Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55037
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐振哲(Cheng-Che Hsu)
dc.contributor.authorYao-Jhen Yangen
dc.contributor.author楊曜禎zh_TW
dc.date.accessioned2021-06-16T03:45:05Z-
dc.date.available2018-03-13
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-02-05
dc.identifier.citation1. J. J. Shi and M. G. Kong, 'Evolution of Discharge Structure in Capacitive Radio-Frequency Atmospheric Microplasmas,' Phys. Rev. Lett., 96 (10), 105009 (2006).
2. F. Iza, J. K. Lee and M. G. Kong, 'Electron Kinetics in Radio-Frequency Atmospheric-Pressure Microplasmas,' Phys. Rev. Lett., 99 (7), 075004 (2007).
3. D. Luo and Y. Duan, 'Microplasmas for analytical applications of lab-on-a-chip,' TrAC Trends in Analytical Chemistry, 39 (0), 254-266 (2012).
4. C. Meyer, S. Muller, E. L. Gurevich and J. Franzke, 'Dielectric barrier discharges in analytical chemistry,' Analyst, 136 (12), 2427-2440 (2011).
5. V. Karanassios, 'Microplasmas for chemical analysis: analytical tools or research toys?,' Spectroc. Acta Pt. B-Atom. Spectr., 59 (7), 909-928 (2004).
6. M. Davide and R. M. Sankaran, 'Microplasmas for nanomaterials synthesis,' Journal of Physics D: Applied Physics, 43 (32), 323001 (2010).
7. C. Richmonds and R. M. Sankaran, 'Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations,' Appl. Phys. Lett., 93 (13), 131501-131501-131503 (2008).
8. C.-C. Weng, J.-C. Hsueh, J.-D. Liao, C.-H. Chen and M. Yoshimura, 'Rapid Micro-Scale Patterning of Alkanethiolate Self-Assembled Monolayers on Au Surface by Atmospheric Micro-Plasma Stamp,' Plasma Process. Polym., 10 (4), 345-352 (2013).
9. J. Chai, B. Li and D. Y. Kwok, 'Selective surface modification and patterning by a micro-plasma discharge,' Appl. Phys. Lett., 86 (3), 034107-034103 (2005).
10. S. J. Park, K. F. Chen, N. P. Ostrom and J. G. Eden, '40,000 pixel arrays of ac-excited silicon microcavity plasma devices,' Appl. Phys. Lett., 86 (11)(2005).
11. S. A. Al-Bataineh, E. J. Szili, P. J. Gruner, C. Priest, H. J. Griesser, N. H. Voelcker, R. D. Short and D. A. Steele, 'Fabrication and Operation of a Microcavity Plasma Array Device for Microscale Surface Modification,' Plasma Process. Polym., 9 (7), 638-646 (2012).
12. N. S. J. Braithwaite, 'Introduction to gas discharges,' Plasma Sources Sci. Technol., 9 (4), 517-527 (2000).
13. J. R. Roth, 'Industrial plasma engineering ', Bristol Philadelphia : Institute of Physics Pub., Bristol Philadelphia, (1995), pp.
14. Y. P. Raizer, 'Gas Discharge Physics ', Springer-Verlag, Berlin, (1997), pp.
15. F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang and M. G. Kong, 'Microplasmas: Sources, Particle Kinetics, and Biomedical Applications,' Plasma Process. Polym., 5 (4), 322-344 (2008).
16. K. Tachibana, 'Current status of microplasma research,' IEEJ Trans. Electr. Electron. Eng., 1 (2), 145-155 (2006).
17. K. H. Becker, K. H. Schoenbach and J. G. Eden, 'Microplasmas and applications,' J. Phys. D-Appl. Phys., 39 (3), R55-R70 (2006).
18. J. G. Eden and S. J. Park, 'Microcavity plasma devices and arrays: a new realm of plasma physics and photonic applications,' Plasma Phys. Control. Fusion, 47, B83-B92 (2005).
19. D. Mariotti, 'Nonequilibrium and effect of gas mixtures in an atmospheric microplasma,' Appl. Phys. Lett., 92 (15), - (2008).
20. S. Seiji, H. Masaru, R. Shahid, T. Kunihide, B. Peter, K. Gerrit, J. C. Whitehead, B. M. Anthony, F. G. Alexander, S. Svetlana, K. Uwe, B. Jean-Pierre, J. S. Timothy, J. K. Mark, C. Uwe and M. Nigel, 'The 2012 Plasma Roadmap,' Journal of Physics D: Applied Physics, 45 (25), 253001 (2012).
21. A. J. Wagner, D. Mariotti, K. J. Yurchenko and T. K. Das, 'Experimental study of a planar atmospheric-pressure plasma operating in the microplasma regime,' Phys. Rev. E, 80 (6), 065401 (2009).
22. D. Staack, B. Farouk, A. Gutsol and A. Fridman, 'Characterization of a dc atmospheric pressure normal glow discharge,' Plasma Sources Sci. Technol., 14 (4), 700-711 (2005).
23. M. Laroussi and T. Akan, 'Arc-free atmospheric pressure cold plasma jets: A review,' Plasma Process. Polym., 4 (9), 777-788 (2007).
24. Y. C. Hong, 'Microplasma jet at atmospheric pressure,' Appl. Phys. Lett., 89 (22), 221504 (2006).
25. J. H. Ma, D. C. Shih, S. J. Park and J. G. Eden, 'Microplasma Jets Generated by Arrays of Microchannels Fabricated in Flexible Molded Plastic,' IEEE Trans. Plasma Sci., 39 (11), 2700-2701 (2011).
26. A. Shashurin, M. N. Shneider, A. Dogariu, R. B. Miles and M. Keidar, 'Temporal behavior of cold atmospheric plasma jet,' Appl. Phys. Lett., 94 (23)(2009).
27. J. West, A. Michels, S. Kittel, P. Jacob and J. Franzke, 'Microplasma writing for surface-directed millifluidics,' Lab Chip, 7 (8), 981-983 (2007).
