., and Zavarzin, G. A., 2004, Methylocella tundrae sp nov., a novel methanotrophic bacterium from acidic tundra peatlands: International Journal of Systematic and Evolutionary Microbiology, v. 54, p. 151-156. Dlugokencky, E. J., Nisbet, E. G., Fisher, R., and Lowry, D., 2011, Global atmospheric methane: budget, changes and dangers: Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, v. 369, no. 1943, p. 2058-2072. Dunfield, P. F., Yuryev, A., Senin, P., Smirnova, A. V., Stott, M. B., Hou, S. B., Ly, B., Saw, J. H., Zhou, Z. M., Ren, Y., Wang, J. M., Mountain, B. W., Crowe, M. A., Weatherby, T. M., Bodelier, P. L. E., Liesack, W., Feng, L., Wang, L., and Alam, M., 2007, Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia: Nature, v. 450, no. 7171, p. 879-U818. Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H. J. C. T., van Alen, T., Luesken, F., Wu, M. L., van de Pas-Schoonen, K. T., Op den Camp, H. J. M., Janssen-Megens, E. M., Francoijs, K.-J., Stunnenberg, H., Weissenbach, J., Jetten, M. S. M., and Strous, M., 2010, Nitrite-driven anaerobic methane oxidation by oxygenic bacteria: Nature, v. 464, no. 7288, p. 543-548. Foucher, J. P., Westbrook, G. K., Boetius, A., Ceramicola, S., Dupre, S., Mascle, J., Mienert, J., Pfannkuche, O., Pierre, C., and Praeg, D., 2009, Structure and Drivers of Cold Seep Ecosystems: Oceanography, v. 22, no. 1, p. 92-109. Fuse, H., Ohta, M., Takimura, O., Murakami, K., Inoue, H., Yamaoka, Y., Oclarit, J. M., and Omori, T., 1998, Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase: Bioscience Biotechnology and Biochemistry, v. 62, no. 10, p. 1925-1931. Good, I. J., 1953, The Population Frequencies of Species and the Estimation of Population Parameters: Biometrika, v. 40, no. 3-4, p. 237-264. Han, Y. C., and Perner, M., 2015, The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines: Frontiers in Microbiology, v. 6 , no. 989. Hansman, R. L., Thurber, A. R., Levin, L. A., and Aluwihare, L. I., 2017, Methane fates in the benthos and water column at cold seep sites along the continental margin of Central and North America: Deep-Sea Research Part I-Oceanographic Research Papers, v. 120, p. 122-131. Hanson, R. S., and Hanson, T. E., 1996, Methanotrophic bacteria: Microbiological Reviews, v. 60, no. 2, p. 439–471. Hayashi T., Obata H., Gamo T., Sano Y. and Naganuma T., 2007, Distribution and Phylogenetic Characteristics of the Genes Encoding Enzymes Relevant to Methane Oxidation in Oxygen Minimum Zones: Research Journal of Environmental Sciences, v. 1, p. 275-284. Heijs, S. K., Damste, J. S. S., and Forney, L. J., 2005, Characterization of a deep-sea microbial mat from an active cold seep at the Milano mud volcano in the Eastern Mediterranean Sea: Fems Microbiology Ecology, v. 54, no. 1, p. 47-56. Hernandez, M. E., Beck, D. A. C., Lidstrom, M. E., and Chistoserdova, L., 2015, Oxygen availability is a major factor in determining the composition of microbial communities involved in methane oxidation: Peerj, v. 3, p. 1-13. Hirayama, H., Abe, M., Miyazaki, M., Nunoura, T., Furushima, Y., Yamamoto, H., and Takai, K., 2014, Methylomarinovum caldicuralii gen. nov., sp nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family Methylothermaceae fam. nov.: International Journal of Systematic and Evolutionary Microbiology, v. 64, p. 