28. A. Vogelsang, A. Ohl, R. Foest and K. D. Weltmann, 'Fluorocarbon Plasma Polymer Deposition by an Atmospheric Pressure Microplasma Jet Using Different Precursor Molecules A Comparative Study,' Plasma Process. Polym., 10 (4), 364-371 (2013).
29. H. S. Uhm and Y. C. Hong, 'Various microplasma jets and their sterilization of microbes,' Thin Solid Films, 519 (20), 6974-6980 (2011).
30. Z. Cao, J. L. Walsh and M. G. Kong, 'Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment,' Appl. Phys. Lett., 94 (2), - (2009).
31. E. J. Szili, S. A. Al-Bataineh, P. Ruschitzka, G. Desmet, C. Priest, H. J. Griesser, N. H. Voelcker, F. J. Harding, D. A. Steele and R. D. Short, 'Microplasma arrays: a new approach for maskless and localized patterning of materials surfaces,' RSC Advances, 2 (31), 12007-12010 (2012).
32. J. Watanabe, A. Ogino and M. Nagatsu, 'Characteristics of direct current microhollow cathode discharges combined with dielectric barrier discharges as preionizer,' Appl. Phys. Lett., 91 (22), 221507-221503 (2007).
33. C. Meyer, R. Heming, E. L. Gurevich, U. Marggraf, M. Okruss, S. Florek and J. Franzke, 'Radiofrequency driven and low cost fabricated microhollow cathode discharge for gaseous atomic emission spectrometry,' J. Anal. At. Spectrom., 26 (3), 505-510 (2011).
34. X. Aubert, G. Bauville, J. Guillon, B. Lacour, V. Puech and A. Rousseau, 'Analysis of the self-pulsing operating mode of a microdischarge,' Plasma Sources Sci. Technol., 16 (1), 23-32 (2007).
35. S. A. Wright and Y. B. Gianchandani, 'Controlling pressure in microsystem packages by on-chip microdischarges between thin-film titanium electrodes,' J. Vac. Sci. Technol. B, 25 (5), 1711-1720 (2007).
36. H.-w. Chang and C.-c. Hsu, 'Diagnostic studies of ac-driven plasmas in saline solutions: the effect of frequency on the plasma behavior,' Plasma Sources Science and Technology, 20 (4), 045001 (2011).
37. H.-w. Chang and C.-c. Hsu, 'Plasmas in Saline Solution Sustained Using Bipolar Pulsed Power Source: Tailoring the Discharge Behavior Using the Negative Pulses,' Plasma Chem. Plasma Process., 33 (3), 581-591 (2013).
38. J. Gao, X. Wang, Z. Hu, H. Deng, J. Hou, X. Lu and J. Kang, 'Plasma degradation of dyes in water with contact glow discharge electrolysis,' Water Research, 37 (2), 267-272 (2003).
39. B. L. Sands, B. N. Ganguly and K. Tachibana, 'A streamer-like atmospheric pressure plasma jet,' Appl. Phys. Lett., 92 (15)(2008).
40. H. Qiu, K. Martus, W. Y. Lee and K. Becker, 'Hydrogen generation in a microhollow cathode discharge in high-pressure ammonia-argon gas mixtures,' Int. J. Mass Spectrom., 233 (1-3), 19-24 (2004).
41. H. W. Chang and C. C. Hsu, 'Plasmas in saline solutions sustained using rectified ac voltages: polarity and frequency effects on the discharge behaviour,' J. Phys. D-Appl. Phys., 45 (25), 7 (2012).
42. J. G. Eden, S. J. Park, C. M. Herring and J. M. Bulson, 'Microplasma light tiles: thin sheet lamps for general illumination,' J. Phys. D-Appl. Phys., 44 (22)(2011).
43. E. Sardella, R. Gristina, G. S. Senesi, R. d'Agostino and P. Favia, 'Homogeneous and Micro-Patterned Plasma-Deposited PEO-Like Coatings for Biomedical Surfaces,' Plasma Process. Polym., 1 (1), 63-72 (2004).
44. J. Y. Kim, S. O. Kim, Y. Z. Wei and J. H. Li, 'A flexible cold microplasma jet using biocompatible dielectric tubes for cancer therapy,' Appl. Phys. Lett., 96 (20), 203701 (2010).
45. S. J. Kim, T. H. Chung, S. H. Bae and S. H. Leem, 'Bacterial inactivation using atmospheric pressure single pin electrode microplasma jet with a ground ring,' Appl. Phys. Lett., 94 (14), 141502-141503 (2009).
46. X. Pei, X. Lu, J. Liu, D. Liu, Y. Yang, K. Ostrikov, K. C. Paul and Y. Pan, 'Inactivation of a 25.5 μm Enterococcus faecalis biofilm by a room-temperature, battery-operated, handheld air plasma jet,' Journal of Physics D: Applied Physics, 45 (16), 165205 (2012).
47. C. H. Kim, S. Kwon, J. H. Bahn, K. Lee, S. I. Jun, P. D. Rack and S. J. Baek, 'Effects of atmospheric nonthermal plasma on invasion of colorectal cancer cells,' Appl. Phys. Lett., 96 (24)(2010).
48. J. P. Matthew, C. Hung-Wen, S. Yukinori, S. C. Douglas and B. G. David, 'Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water,' Journal of Physics D: Applied Physics, 46 (14), 145202 (2013).
49. G. Lloyd, G. Friedman, S. Jafri, G. Schultz, A. Fridman and K. Harding, 'Gas Plasma: Medical Uses and Developments in Wound Care,' Plasma Process. Polym., 7 (3-4), 194-211 (2010).
50. J. C. T. Eijkel, H. Stoeri and A. Manz, 'A dc microplasma on a chip employed as an optical emission detector for gas chromatography,' Anal. Chem., 72 (11), 2547-2552 (2000).
51. M. Miclea, K. Kunze, J. Franzke and K. Niemax, 'Plasmas for lab-on-the-chip applications,' Spectrochimica Acta Part B: Atomic Spectroscopy, 57 (10), 1585-1592 (2002).
52. M. Davide and R. M. Sankaran, 'Perspectives on atmospheric-pressure plasmas for nanofabrication,' Journal of Physics D: Applied Physics, 44 (17), 174023 (2011).
53. P. A. Lin and R. M. Sankaran, 'Plasma-Assisted Dissociation of Organometallic Vapors for Continuous, Gas-Phase Preparation of Multimetallic Nanoparticles,' Angewandte Chemie International Edition, 50 (46), 10953-10956 (2011).
54. M. A. Lieberman and A. J. Lichtenberg, 'Principles of Plasma Discharges and Materials Processing ', 2 ed, WILEY-INTERSCIENCE, (2005), pp.
55. J. R. Roth, R. Jozef, D. Xin and M. S. Daniel, 'The physics and phenomenology of One Atmosphere Uniform Glow Discharge Plasma (OAUGDP™) reactors for surface treatment applications,' Journal of Physics D: Applied Physics, 38 (4), 555 (2005).
56. S. A. Wright and Y. B. Gianchandani, 'Discharge-Based Pressure Sensors for High-Temperature Applications Using Three-Dimensional and Planar Microstructures,' J. Microelectromech. Syst., 18 (3), 736-743 (2009).
57. D. D. Hsu and D. B. Graves, 'Microhollow cathode discharge stability with flow and reaction,' J. Phys. D-Appl. Phys., 36 (23), 2898-2907 (2003).
58. P. Chabert, C. Lazzaroni and A. Rousseau, 'A model for the self-pulsing regime of microhollow cathode discharges,' J. Appl. Phys., 108 (11)(2010).
59. H. E. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel and J. F. Behnke, 'The barrier discharge: basic properties and applications to surface treatment,' Vacuum, 71 (3), 417-436 (2003).
60. U. Kogelschatz, 'Dielectric-barrier discharges: Their history, discharge physics, and industrial applications,' Plasma Chem. Plasma Process., 23 (1), 1-46 (2003).
61. U. Kogelschatz, 'Filamentary, patterned, and diffuse barrier discharges,' IEEE Trans. Plasma Sci., 30 (4), 1400-1408 (2002).
62. F. Massines, N. Gherardi, N. Naude and P. Segur, 'Glow and Townsend dielectric barrier discharge in various atmosphere,' Plasma Phys. Control. Fusion, 47, B577-B588 (2005).
63. A. Chirokov, A. Gutsol and A. Fridman, 'Atmospheric pressure plasma of dielectric barrier discharges,' Pure and Applied Chemistry, 77 (2), 487-495 (2005).
64. J. G. Eden, S. J. Park, N. P. Ostrom and K. F. Chen, 'Recent advances in microcavity plasma devices and arrays: a versatile photonic platform,' Journal of Physics D: Applied Physics, 38 (11), 1644 (2005).
65. S. J. Park, C. J. Wagner, C. M. Herring and J. G. Eden, 'Flexible microdischarge arrays: Metal/polymer devices,' Appl. Phys. Lett., 77 (2), 199-201 (2000).
66. S. Osamu, K. Yutaka and T. Kunihide, 'Integrated coaxial-hollow micro dielectric-barrier-discharges for a large-area plasma source operating at around atmospheric pressure,' Journal of Physics D: Applied Physics, 38 (3), 431 (2005).
67. J. D. Readle, K. E. Tobin, K. S. Kim, J. K. Yoon, J. Zheng, S. K. Lee, S. J. Park and J. G. Eden, 'Flexible, Lightweight Arrays of Microcavity Plasma Devices: Control of Cavity Geometry in Thin Substrates,' IEEE Trans. Plasma Sci., 37 (6), 1045-1054 (2009).
68. M. Lu, S. J. Park, B. T. Cunningham and J. G. Eden, 'Microcavity plasma devices and arrays fabricated by plastic-based replica molding,' J. Microelectromech. Syst., 16 (6), 1397-1402 (2007).
69. A. W. Martinez, S. T. Phillips, G. M. Whitesides and E. Carrilho, 'Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices,' Anal. Chem., 82 (1), 3-10 (2010).
70. A. W. Martinez, S. T. Phillips, M. J. Butte and G. M. Whitesides, 'Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays,' Angewandte Chemie International Edition, 46 (8), 1318-1320 (2007).
71. E. Carrilho, S. T. Phillips, S. J. Vella, A. W. Martinez and G. M. Whitesides, 'Paper Microzone Plates,' Anal. Chem., 81 (15), 5990-5998 (2009).
72. A. W. Martinez, S. T. Phillips and G. M. Whitesides, 'Three-dimensional microfluidic devices fabricated in layered paper and tape,' Proceedings of the National Academy of Sciences, 105 (50), 19606-19611 (2008).
73. A. D. Mazzeo, W. B. Kalb, L. Chan, M. G. Killian, J.-F. Bloch, B. A. Mazzeo and G. M. Whitesides, 'Paper-Based, Capacitive Touch Pads,' Adv. Mater., 24 (21), 2850-2856 (2012).
74. J. Lessing, A. C. Glavan, S. B. Walker, C. Keplinger, J. A. Lewis and G. M. Whitesides, 'Inkjet Printing of Conductive Inks with High Lateral Resolution on Omniphobic “RF Paper” for Paper-Based Electronics and MEMS,' Adv. Mater., 26 (27), 4677-4682 (2014).
75. M. M. Thuo, R. V. Martinez, W.-J. Lan, X. Liu, J. Barber, M. B. J. Atkinson, D. Bandarage, J.-F. Bloch and G. M. Whitesides, 'Fabrication of Low-Cost Paper-Based Microfluidic Devices by Embossing or Cut-and-Stack Methods,' Chem. Mat., 26 (14), 4230-4237 (2014).