989-999. Hirayama, H., Fuse, H., Abe, M., Miyazaki, M., Nakamura, T., Nunoura, T., Furushima, Y., Yamamoto, H., and Takai, K., 2013, Methylomarinum vadi gen. nov., sp nov., a methanotroph isolated from two distinct marine environments: International Journal of Systematic and Evolutionary Microbiology, v. 63, p. 1073-1082. Holmes, A. J., Costello, A., Lidstrom, M. E., and Murrell, J. C., 1995, Evidence That Particulate Methane Monooxygenase and Ammonia Monooxygenase May Be Evolutionarily Related: Fems Microbiology Letters, v. 132, no. 3, p. 203-208. Holmström, C., and Kjelleberg, S., 1999, Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents: FEMS Microbiology Ecology, v. 30, no. 4, p. 285-293. Horz, H. P., Rich, V., Avrahami, S., and Bohannan, B. J. M., 2005, Methane-oxidizing bacteria in a California upland grassland soil: Diversity and response to simulated global change: Applied and Environmental Microbiology, v. 71, no. 5, p. 2642-2652. Hsu, S. K., Wang, S. Y., Liao, Y. C., Yang, T. Y. F., Jan, S., Lin, J. Y., and Chen, S. C., 2013, Tide-modulated gas emissions and tremors off SW Taiwan: Earth and Planetary Science Letters, v. 369, p. 98-107. Inagaki, F., Takai, K., Nealson, K. H., and Horikoshi, K., 2004a, Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated from Okinawa Trough hydrothermal sediments: International Journal of Systematic and Evolutionary Microbiology, v. 54, no. Pt 5, p. 1477-1482. Inagaki, F., Tsunogai, U., Suzuki, M., Kosaka, A., Machiyama, H., Takai, K., Nunoura, T., Nealson, K. H., and Horikoshi, K., 2004b, Characterization of C-1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, southern Ryukyu arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes: Applied and Environmental Microbiology, v. 70, no. 12, p. 7445-7455. James, R. H., Bousquet, P., Bussmann, I., Haeckel, M., Kipfer, R., Leifer, I., Niemann, H., Ostrovsky, I., Piskozub, J., Rehder, G., Treude, T., Vielstadte, L., and Greinert, J., 2016, Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review: Limnology and Oceanography, v. 61, p. S283-S299. Johnson, Z. I., Zinser, E. R., Coe, A., McNulty, N. P., Woodward, E. M. S., and Chisholm, S. W., 2006, Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients: Science, v. 311, no. 5768, p. 1737-1740. Jordan Sebastian, F. A., Treude, T., Leifer, I., Janßen, R., Werner, J., Schulz-Vogt, H., and Schmale, O., 2020, Bubble-mediated transport of benthic microorganisms into the water column: Identification of methanotrophs and implication of seepage intensity on transport efficiency: Scientific Reports (Nature Publisher Group), v. 10, no. 1, p. 4682. Kim, B. R., Shin, J., Guevarra, R. B., Lee, J. H., Kim, D. W., Seol, K. H., Lee, J. H., Kim, H. B., and Isaacson, R. E., 2017, Deciphering Diversity Indices for a Better Understanding of Microbial Communities: Journal of Microbiology and Biotechnology, v. 27, no. 12, p. 2089-2093. Kimura, T., Sugahara, I., Takikami, F., Hanai, C., and Matsumoto, N., 1999, Isolation and characterization of two marine methanotrophs from coastal sediments: Fisheries Science, v. 65, no. 4, p. 558-562. Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel, P. B., Lamarque, J. F., Langenfelds, R. L., Le Quere, C., Naik, V., O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K., Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R. F., Williams, J. E., and Zeng, G., 2013, Three decades of global methane sources and sinks: Nature Geoscience, v. 6, no. 10, p. 813-823. Klaucke, I., Berndt, C., Crutchley, G., Chi, W. C., Lin, S., and Muff, S., 2016, Fluid venting and seepage at accretionary ridges: the Four Way Closure Ridge offshore SW Taiwan: Geo-Marine Letters, v. 36, no. 3, p. 165-174. Knittel, K., and Boetius, A., 2009, Anaerobic Oxidation of Methane: Progress with an Unknown Process: Annual Review of Microbiology, v. 63, no. 1, p. 311-334. Konneke, M., Bernhard, A. E., de la Torre, J. R., Walker, C. B., Waterbury, J. B., and Stahl, D. A., 2005, Isolation of an autotrophic ammonia-oxidizing marine archaeon: Nature, v. 437, no. 7058, p. 543-546. Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., and Schloss, P. D., 2013, Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform: Applied and Environmental Microbiology, v. 79, no. 17, p. 5112-5120. Lane, D. J., 1991, 16S/23S rRNA sequencing: Nucleic acid techniques in bacterial systematics, p. 115-175. Levin, L. A., 2005, Ecology of cold seep sediments: Interactions of fauna with flow, chemistry and microbes: Oceanography and Marine Biology - an Annual Review, Vol. 43, v. 43, p. 1-46. Lin, L. H., Wu, L. W., Cheng, T. W., Tu, W. X., Lin, J. R., Yang, T. F., Chen, P. C., Wang, Y. S., and Wang, P. L., 2014, Distributions and assemblages of microbial communities along a sediment core retrieved from a potential hydrate-bearing region offshore southwestern Taiwan: Journal of Asian Earth Sciences, v. 92, p. 276-292. Liu, C. S., Schnurle, P., Wang, Y. S., Chung, S. H., Chen, S. C., and Hsiuan, T. H., 2006, Distribution and characters of gas hydrate offshore of southwestern Taiwan: Terrestrial Atmospheric and Oceanic Sciences, v. 17, no. 4, p. 615-644. Mayr, M. J., Zimmermann, M., Guggenheim, C., Brand, A., and Burgmann, H., 2020, Niche partitioning of methane-oxidizing bacteria along the oxygen-methane counter gradient of stratified lakes: Isme Journal, v. 14, no. 1, p. 274-287. Milkov, A. V., Sassen, R., Apanasovich, T. V., and Dadashev, F. G., 2003, Global gas flux from mud volcanoes: A significant source of fossil methane in the atmosphere and the ocean: Geophysical Research Letters, v. 30, no. 2, p. 1037. Nagata, T., Fukuda, H., Fukuda, R., and Koike, I., 2000, Bacterioplankton distribution and production in deep Pacific waters: Large-scale geographic variations and possible coupling with sinking particle fluxes: Limnology and Oceanography, v. 45, no. 2, p. 426-435. Niemann, H., Losekann, T., de Beer, D., Elvert, M., Nadalig, T., Knittel, K., Amann, R., Sauter, E. J., Schluter, M., Klages, M., Foucher, J. P., and Boetius, A., 2006, Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink: Nature, v. 443, no. 7113, p. 854-858. Offre, P., Spang, A., and Schleper, C., 2013, Archaea in Biogeochemical Cycles: Annual Review of Microbiology, Vol 67, v. 67, p. 437-457. Op den Camp, H. J. M., Mohammadi, S. S., Pol, A., and Dunfield, P. F., 2018, Verrucomicrobial Methanotrophs, in Kalyuzhnaya, M. G., and Xing, X.