76. W. Dungchai, O. Chailapakul and C. S. Henry, 'Electrochemical Detection for Paper-Based Microfluidics,' Anal. Chem., 81 (14), 5821-5826 (2009).
77. A. Manekkathodi, M. Y. Lu, C. W. Wang and L. J. Chen, 'Direct Growth of Aligned Zinc Oxide Nanorods on Paper Substrates for Low-Cost Flexible Electronics,' Adv. Mater., 22 (36), 4059-4063 (2010).
78. A. C. Siegel, S. T. Phillips, M. D. Dickey, N. S. Lu, Z. G. Suo and G. M. Whitesides, 'Foldable Printed Circuit Boards on Paper Substrates,' Adv. Funct. Mater., 20 (1), 28-35 (2010).
79. P. Jonkheijm, D. Weinrich, M. Kohn, H. Engelkamp, P. C. M. Christianen, J. Kuhlmann, J. C. Maan, D. Nusse, H. Schroeder, R. Wacker, R. Breinbauer, C. M. Niemeyer and H. Waldmann, 'Photochemical Surface Patterning by the Thiol-Ene Reaction,' Angewandte Chemie, 120 (23), 4493-4496 (2008).
80. J. Hyun, Y. Zhu, A. Liebmann-Vinson, T. P. Beebe and A. Chilkoti, 'Microstamping on an Activated Polymer Surface: Patterning Biotin and Streptavidin onto Common Polymeric Biomaterials,' Langmuir, 17 (20), 6358-6367 (2001).
81. M.-Y. Tsai, C.-Y. Lin, C.-H. Huang, J.-A. Gu, S.-T. Huang, J. Yu and H.-Y. Chen, 'Vapor-based synthesis of maleimide-functionalized coating for biointerface engineering,' Chem. Commun., 48 (89), 10969-10971 (2012).
82. C. D. Muller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker and K. Meerholz, 'Multi-colour organic light-emitting displays by solution processing,' Nature, 421 (6925), 829-833 (2003).
83. Z. H. Nie and E. Kumacheva, 'Patterning surfaces with functional polymers,' Nat. Mater., 7 (4), 277-290 (2008).
84. S. Y. Chou, P. R. Krauss and P. J. Renstrom, 'Nanoimprint lithography,' Journal of Vacuum Science & Technology B, 14 (6), 4129-4133 (1996).
85. R. D. Piner, J. Zhu, F. Xu, S. Hong and C. A. Mirkin, ''Dip-Pen' Nanolithography,' Science, 283 (5402), 661-663 (1999).
86. Y.-C. Liao and Z.-K. Kao, 'Direct Writing Patterns for Electroless Plated Copper Thin Film on Plastic Substrates,' ACS Appl. Mater. Interfaces, 4 (10), 5109-5113 (2012).
87. J. G. Dellinger, J. Cesarano and R. D. Jamison, 'Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering,' Journal of Biomedical Materials Research Part A, 82A (2), 383-394 (2007).
88. M. Thomas, J. Borris, A. Dohse, M. Eichler, A. Hinze, K. Lachmann, K. Nagel and C.-P. Klages, 'Plasma Printing and Related Techniques – Patterning of Surfaces Using Microplasmas at Atmospheric Pressure,' Plasma Process. Polym., 9 (11-12), 1086-1103 (2012).
89. R. M. Sankaran and K. P. Giapis, 'Maskless etching of silicon using patterned microdischarges,' Appl. Phys. Lett., 79 (5), 593-595 (2001).
90. S. A. Al-Bataineh and R. D. Short, 'Protein Patterning on Microplasma-Activated PEO-Like Coatings,' Plasma Process. Polym., 11 (3), 263-268 (2014).
91. S. Ghosh, R. Yang, M. Kaumeyer, C. A. Zorman, S. J. Rowan, P. X. L. Feng and R. M. Sankaran, 'Fabrication of Electrically Conductive Metal Patterns at the Surface of Polymer Films by Microplasma-Based Direct Writing,' ACS Appl. Mater. Interfaces, 6 (5), 3099-3104 (2014).
92. T. Huiskamp, W. J. M. Brok, A. A. E. Stevens, E. J. M. van Heesch and A. J. M. Pemen, 'Maskless Patterning by Pulsed-Power Plasma Printing,' IEEE Trans. Plasma Sci., 40 (7), 1913-1925 (2012).
93. P. Lam, K. J. Wynne and G. E. Wnek, 'Surface-Tension-Confined Microfluidics,' Langmuir, 18 (3), 948-951 (2002).
94. I. You, S. M. Kang, S. Lee, Y. O. Cho, J. B. Kim, S. B. Lee, Y. S. Nam and H. Lee, 'Polydopamine Microfluidic System toward a Two-Dimensional, Gravity-Driven Mixing Device,' Angewandte Chemie International Edition, 51 (25), 6126-6130 (2012).
95. D. Zahner, J. Abagat, F. Svec, J. M. J. Frechet and P. A. Levkin, 'A Facile Approach to Superhydrophilic-Superhydrophobic Patterns in Porous Polymer Films,' Adv. Mater., 23 (27), 3030-+ (2011).
96. M. J. Swickrath, S. Shenoy, J. A. Mann, J. Belcher, R. Kovar and G. E. Wnek, 'The design and fabrication of autonomous polymer-based surface tension-confined microfluidic platforms,' Microfluid Nanofluid, 4 (6), 601-611 (2008).
97. M. Watanabe, 'Refreshable microfluidic channels constructed using an inkjet printer,' Sens. Actuator B-Chem., 122 (1), 141-147 (2007).
98. M. Watanabe, 'Microchannels constructed on rough hydrophobic surfaces,' Chem. Eng. Technol., 31 (8), 1196-1200 (2008).
99. M. Watanabe, 'Microfluidic devices easily created using an office inkjet printer,' Microfluid Nanofluid, 8 (3), 403-408 (2010).