-H., eds., Methane Biocatalysis: Paving the Way to Sustainability: Cham, Springer International Publishing, p. 43-55. Orcutt, B. N., Sylvan, J. B., Knab, N. J., and Edwards, K. J., 2011, Microbial Ecology of the Dark Ocean above, at, and below the Seafloor: Microbiology and Molecular Biology Reviews, v. 75, no. 2, p. 361-422. Parada, A. E., Needham, D. M., and Fuhrman, J. A., 2016, Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples: Environmental Microbiology, v. 18, no. 5, p. 1403-1414. Paulson, J. N., Stine, O. C., Bravo, H. C., and Pop, M., 2013, Differential abundance analysis for microbial marker-gene surveys: Nature Methods, v. 10, no. 12, p. 1200–1202. Pérez-Cataluña, A., Salas-Massó, N., Diéguez, A. L., Balboa, S., Lema, A., Romalde, J. L., and Figueras, M. J., 2018, Revisiting the Taxonomy of the Genus Arcobacter: Getting Order From the Chaos: Frontiers in Microbiology, v. 9, no. 2077. Pol, A., Heijmans, K., Harhangi, H. R., Tedesco, D., Jetten, M. S. M., and den Camp, H. J. M. O., 2007, Methanotrophy below pH1 by a new Verrucomicrobia species: Nature, v. 450, no. 7171, p. 874-817. Reeburgh, W. S., 2007, Oceanic methane biogeochemistry: Chemical Reviews, v. 107, no. 2, p. 486-513. Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., Dlugokencky, E. J., Etiope, G., Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F. N., Castaldi, S., Jackson, R. B., Alexe, M., Arora, V. K., Beerling, D. J., Bergamaschi, P., Blake, D. R., Brailsford, G., Brovkin, V., Bruhwiler, L., Crevoisier, C., Crill, P., Covey, K., Curry, C., Frankenberg, C., Gedney, N., Hoglund-Isaksson, L., Ishizawa, M., Ito, A., Joos, F., Kim, H. S., Kleinen, T., Krummel, P., Lamarque, J. F., Langenfelds, R., Locatelli, R., Machida, T., Maksyutov, S., McDonald, K. C., Marshall, J., Melton, J. R., Morino, I., Naik, V., O'Doherty, S., Parmentier, F. J. W., Patra, P. K., Peng, C. H., Peng, S. S., Peters, G. P., Pison, I., Prigent, C., Prinn, R., Ramonet, M., Riley, W. J., Saito, M., Santini, M., Schroeder, R., Simpson, I. J., Spahni, R., Steele, P., Takizawa, A., Thornton, B. F., Tian, H. Q., Tohjima, Y., Viovy, N., Voulgarakis, A., van Weele, M., van der Werf, G. R., Weiss, R., Wiedinmyer, C., Wilton, D. J., Wiltshire, A., Worthy, D., Wunch, D., Xu, X. Y., Yoshida, Y., Zhang, B., Zhang, Z., and Zhu, Q., 2016, The global methane budget 2000-2012: Earth System Science Data, v. 8, no. 2, p. 697-751. Shannon, C. E., 1948, A Mathematical Theory of Communication: Bell System Technical Journal, v. 27, no. 3, p. 379-423. Sieburth, J. N., Johnson, P. W., Eberhardt, M. A., Sieracki, M. E., Lidstrom, M., and Laux, D., 1987, The first methane-oxidizing bacterium from the upper mixing layer of the deep ocean:Methylomonas pelagica sp. nov: Current Microbiology, v. 14, no. 5, p. 285-293. Simpson, E. H., 1949, Measurement of Diversity: Nature, v. 163, no. 4148, p. 688-688. Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., Labadie, K., Salazar, G., Djahanschiri, B., Zeller, G., Mende, D. R., Alberti, A., Cornejo-Castillo, F. M., Costea, P. I., Cruaud, C., d'Ovidio, F., Engelen, S., Ferrera, I., Gasol, J. M., Guidi, L., Hildebrand, F., Kokoszka, F., Lepoivre, C., Lima-Mendez, G., Poulain, J., Poulos, B. T., Royo-Llonch, M., Sarmento, H., Vieira-Silva, S., Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Bowler, C., de Vargas, C., Gorsky, G., Grimsley, N., Hingamp, P., Iudicone, D., Jaillon, O., Not, F., Ogata, H., Pesant, S., Speich, S., Stemmann, L., Sullivan, M. B., Weissenbach, J., Wincker, P., Karsenti, E., Raes, J., Acinas, S. G., Bork, P., and