100. T. M. Schutzius, M. Elsharkawy, M. K. Tiwari and C. M. Megaridis, 'Surface tension confined (STC) tracks for capillary-driven transport of low surface tension liquids,' Lab Chip, 12 (24), 5237-5242 (2012).
101. A. Nag, B. R. Panda and A. Chattopadhyay, 'Performing chemical reactions in virtual capillary of surface tension-confined microfluidic devices,' Pramana-J. Phys., 65 (4), 621-630 (2005).
102. B. Zhao, J. S. Moore and D. J. Beebe, 'Surface-Directed Liquid Flow Inside Microchannels,' Science, 291 (5506), 1023-1026 (2001).
103. B. Zhao, N. O. L. Viernes, J. S. Moore and D. J. Beebe, 'Control and Applications of Immiscible Liquids in Microchannels,' J. Am. Chem. Soc., 124 (19), 5284-5285 (2002).
104. I. You, N. Yun and H. Lee, 'Surface-Tension-Confined Microfluidics and Their Applications,' ChemPhysChem, 14 (3), 471-481 (2013).
105. S. Bouaidat, O. Hansen, H. Bruus, C. Berendsen, N. K. Bau-Madsen, P. Thomsen, A. Wolff and J. Jonsmann, 'Surface-directed capillary system; theory, experiments and applications,' Lab Chip, 5 (8), 827-836 (2005).
106. W. Shen, M. Li, C. Ye, L. Jiang and Y. Song, 'Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection,' Lab Chip, 12 (17), 3089-3095 (2012).
107. F. Zoran and J. C. John, 'Microdischarge behaviour in the silent discharge of nitrogen - oxygen and water - air mixtures,' Journal of Physics D: Applied Physics, 30 (5), 817 (1997).
108. S. Okazaki, M. Kogoma, M. Uehara and Y. Kimura, 'Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric-pressure using a 50-Hz source,' J. Phys. D-Appl. Phys., 26 (5), 889-892 (1993).
109. P.-K. Kao and C.-C. Hsu, 'One-step rapid fabrication of paper-based microfluidic devices using fluorocarbon plasma polymerization,' Microfluid Nanofluid, 16 (5), 811-818 (2014).
110. Y. H. Lee and G. Y. Yeom, 'Properties and applications of a modified dielectric barrier discharge generated at atmospheric pressure,' Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap., 44 (2), 1076-1080 (2005).
111. P. J. Bruggeman, N. Sadeghi, D. C. Schram and V. Linss, 'Gas temperature determination from rotational lines in non-equilibrium plasmas: a review,' Plasma Sources Science and Technology, 23 (2), 023001 (2014).
112. U. Fantz, 'Basics of plasma spectroscopy,' Plasma Sources Science and Technology, 15 (4), S137 (2006).
113. L. Yu, C. O. Laux, D. M. Packan and C. H. Kruger, 'Direct-current glow discharges in atmospheric pressure air plasmas,' J. Appl. Phys., 91 (5), 2678-2686 (2002).
114. C. O. Laux, T. G. Spence, C. H. Kruger and R. N. Zare, 'Optical diagnostics of atmospheric pressure air plasmas,' Plasma Sources Sci. Technol., 12 (2), 125-138 (2003).
115. D. A. Skoog, F. J. Holler and S. R. Crouch, 'Principles of instrumental analysis ', Thomson Brooks/Cole, Belmont, CA, (2007), pp.
116. A. Ionascut-Nedelcescu, C. Carlone, U. Kogelschatz, D. V. Gravelle and M. I. Boulos, 'Calculation of the gas temperature in a throughflow atmospheric pressure dielectric barrier discharge torch by spectral line shape analysis,' J. Appl. Phys., 103 (6)(2008).
117. H. R. Griem, 'Plasma spectroscopy ', McGraw-Hill, New York, (1964), pp. 455
118. H. R. Griem, 'Spectral line broadening by plasmas ', New York ; London : Academic Press, (1974), pp. 316
119. N. Balcon, A. Aanesland and R. Boswell, 'Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon,' Plasma Sources Science and Technology, 16 (2), 217 (2007).
120. M. Qian, C. Ren, D. Wang, J. Zhang and G. Wei, 'Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes,' J. Appl. Phys., 107 (6), - (2010).
121. A. W. Ali and H. R. Griem, 'Theory of Resonance Broadening of Spectral Lines by Atom-Atom Impacts,' Phys. Rev., 140 (4A), A1044-A1049 (1965).
122. W. Qiang, K. Ivanka, M. D. Vincent and J. E. Demetre, 'Spatially resolved diagnostics of an atmospheric pressure direct current helium microplasma,' Journal of Physics D: Applied Physics, 38 (11), 1690 (2005).
123. R. Konjević and N. Konjević, 'On the use of non-hydrogenic spectral line profiles for electron density diagnostics of inductively coupled plasmas,' Spectrochimica Acta Part B: Atomic Spectroscopy, 52 (14), 2077-2084 (1997).
124. L. C. Feldman and J. W. Mayer, 'Fundamentals of surface and thin film analysis ', North-Holland, New York, (1986), pp.
125. D. Staack, B. Farouk, A. Gutsol and A. Fridman, 'DC normal glow discharges in atmospheric pressure atomic and molecular gases,' Plasma Sources Sci. Technol., 17 (2)(2008).
126. P. Carazzetti and H. R. Shea, 'Electrical breakdown at low pressure for planar microelectromechanical systems with 10-to500-μm gaps,' Journal of Micro/Nanolithography, MEMS, and MOEMS, 8 (3), 031305-031305-031309 (2009).
127. S. I. Jeon, J. H. Lee, J. D. Andrade and P. G. De Gennes, 'Protein—surface interactions in the presence of polyethylene oxide: I. Simplified theory,' Journal of Colloid and Interface Science, 142 (1), 149-158 (1991).
128. D. G. Castner and B. D. Ratner, 'Biomedical surface science: Foundations to frontiers,' Surf. Sci., 500 (1–3), 28-60 (2002).