Coordinators, T. O., 2015, Structure and function of the global ocean microbiome: Science, v. 348, no. 6237, p. 1261359. Suzuki, Y., Inagaki, F., Takai, K., Nealson, K. H., and Horikoshi, K., 2004, Microbial Diversity in Inactive Chimney Structures from Deep-Sea Hydrothermal Systems: Microbial Ecology, v. 47, no. 2, p. 186-196. Swan, B. K., Martinez-Garcia, M., Preston, C. M., Sczyrba, A., Woyke, T., Lamy, D., Reinthaler, T., Poulton, N. J., Masland, E. D. P., Gomez, M. L., Sieracki, M. E., DeLong, E. F., Herndl, G. J., and Stepanauskas, R., 2011, Potential for Chemolithoautotrophy Among Ubiquitous Bacteria Lineages in the Dark Ocean: Science, v. 333, no. 6047, p. 1296-1300. Takeuchi, M., Kamagata, Y., Oshima, K., Hanada, S., Tamaki, H., Marumo, K., Maeda, H., Nedachi, M., Hattori, M., Iwasaki, W., and Sakata, S., 2014, Methylocaldum marinum sp. nov., a thermotolerant, methane-oxidizing bacterium isolated from marine sediments, and emended description of the genus Methylocaldum: International Journal of Systematic and Evolutionary Microbiology, v. 64, p. 3240-3246. Tavormina, P. L., Hatzenpichler, R., McGlynn, S., Chadwick, G., Dawson, K. S., Connon, S. A., and Orphan, V. J., 2015, Methyloprofundus sedimenti gen. nov., sp nov., an obligate methanotroph from ocean sediment belonging to the 'deep sea-1' clade of marine methanotrophs: International Journal of Systematic and Evolutionary Microbiology, v. 65, p. 251-259. Tavormina, P. L., Ussler, W., and Orphan, V. J., 2008, Planktonic and sediment-associated aerobic methanotrophs in two seep systems along the North American margin: Applied and Environmental Microbiology, v. 74, no. 13, p. 3985-3995. Tavormina, P. L., Ussler, W., Steele, J. A., Connon, S. A., Klotz, M. G., and Orphan, V. J., 2013, Abundance and distribution of diverse membrane-bound monooxygenase (Cu-MMO) genes within the Costa Rica oxygen minimum zone: Environmental Microbiology Reports, v. 5, no. 3, p. 414-423. Torres, M. E., and Bohrmann, G., 2016, Cold Seeps, in Harff, J., Meschede, M., Petersen, S., and Thiede, J., eds., Encyclopedia of Marine Geosciences: Dordrecht, Springer Netherlands, p. 117-122. Urmann, K., Lazzaro, A., Gandolfi, I., Schroth, M. H., and Zeyer, J., 2009, Response of methanotrophic activity and community structure to temperature changes in a diffusive CH4/O2 counter gradient in an unsaturated porous medium: Fems Microbiology Ecology, v. 69, no. 2, p. 202-212. Vekeman, B., Kerckhof, F. M., Cremers, G., de Vos, P., Vandamme, P., Boon, N., Op den Camp, H. J. M., and Heylen, K., 2016, New Methyloceanibacter diversity from North Sea sediments includes methanotroph containing solely the soluble methane monooxygenase: Environmental Microbiology, v. 18, no. 12, p. 4523-4536. Vorobev, A. V., Baani, M., Doronina, N. V., Brady, A. L., Liesack, W., Dunfield, P. F., and Dedysh, S. N., 2011, Methyloferula stellata gen. nov., sp nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase: International Journal of Systematic and Evolutionary Microbiology, v. 61, p. 2456-2463. Waite, D. W., Vanwonterghem, I., Rinke, C., Parks, D. H., Zhang, Y., Takai, K., Sievert, S. M., Simon, J., Campbell, B. J., Hanson, T. E., Woyke, T., Klotz, M. G., and Hugenholtz, P., 2017, Comparative Genomic Analysis of the Class Epsilonproteobacteria and