129. E. Delamarche, M. Geissler, A. Bernard, H. Wolf, B. Michel, J. Hilborn and C. Donzel, 'Hydrophilic poly (dimethylsloxane) stamps for microcontact printing,' Adv. Mater., 13 (15), 1164-+ (2001).
130. P. Kim, S. E. Lee, H. S. Jung, H. Y. Lee, T. Kawai and K. Y. Suh, 'Soft lithographic patterning of supported lipid bilayers onto a surface and inside microfluidic channels,' Lab Chip, 6 (1), 54-59 (2006).
131. R. K. Bose, S. Nejati, D. R. Stufflet and K. K. S. Lau, 'Graft Polymerization of Anti-Fouling PEO Surfaces by Liquid-Free Initiated Chemical Vapor Deposition,' Macromolecules, 45 (17), 6915-6922 (2012).
132. F. Bretagnol, L. Ceriotti, M. Lejeune, A. Papadopoulou-Bouraoui, M. Hasiwa, D. Gilliland, G. Ceccone, P. Colpo and F. Rossi, 'Functional Micropatterned Surfaces by Combination of Plasma Polymerization and Lift-Off Processes,' Plasma Process. Polym., 3 (1), 30-38 (2006).
133. A. Michelmore, P. Gross-Kosche, S. A. Al-Bataineh, J. D. Whittle and R. D. Short, 'On the Effect of Monomer Chemistry on Growth Mechanisms of Nonfouling PEG-like Plasma Polymers,' Langmuir, 29 (8), 2595-2601 (2013).
134. B. Nisol, C. Poleunis, P. Bertrand and F. Reniers, 'Poly(ethylene glycol) Films Deposited by Atmospheric Pressure Plasma Liquid Deposition and Atmospheric Pressure Plasma-Enhanced Chemical Vapour Deposition: Process, Chemical Composition Analysis and Biocompatibility,' Plasma Process. Polym., 7 (8), 715-725 (2010).
135. I. Gordeev, A. Choukourov, M. Simek, V. Prukner and H. Biederman, 'PEO-like Plasma Polymers Prepared by Atmospheric Pressure Surface Dielectric Barrier Discharge,' Plasma Process. Polym., 9 (8), 782-791 (2012).
136. G. P. Lopez, B. D. Ratner, C. D. Tidwell, C. L. Haycox, R. J. Rapoza and T. A. Horbett, 'Glow discharge plasma deposition of tetraethylene glycol dimethyl ether for fouling-resistant biomaterial surfaces,' Journal of Biomedical Materials Research, 26 (4), 415-439 (1992).
137. Y. J. Wu, R. B. Timmons, J. S. Jen and F. E. Molock, 'Non-fouling surfaces produced by gas phase pulsed plasma polymerization of an ultra low molecular weight ethylene oxide containing monomer,' Colloids and Surfaces B: Biointerfaces, 18 (3–4), 235-248 (2000).
138. F. Palumbo, P. Favia, M. Vulpio and R. d'Agostino, 'RF Plasma Deposition of PEO-Like Films: Diagnostics and Process Control,' Plasmas Polym., 6 (3), 163-174 (2001).
139. M. Drabik, A. Serov, O. Kylian, A. Choukourov, A. Artemenko, J. Kousal, O. Polonskyi and H. Biederman, 'Deposition of Fluorocarbon Nanoclusters by Gas Aggregation Cluster Source,' Plasma Process. Polym., 9 (4), 390-397 (2012).
140. F. Fanelli, R. d'Agostino and F. Fracassi, 'Atmospheric Pressure PE-CVD of Fluorocarbon Thin Films by Means of Glow Dielectric Barrier Discharges,' Plasma Process. Polym., 4 (9), 797-805 (2007).
141. D. Zhang and M. J. Kushner, 'Investigations of surface reactions during C2F6 plasma etching of SiO2 with equipment and feature scale models,' Journal of Vacuum Science & Technology A, 19 (2), 524-538 (2001).
142. J. W. Coburn and H. F. Winters, 'Plasma etching—A discussion of mechanisms,' Journal of Vacuum Science & Technology, 16 (2), 391-403 (1979).
143. I. P. Vinogradov, A. Dinkelmann and A. Lunk, 'Measurement of the absolute CF 2 concentration in a dielectric barrier discharge running in argon/fluorocarbon mixtures,' Journal of Physics D: Applied Physics, 37 (21), 3000 (2004).
144. I. P. Vinogradov, A. Dinkelmann and A. Lunk, 'Deposition of fluorocarbon polymer films in a dielectric barrier discharge (DBD),' Surface and Coatings Technology, 174–175 (0), 509-514 (2003).
145. P. Bayiati, A. Malainou, E. Matrozos, A. Tserepi, P. S. Petrou, S. E. Kakabakos and E. Gogolides, 'High-density protein patterning through selective plasma-induced fluorocarbon deposition on Si substrates,' Biosens. Bioelectron., 24 (10), 2979-2984 (2009).
146. L. Ji, D. Liu, Y. Song and J. Niu, 'Atmospheric pressure dielectric barrier microplasmas inside hollow-core optical fibers,' J. Appl. Phys., 111 (7), 073304-073304-073306 (2012).
147. A. Ramamoorthy, A. El-Shafei and P. Hauser, 'Plasma Induced Graft Polymerization of C6 Fluorocarbons on Cotton Fabrics for Sustainable Finishing Applications,' Plasma Process. Polym., 10 (5), 430-443 (2013).
148. K. K. S. Lau, H. G. Pryce Lewis, S. J. Limb, M. C. Kwan and K. K. Gleason, 'Hot-wire chemical vapor deposition (HWCVD) of fluorocarbon and organosilicon thin films,' Thin Solid Films, 395 (1–2), 288-291 (2001).
149. S. J. Limb, C. B. Labelle, K. K. Gleason, D. J. Edell and E. F. Gleason, 'Growth of fluorocarbon polymer thin films with high CF2 fractions and low dangling bond concentrations by thermal chemical vapor deposition,' Appl. Phys. Lett., 68 (20), 2810-2812 (1996).
150. N. Marechal and Y. Pauleau, 'Radio frequency sputtering process of a polytetrafluoroethylene target and characterization of fluorocarbon polymer films,' Journal of Vacuum Science & Technology A, 10 (3), 477-483 (1992).
151. V. Andreas, O. Andreas, F. Rudiger, S. Karsten and W. Klaus-Dieter, 'Hydrophobic coatings deposited with an atmospheric pressure microplasma jet,' Journal of Physics D: Applied Physics, 43 (48), 485201 (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55037-
dc.description.abstract常壓微電漿系統因不需要真空系統,且電子密度和能量密度高,能在局部區
域提供高反應性,在近年來有許多相關的製程與研究被報導。本研究提出三種低
成本、且可撓式微電漿裝置系統:紙基直流電源驅動薄膜平行式電極型電漿裝置、
紙基介電質放電型微電漿裝置、以及以印刷電路板為基底之微電漿產生裝置。本
研究所提出的紙基微電漿裝置,為世界上第一個製作在紙基材上的微電漿系統。
紙基直流電源驅動薄膜平行式電極型電漿裝置是以網版印刷的方式將導電碳
膠塗佈在紙基材上做為電極之用。此種電漿裝置依操作條件不同可觀察到「自我
脈衝模式」與「穩定模式」兩種放電表現,且在高施加電壓下容易形成穩定模式。
兩種放電模式的成因可以系統負載線與電漿非線性特徵曲線的關係說明。此裝置
可應用於元素之定性分析。實驗時將鹽類水溶液滴在兩電極間隙後,使水分蒸乾
讓鹽類顆粒落在電極間隙,並施加一高電壓使電漿生成。透過比對所量測之電漿
放射光譜與資料庫中元素之特徵放光波長,可檢測待測物中之元素,且實驗結果
顯示可偵測到ng等級的金屬。
上述電漿裝置因物理上的限制,電漿僅能夠在局部區域生成,無法產生大面
積的電漿放電,因而限制了電漿的應用性。為改善此問題,本研究改變電極配置
方式,提出紙基介電質放電型微電漿裝置。此裝置可在Ar、He、和空氣的氣氛下
操作,且可同時在多個微腔體內生成低溫電漿。因紙基板可撓曲之特性,電漿裝
置可在非平面的狀態下操作。實驗利用紙張具有毛細力的特性,將液相先驅物儲
存於電極的紙張上,利用無光罩製程在玻璃基板上製作具有抗蛋白質吸附特性的
類聚氧化乙烯圖案。
第三種裝置是以印刷電路板為基底之微電漿產生裝置。電極上的圖案利用「印
表機碳粉轉印技術」製作,製程不需使用無塵室之設備。實驗利用此裝置可撓曲
之特性,透過沉積疏水的氟碳高分子或移除材料表面的疏水薄膜的方式在平面與
非平面製作親疏水對比圖案。若同時在雙面印刷電路板的兩面製作圖案,使電漿
能同時在兩面生成,則裝置可同時對兩個表面進行表面圖案化製程。實驗中以此
電漿裝置製備表面張力侷限微流道裝置。
本研究所提出之微電漿裝置在兩方面上具有彈性:第一,所使用的基板為可
撓性的紙張或印刷電路板,故裝置可在非平面下操作。第二,裝置的製作過程不
需使用無塵室的設備即可完成,因此使用者隨時可依自己的需求製作圖案,且從
圖案設計完到完成電漿裝置僅需半個小時,增加微電漿使用上的彈性。
zh_TW
dc.description.abstractA lot of efforts have been made on atmospheric microplasma systems since such type of plasma systems does not need vacuum systems, and has unique properties such as high electron density, high power density, and being able to create highly reactive environment in a local area. In this thesis, three types of cost-effective and flexible
microplasma systems are reported: direct-current-driven paper-based coplanar microplasma device, paper-based dielectric-barrier-discharge-type microplasma array
device, and printed-circuit-boared-based microplasma generation device. This work presents the first microplasma system fabricated on paper substrates.
The direct-current-driven paper-based coplanar microplasma device is made by coating conductive carbon paste on paper substrates with screen printing method. Such type of devices has two types of discharge behaviors, namely, self-pulsing mode and stable mode, and the system can easily move into stable mode at high applied voltages. The mechanism of the two different discharge behaviors can be understood by looking into the load line of the system and the non-linear IV behavior of plasmas. By adding a drop of salt solution into the gap between the electrodes and acquiring the emission emanating from the plasma, we can detect the metallic elements with the optical emission spectra. The experimental results show that the detecting limit can be as low as nanogram.
Because of the limitation of dc-driven plasmas, the plasma can only be ignited in a small area which limits the application of plasmas. We therefore design a paper-based
dielectric-barrier-discharge-type microplasma array device. The device can operate in different atmospheres such as Ar, He, and air, and have discharges in every microcavity. Due to the fact that paper is a flexible substrate, the proposed device is able to generate plasmas even when the substrate is not flat. By utilizing the capillary force of paper
substrates, we stored the liquid precursor in the fibers of paper, and create polyethylene-oxide-like patterns with the protein-repelling property on a glass substrate.
The third type of microplasma generation devices is made of double-sided printed circuit board. The patterns on the copper electrode are fabricated by “toner-transfer method” without the need of clean room facilities. By taking the advantage of the flexibility of the device, we can create hydrophobic/hydrophilic contrast on flat and non-flat surfaces by depositing fluorocaronbon polymers or removing hydrophobic films. The device is able to pattern two surfaces simultaneously with patterned double-side printed circuit board on two sides. This technique was applied to fabricate surface-tension-confined mirofluidic devices.