Proposed Reclassification to Epsilonbacteraeota (phyl. nov.): Frontiers in Microbiology, v. 8, no. 682. Wang, P., Wang, F. P., Xu, M. X., and Xiao, X., 2004, Molecular phylogeny of methylotrophs in a deep-sea sediment from a tropical west Pacific Warm Pool: Fems Microbiology Ecology, v. 47, no. 1, p. 77-84. Wasmund, K., Kurtboke, D. I., Burns, K. A., and Bourne, D. G., 2009, Microbial diversity in sediments associated with a shallow methane seep in the tropical Timor Sea of Australia reveals a novel aerobic methanotroph diversity: Fems Microbiology Ecology, v. 68, no. 2, p. 142-151. Weber, T., Wiseman, N. A., and Kock, A., 2019, Global ocean methane emissions dominated by shallow coastal waters: Nature Communications, v. 10. Wen, X., Yang, S. Z., and Liebner, S., 2016, Evaluation and update of cutoff values for methanotrophic pmoA gene sequences: Archives of Microbiology, v. 198, no. 7, p. 629-636. Wuebbles, D. J., and Hayhoe, K., 2002, Atmospheric methane and global change: Earth-Science Reviews, v. 57, no. 3-4, p. 177-210. Yamamoto, S., Alcauskas, J. B., and Crozier, T. E., 1976, Solubility of Methane in Distilled Water and Seawater: Journal of Chemical and Engineering Data, v. 21, no. 1, p. 78-80. Yan, T. F., Zhou, J. Z., and Zhang, C. L. L., 2006, Diversity of functional genes for methanotrophs in sediments associated with gas hydrates and hydrocarbon seeps in the Gulf of Mexico: Fems Microbiology Ecology, v. 57, no. 2, p. 251-259. Yang, B., Wang, Y., and Qian, P. Y., 2016, Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis: Bmc Bioinformatics, v. 17. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55061 | - |
dc.description.abstract | 甲烷氧化菌是唯一將甲烷作為碳源及能量來源的微生物,在環境中扮演調節甲烷通量的重要角色,過去研究顯示在台灣西南海域之沉積物與海水交界面存在高甲烷通量,值得探討甲烷氧化菌在此系統中的特徵和作用。本研究選擇台灣西南海域四方圈合海脊、MV1 泥火山及 G96 逸氣通道作為研究區域,以水下無人載具 (Remotely Operated Vehicle, ROV) 進行海底觀測及採樣,透過氣體化學分析以了解甲烷濃度變化,並藉由分子生物技術,進行 16S rRNA 基因與 pmoA 功能性基因的定序及族群豐度分析,以了解環境中好氧甲烷氧化菌 (aerobic methanotrophs) 族群結構及基因表現。 透過沉積物孔隙水甲烷濃度變化顯示有深部來源的甲烷,而在沉積物表層與其上方 1 m 的海水甲烷濃度可相差高達 6 個數量級,推測沉積物與海水交界面存在顯著的甲烷消耗機制。根據 16S rRNA 基因序列結果顯示環境中包含 Type I 及 Type II 的好氧甲烷氧化菌,主要以 Type I 的 Methylomonaceae 菌科佔大宗,並且以底層海水樣本有最高的相對豐度,顯示海洋深層環境相對適合好氧甲烷氧化菌生存及表現;透過群集分析可看出在海水及沉積物樣本間族群結構明顯不同,但仍發現存在 16 個共有的好氧甲烷氧化菌 OTUs。即時定量聚合酶鏈鎖反應 (quantitative polymerase chain reaction, qPCR) 的分析結果顯示在 G96 的表層沉積物樣本中有最多的 pmoA 數量,比較各採樣點的表層沉積物可發現 pmoA 數量與甲烷含量有關;然而在海洋水柱樣本中只有在出現高流體噴氣的 MV1 可看到顯著的 pmoA 數量變化,在剖面中甲烷濃度下降區域存在較高的基因表現量,此外在各採樣地區底層海水與表層沉積物孔隙水的甲烷濃度差值,也與底層海水中 pmoA 基因表現量呈現正相關,顯示海洋環境中微生物作用對於甲烷調控的重要性。 | zh_TW |
dc.description.abstract | Methanotrophs have the unique ability to grow on methane as their sole carbon source and energy. The activity of methanotrophs contributes significantly to the global methane budget. High methane concentrations have been observed in both seafloor sediment and water column samples offshore southwestern Taiwan. Still, the characteristics and roles of methanotrophs are not well known in this system. In this study, we used Remotely Operated Vehicle (ROV) to conduct seafloor observation and sampling in Four Way Closure Ridge (FWCR), MV1 mud volcano and G96 gas seep offshore southwestern Taiwan. We first analyzed the gas components to understand the concentraction of methane (in water column, bottom water, and sediment pore water). Furthermore, we used the sequences of 16S rRNA and the functional gene pmoA to study the community structure and the abundance of aerobic methanotrophs in cold seep systems. The difference of methane concentration in sediment pore water and seawater within 1 m from the seabed can be as high as six orders of magnitude, indicating a significant methane consumption mechanism. Molecular analysis revealed that type I methanotrophs, family Methylomonaceae, was predominant in the study area. The relative abundance was higher in the bottom water, inferring a suitable place for the survival and performance of methanotrophs. Community structures were significantly different between sediment and seawater samples, but 16 identical OTUs were shared in both sediment and water column environments. Aerobic methanotrophs were quantified by using quantitative real-time polymerase chain reaction (qPCR) targeting the pmoA genes. The highest copy number of methanotrophs were present in the surface of sediments associated with the cold seep system and the abundances of methanotrophs in the surface sediment were related to the methane concentrations. However, in the water column samples, only MV1 demonstrated significant changes in pmoA copy number along with the depth, showing higher performance of aerobic methanotrophs at the methane depletion depth. Besides, a positive correlation was revealed between the difference in methane concentration of bottom water and sediment porewater and the pmoA gene expression. It shows the importance of microbial activities for methane regulation in the marine environment. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:45:52Z (GMT). No. of bitstreams: 1 U0001-3107202014342700.pdf: 5295085 bytes, checksum: 91429ea5e7fe349d8b11d74d88dc3c78 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 第一章 緒論 1 1.1 全球甲烷循環 1 1.2 甲烷氧化菌 2 1.2.1 好氧甲烷氧化菌 2 1.2.2 厭氧甲烷氧化菌 5 1.3 冷泉系統 6 1.4 研究動機與題材 8 第二章 研究材料與方法 11 2.1 採樣地點及方法 11 2.1.1 LGD-T28 航次 11 2.1.2 OR3-2118 航次 12 2.2 甲烷氣體濃度分析 17 2.2.1沉積物孔隙水氣體濃度分析 17 2.2.2海水中氣體濃度分析 18 2.3 核酸樣本萃取 19 2.4 微生物族群結構分析 20 2.4.1 樣本製備 20 2.4.2 定序分析 21 2.4.3 序列資料處理 21 2.4.4 微生物族群結構分析 22 2.5 微生物定量分析 25 2.5.1 即時定量聚合酶連鎖反應 (quantitative PCR, qPCR) 25 2.5.2 標準品製備 26 2.5.3 微生物總量計算 27 第三章 研究結果 29 3.1. 甲烷氣體分析 29 3.1.1 海水表層甲烷濃度 29 3.1.2 FWCR 四方圈合冷泉區 29 3.1.3 MV1 泥火山 30 3.1.4 G96 逸氣通道 30 3.1.5 SW 和 DW 背景站位 30 3.2. 微生物族群結構及多樣性 34 3.2.1 細菌族群組成 34 3.2.2 甲烷氧化菌族群組成 35 3.2.3 族群多樣性 37 3.3. 微生物族群豐度 44 3.3.1 海水樣本 44 3.3.2 表層沉積物樣本 45 第四章 討論 48 4.1 台灣西南海域甲烷濃度 48 4.2 微生物菌群組成與豐度 50 4.2.1 微生物組成特徵 50 4.2.2 好氧甲烷氧化菌 53 4.3 環境因素對好氧甲烷氧化菌影響 56 4.3.1 組群結構與相對豐度 56 4.3.2 絕對豐度 61 第五章 結論 66 參考文獻 67 附錄 78 | |
dc.language.iso | zh-TW | |
dc.title | 台灣西南海域冷泉系統之好氧甲烷氧化菌族群組成及表現 | zh_TW |
dc.title | Community compositions and potential activities of aerobic methanotrophs in cold seep systems offshore southwestern Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林立虹(Li-Hung Lin),塗子萱(Tzu-Hsuan Tu),蘇志杰(Chih-Chieh Su) | |
dc.subject.keyword | 甲烷氧化菌,甲烷,冷泉系統,16S rRNA,pmoA, | zh_TW |
dc.subject.keyword | methanotrophs,methane,cold seep systems,16S rRNA,pmoA, | en |
dc.relation.page | 81 | |
dc.identifier.doi | 10.6342/NTU202002159 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-04 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-3107202014342700.pdf 目前未授權公開取用 | 5.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。