The microplasma devices proposed in this thesis are flexible in two ways: first, the substrates used here are flexible, and therefore the devices can be operated under non-flat conditions. Secondly, the electrode-patterning process does not need clean room facilities, and the users can design their own patterns anytime. The device fabrication process takes less than 30 min.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:45:05Z (GMT). No. of bitstreams: 1
ntu-104-F98524038-1.pdf: 9658868 bytes, checksum: d98592e9f59e7be2b82004e45b19a0e2 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 ··············································································································· I
中文摘要 ············································································································ III
英文摘要 ·············································································································· V
目錄 ············································································································ IX
圖目錄 ·········································································································· XIII
表目錄 ········································································································· XXI
第一章 緒論 ······································································································ 1
1.1 前言 ······································································································ 1
1.2 研究動機與目標 ·················································································· 2
1.3 論文總覽 ······························································································ 2
第二章 文獻回顧 ······························································································ 5
2.1 電漿簡介 ······························································································ 5
2.2 微電漿放電系統 ················································································ 11
2.2.1 微電漿系統之物性 ···································································· 11
2.2.2 微電漿系統種類 ······································································· 16
2.2.3 微電漿技術之應用 ··································································· 20
2.3 直流電源微電漿放電系統 ································································ 25
2.3.1 直流輝光放電 ··········································································· 25
2.3.2 典型直流電源放電特徵曲線 ··················································· 28
2.3.3 直流電源微電漿系統簡介 ······················································· 30
2.3.4 直流電源微電漿放電之電路分析 ··········································· 31
2.4 介電質放電型微電漿放電系統 ························································ 36
2.4.1 介電質放電型微電漿系統簡介 ··············································· 36
2.4.2 介電質放電型微電漿裝置之製備 ··········································· 41
2.4.3 可撓式微電漿陣列裝置系統 ··················································· 43
2.5 紙基裝置 ···························································································· 46
2.6 表面圖案化 ························································································ 49
2.6.1 表面圖案化製程 ······································································· 49
2.6.2 微電漿系統於表面圖案化之應用 ··········································· 54
2.7 以表面張力侷限之微流道裝置 ························································ 59
2.7.1 表面張力侷限微流道裝置製作 ··············································· 59
2.7.2 表面張力侷限微流道裝置分析 ··············································· 63
2.7.3 表面張力侷限微流道裝置應用 ··············································· 66
第三章 實驗設備與架構 ················································································ 69
3.1 薄膜平行式電極型微電漿產生裝置 ················································ 69
3.1.1 薄膜平行式電極型微電漿產生裝置 ······································· 69
3.1.2 實驗設備 ··················································································· 71
3.1.3 薄膜平行式電極型微電漿裝置於微量金屬檢測之應用 ······· 72
3.2 紙基介電質放電型微電漿裝置 ························································ 73
3.2.1 紙基微電漿陣列裝置 ······························································· 73
3.2.2 實驗設備 ··················································································· 75
3.2.3 微電漿陣列於表面圖案化之應用 ··········································· 77
3.3 印刷電路板介電質放電型微電漿裝置 ············································ 80
3.3.1 印刷電路板微電漿裝置之製備 ··············································· 80
3.3.2 實驗設備 ··················································································· 82
3.3.3 微電漿陣列於玻璃表面製造氟碳高分子圖案化之應用 ······· 82
3.3.4 微電漿裝置於表面張力侷限之微流道裝置之應用 ··············· 83
3.4 電漿檢測 ···························································································· 84
3.4.1 電性檢測 ··················································································· 84
3.4.2 光學檢測 ··················································································· 88
3.5 檢測分析設備 ···················································································· 94
第四章 實驗結果與討論 ·············································································· 101
4.1 直流電源驅動薄膜平行式電極型微電漿 ······································ 101
4.1.1 薄膜平行式電極型微電漿裝置之電漿檢測 ························· 101
4.1.2 電極間距對氣體崩潰電壓之影響 ········································· 106
4.1.3 紙基微電漿裝置之可撓性 ····················································· 107
4.1.4 應用:微量金屬元素檢測 ····················································· 108
4.2 紙基介電質放電型微電漿裝置 ······················································ 110
4.2.1 紙基微電漿陣列裝置設計 ······················································ 110
4.2.2 微電漿陣列裝置之電漿檢測 ·················································· 116
4.2.3 應用:非平面製造親疏水對比之圖案 ································· 128
4.2.4 應用:於玻璃表面製造類聚氧化乙烯之圖案 ····················· 129
4.2.5 應用:於玻璃表面製造氟碳高分子薄膜圖案 ····················· 138
4.3 印刷電路板為基底之微電漿裝置 ·················································· 149
4.3.1 印刷電路板為基底之微電漿裝置 ········································· 149
4.3.2 應用:於玻璃表面製造氟碳高分子圖案化 ························· 151
4.3.3 應用:表面張力侷限之微流道裝置之應用 ························· 160
4.4 電漿裝置之比較 ·············································································· 166
第五章 結論與未來展望 ·············································································· 169
第六章 參考文獻 ·························································································· 171
dc.language.isozh-TW
dc.subject表面圖案化zh_TW
dc.subject微電漿zh_TW
dc.subject紙基裝置zh_TW
dc.subject可撓式zh_TW
dc.subject無光罩製程zh_TW
dc.subjectflexibleen
dc.subjectmicroplasmaen
dc.subjectpaper-based deviceen
dc.subjectsurface patterningen
dc.subjectmasklessen
dc.title低成本可撓式常壓微電漿裝置設計及其於無光罩表面圖案化之應用zh_TW
dc.titleLow-Cost and Flexible Atmospheric Pressure Microplasma Devices and Applications on Maskless Surface Patterningen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee林祥泰(Shiang-Tai Lin),陳賢燁(Hsien-Yeh Chen),范士岡(Shih-Kang Fan),許聿翔(Yu-Hsiang Hsu)
dc.subject.keyword微電漿,紙基裝置,可撓式,無光罩製程,表面圖案化,zh_TW
dc.subject.keywordmicroplasma,paper-based device,flexible,maskless,surface patterning,en
dc.relation.page189
dc.rights.note有償授權
dc.date.accepted2015-02-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
9.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved