請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55028完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林文澧(Win-Li Lin) | |
| dc.contributor.author | Ting-Yang Chang | en |
| dc.contributor.author | 張定洋 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:44:48Z | - |
| dc.date.available | 2020-08-07 | |
| dc.date.copyright | 2020-08-07 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-05 | |
| dc.identifier.citation | [1] Ganesh, K., et al. ' Immunotherapy in colorectal cancer: rationale, challenges and potential'. Nature Reviews Gastroenterology Hepatology, 2019; 16(6): 361-375. [2] Le, D. T., et al. 'Programmed death-1 blockade in mismatch repair deficient colorectal cancer.' Journal of Clinical Oncology 2016; 34(15): 103-103. [3] Le, D. T., et al. 'Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.' Science 2017; 357(6349): 409-413. [4] Hochster, H. S., et al. 'Efficacy and safety of atezolizumab (atezo) and bevacizumab (bev) in a phase Ib study of microsatellite instability (MSI)-high metastatic colorectal cancer (mCRC).' American Society of Clinical Oncology 2017; 35(4): 673-673. [5] Bendell, J. C., et al. 'Safety and efficacy of MPDL3280A (anti-PDL1) in combination with bevacizumab (bev) and/or FOLFOX in patients (pts) with metastatic colorectal cancer (mCRC).' American Society of Clinical Oncology 2015; 33(3): 704-704. [6] Twyman-Saint Victor, C., et al. 'Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer.' Nature 2015; 520(7547): 373-377.. [7] US National Library of Medicine.ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03122509 2018 [8] Tanyi, J. L., et al. 'Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer.' Science Translational Medicine 2018; 10(436): 61–66 [9] Hernández-Granados, A. J., et al. 'Immunogenic potential of three transmissible venereal tumor cell lysates to prime canine-dendritic cells for cancer immunotherapy.' Research in Veterinary Science 2018;121: 23-30. [10] Pahk, K. J., et al. 'Boiling Histotripsy-induced Partial Mechanical Ablation Modulates Tumour Microenvironment by Promoting Immunogenic Cell Death of Cancers.' Scientific Reports 2019; 9(1): 1-12. [11] Arango Duque, G., et al. 'Macrophage cytokines: involvement in immunity and infectious diseases.' Frontiers in Immunology 2014; 5: 491. [12] Hu, Z., et al. 'Release of endogenous danger signals from HIFU-treated tumor cells and their stimulatory effects on APCs.' Biochemical and Biophysical Research Communications 2005; 335(1): 124-131. [13] Schade, G. R., et al. 'Boiling histotripsy ablation of renal cell carcinoma in the Eker rat promotes a systemic inflammatory response.' Ultrasound in Medicine Biology 2019; 45(1): 137-147. [14] Cirincione, R., et al. 'High-intensity focused ultrasound–and radiation therapy–induced immuno-modulation: comparison and potential opportunities.' Ultrasound in Medicine Biology 2017; 43(2): 398-411. [15] Garg, A. D., et al. 'Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation.' Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 2010; 1805(1): 53-71. [16] Yamaue, H., et al. 'Successful adoptive immunotherapy with OK432-inducible activated natural killer cells in tumor-bearing mice.' Biotherapy 1990; 2(1): 51-61. [17] Ogawa, K., et al. 'OK-432 pleurodesis for the treatment of pneumothorax in patients with interstitial pneumonia.' Respiratory Investigation 2018; 56(5): 410-417. [18] Li, L., et al. 'Microwave ablation combined with OK-432 induces Th1-type response and specific antitumor immunity in a murine model of breast cancer.' Journal of Translational Medicine 2017; 15(1): 1-10. [19] Ryoma, Y., et al. 'Biological effect of OK-432 (picibanil) and possible application to dendritic cell therapy.' Anticancer Research 2004; 24(5C): 3295-3302. [20] Faustino-Rocha, A., et al. 'Estimation of rat mammary tumor volume using caliper and ultrasonography measurements.' Lab Animal 2013; 42(6): 217-224. [21] Kyrylkova, K., et al. 'Detection of apoptosis by TUNEL assay.' Odontogenesis. Humana Press, 2012; 887: 41-47. [22] Majtnerová, P., et al. 'An overview of apoptosis assays detecting DNA fragmentation.' Molecular Biology Reports 2018; 45(5): 1469-1478. [23] Li, Y., et al. 'Hematoxylin and eosin staining of intact tissues via delipidation and ultrasound.' Scientific Reports 2018; 8(1): 1-8. [24] Jørgensen, A. S., et al. 'Using cell nuclei features to detect colon cancer tissue in hematoxylin and eosin stained slides.' Cytometry 2017; 91(8A): 785-793. [25] Crowley, L. C., et al. 'Measuring cell death by trypan blue uptake and light microscopy.' Cold Spring Harbor Protocols 2016; 2016(12): pdb-prot087155. [26] Louis, K. S., et al. 'Cell viability analysis using trypan blue: manual and automated methods.' Mammalian Cell Viability. Humana Press, 2011; 7-12. [27] Alizadeh, M. N., et al. 'Antitumor effects of umbelliprenin in a mouse model of colorectal cancer.' Iranian Journal of Pharmaceutical Research: IJPR 2018; 17(3): 976. [28] Melling, N., et al. 'High Ki67 expression is an independent good prognostic marker in colorectal cancer.' Journal of Clinical Pathology 2016; 69(3): 209-214. [29] Li, P., et al. 'Association between Ki67 index and clinicopathological features in colorectal cancer.' Oncology Research and Treatment 2016; 39(11): 696-702. [30] Pistritto, G., et al. 'Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies.' Aging (Albany NY) 2016; 8(4): 603. [31] Guicciardi, M. E., et al. 'Life and death by death receptors.' The FASEB Journal 2009; 23(6): 1625-1637. [32] Fulda, S., et al.'Death receptor signaling in cancer therapy.' Current Medicinal Chemistry-Anti-Cancer Agents 2003; 3(4): 253-262. [33] Boatright, K. M., et al.'Mechanisms of caspase activation.' Current Opinion in Cell Biology 2003; 15(6): 725-731. [34] Degterev, A., Michael B., et al.'A decade of caspases.' Oncogene 2003; 22(53): 8543-8567. [35] Kroemer, G., Lorenzo G., et al. 'Mitochondrial membrane permeabilization in cell death.' Physiological Reviews 2007; 87(1): 99-163. [36] Tano, T., et al. 'Growth inhibition and apoptosis by an active component of OK-432, a streptococcal agent, via Toll-like receptor 4 in human head and neck cancer cell lines.' Oral Oncology 2012; 48(8): 678-685. [37] Semino, C., et al. 'NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1.' Blood 2005; 106(2): 609-616. [38] Scaffidi, P., Tom M., et al.'Release of chromatin protein HMGB1 by necrotic cells triggers inflammation.' Nature 2002; 418(6894): 191-195. [39] Arango Duque, G., et al. 'Macrophage cytokines: involvement in immunity and infectious diseases.' Frontiers in Immunology 2014; 5: 491. [40] Lasek, W., Zagożdżon R., et al.'Interleukin 12: still a promising candidate for tumor immunotherapy?' Cancer Immunology, Immunotherapy 2014; 63(5): 419-435. [41] Hamamoto, S., et al. 'Radiofrequency ablation and immunostimulant OK-432: combination therapy enhances systemic antitumor immunity for treatment of VX2 lung tumors in rabbits.' Radiology 2013; 267(2): 405-413. [42] Li, T. C., et al. 'Combination therapy of pulsed-wave ultrasound hyperthermia and immunostimulant OK-432 enhances systemic antitumor immunity for cancer treatment.' International Journal of Radiation Oncology Biology Physics 2020; 1-10 [43] Okamoto, M., et al. 'Radiation, 5-FU and OK-432: inhibitory effect of IL-10 and TGF-beta.' Gan to kagaku ryoho. Cancer Chemotherapy 2005; 32(11): 1556. [44] Mannino, M. H., et al. 'The paradoxical role of IL-10 in immunity and cancer.' Cancer Letters 2015; 367(2): 103-107. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55028 | - |
| dc.description.abstract | 研究背景與目的: 根據中華民國衛生福利部國民健康署2019的統計,大腸直腸癌已經連續為國人10大癌症之首。目前大腸直腸癌的治療主要以手術切除配合放射線療法及化療的聯合治療方式。近年來日漸興起的免疫療法在大腸直腸癌的研究上,主要是以免疫檢查點抑制劑搭配放射線治療或是化療的聯合治療。因此目前可以看出在治療晚期的腸癌,免疫療法是一個重要的輔助角色。在本研究中將使用超音波結合免疫刺激劑,刺激免疫細胞以及提供腫瘤相關抗原,觀察對腫瘤的治療效果。超音波可震碎腫瘤細胞,提供腫瘤相關抗原,作為免疫細胞辨識的材料,達成強化抗腫瘤免疫的效果。 材料與方法: 在小鼠皮下植入CT26腫瘤細胞,待成長至50-100mm3時將小鼠分成控制組、OK-432組、Lysate組以及OK-432+Lysate組。控制組在皮下注射生理食鹽水、OK-432組注射0.25K.E./100μL的OK-432、Lysate組注射106 CT26 cell-lysate/100μL的細胞碎片懸浮液、OK-432+Lysate組注射0.25K.E.+106 CT26 cell lysate/100μL。紀錄小鼠腫瘤生長趨勢並將動物犧牲後取下腫瘤,製作切片觀察腫瘤的型態以及細胞凋亡狀況,最後分析腫瘤組織內細胞激素的變化。 實驗結果: 本研究統計結果顯示施打免疫刺激劑(Ok-432)及腫瘤碎片的結合組在腫瘤抑制效果上顯著高於控制組、腫瘤碎片組以及免疫刺激劑組。小鼠存活率的表現上結合組也優於其他組別。而其他組別之間無論是腫瘤體積或是存活率都沒有統計上的顯著差異。不過在非侵入式影像系統的表現上,結合組的腫瘤活性在統計上顯著低於免疫刺激劑組,與其他組並無顯著差異。本研究針對腫瘤組織的切片進行分析,結合組的細胞凋亡的表現也高於其他三組。細胞激素的聚合酶連鎖反應分析結果顯示IL-6 、IL-12以及iNOS的RNA表現都有顯著上升。 結論: 腫瘤經過超音波結合免疫刺激劑的治療後,腫瘤生長在外觀上確實有受到抑制。受到結合治療的影響,抗腫瘤免疫效應的細胞激素產生可判斷為第一型巨噬細胞有活化的現象。 | zh_TW |
| dc.description.abstract | Background and purpose: According to statistics of cancer from Health Promotion Administration, Ministry of Health and Welfare in 2019, incidence of colorectal cancer has ranked top one for several years. Therapies performed routinely for colorectal cancer are tumor resection combined with chemotherapy or irradiation. Beside routine therapy, immunotherapy for colorectal cancer has been developing currently. Immunotherapy plays an vital role in the late stage of colorectal cancer. In this study, we combined ultrasonicated tumor lysate and immunostimulant to boost antitumor immunity, in order to inhibit tumor growth. Materials and methods: In this study, we implanted 106 CT26 tumor cells subcutaneously on the right flank of each BALB/c mouse. After the tumor volume reached 50-100mm3, we then divided the mice into control, Lysate, OK-432 and Lysate+OK-432 group. Cell lysate was prepared with a Bioruptor, sonicated 35 minutes (duty cycle: 50%, high intensity). Injectable saline, CT26 cell lysate (106 cells/100μL), OK-432 (0.25 K.E./100μL) and Lysate+OK-432 were given subcutaneously once every two days for three times. Tumor volume was assessed by Vernier caliper and IVIS as well. The tumor was resected to perform H E stain, TUNEL assay (IF) in order to observe morphology and cell apoptosis. Real time PCR was performed to analyze inflammatory mediators, in order to evaluate the boosting antitumor effect of Lysate and immunostimulant. Results: The results show that the tumor growth is significantly slower in the lysate+OK-432 group than the other three groups. The IVIS images also reveal that the light intensity of tumor in the Lysate+OK-432 group is milder than the other three groups. The survival rate of the lysate+OK-432 group is the highest among all groups within a month of observation. The TUNEL assay demonstrates that DNA double strands break in the lysate+OK-432 group is significantly higher than the other three groups. The outcome of real-time PCR reveals that IL-6, IL-12 and iNOS show a significant increase in the combined group. It may refer to type one macrophages activation. IL-12 secretion can activate cytotoxic T cells, helper T cells and natural killer cells, thus the adaptive immune may be activated by the treatment. Conclusion: The results show that lysate cancer cells plus immunostimulant can inhibit tumor growth. Antitumor immunity was boosted by the combined treatment since inflammatory cytokines increased. The mechanism of how cytokines affect immunity should be further investigated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:44:48Z (GMT). No. of bitstreams: 1 U0001-3107202016275100.pdf: 3289262 bytes, checksum: 14f406304a96649c307dd3cc01b289c8 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄 中文摘要………………………………………………………………………4-5 ABSTRACT…………………………………………………………………...6-7 誌謝……………………………………………………………………………8 第一章 研究動機及目的…………………………………………….…....9-12 1.1大腸直腸癌…………………………………………………...9 1.2免疫療法……………………………………………………...9-10 1.3超音波機械性破壞效應引發之抗癌免疫反應…...…………10-12 第二章 材料與方法……………………………………………………….13-21 2.1細胞株與小鼠品系…………………………………………...13 2.2 OK-432溶血性鏈球菌凍乾製劑………………………….....13 2.3 MTT細胞存活率試驗……………………………………......14-15 2.4動物實驗……………………………………………………...16-21 2.4.1動物實驗流程…………………………………………...16 2.4.2腫瘤碎片治療模式……………………………………...17 2.4.3腫瘤組織切片……………………………………….......18-19 2.4.4聚合酶連鎖反應………………………………………...19-21 2.4.4.1研磨腫瘤………………………………………....19 2.4.4.2萃取RNA及量測RNA濃度…………………...20 2.4.4.3將RNA轉化成互補DNA……………………....20-21 2.4.4.4即時聚合酶連鎖反應操作…………………........21 第三章 實驗結果…………………………………………………………..22-29 3.1超音波機械力破壞後細胞計數結果………………………..22 3.2 MTT細胞存活分析………………………………………….22-23 3.3動物實驗……………………………………………………...23-29 第四章 討論………………………………………………………….............30-33 4.1腫瘤抑制效果………………………………………………….....30 4.2內源性危險因子以及半胱天冬酶的聯合效果造成細胞凋亡….31 4.3巨噬細胞對癌細胞的抑制效果……………………………….....32 4.4 研究限制………………………………........................................33 第五章 結論………………………………………………………….............34 第六章 參考文獻…………………………………………………….............35-40 圖目錄 圖1.細胞壞死引發發炎反應圖……………………………………………………..11 圖.2 Bioruptor 治療之細胞存活率分析(MTT assay) 實驗操作超音波機械力治療儀器…………………………………………………………………………………..14 圖.3 Bioruptor 的參數控制板以及恆溫冷水循環裝置圖………………………....15 圖.4小鼠實驗流程圖:刺激抗腫瘤免疫反應….……………………………………16 圖.5小鼠實驗時間軸:刺激抗腫瘤免疫反應…………………………………........17 圖.6研磨腫瘤之研缽以及分離RNA、DNA和蛋白質的TRIzol…………………19 圖.7 RNA濃度測量儀……………………………………………………………….20 圖.8循環定溫箱…………………………………………………………………......21 圖.9經過超音波機械力破壞後以trypan blue dye染色計數的結果………………22 圖.10經過超音波破壞後以MTT assay檢定CT26細胞的活性………………......22 圖.11小鼠實驗腫瘤生長情形:抗腫瘤免疫刺激..........................………………....23 圖.12小鼠腫瘤生長曲線圖…………………………………………………………24 圖.13動物腫瘤冷光表現變化圖……………………………………………………24 圖.14小鼠組別間生存狀況圖……………………………………………………....25 圖.15 H E 染色組織圖.............................................................................................26 圖.16腫瘤組織切片之TUNEL檢定結果………………………………………....27 圖.17腫瘤組織切片TUNEL 檢定,影像定量分析圖…………………………...28 圖.18第一型巨噬細胞相關細胞激素及標誌分析圖……………………………...29 表目錄 表.1抗腫瘤免疫反應小鼠實驗分組:刺激物劑量給予.........................................18 | |
| dc.language.iso | zh-TW | |
| dc.subject | 癌細胞碎片 | zh_TW |
| dc.subject | 超音波機械力 | zh_TW |
| dc.subject | OK-432免疫刺激劑 | zh_TW |
| dc.subject | 內源性危險因子 | zh_TW |
| dc.subject | 抗癌免疫反應 | zh_TW |
| dc.subject | danger associated signal | en |
| dc.subject | cancer cell lysate | en |
| dc.subject | antitumor immunity | en |
| dc.subject | ultrasound mechanical force | en |
| dc.subject | OK-432 immunostimulant | en |
| dc.title | 結合超音波腫瘤碎片與免疫刺激劑強化抗腫瘤免疫效應 | zh_TW |
| dc.title | Combination of Ultrasonicated Tumor Lysate and Immunostimulant for Boosting Antitumor Immunity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 繆希椿(Shi-Chuen Miaw) | |
| dc.contributor.oralexamcommittee | 謝銘鈞(Ming-Jium Shieh) | |
| dc.subject.keyword | 超音波機械力,OK-432免疫刺激劑,內源性危險因子,抗癌免疫反應,癌細胞碎片, | zh_TW |
| dc.subject.keyword | ultrasound mechanical force,OK-432 immunostimulant,danger associated signal,antitumor immunity,cancer cell lysate, | en |
| dc.relation.page | 40 | |
| dc.identifier.doi | 10.6342/NTU202002168 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-05 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3107202016275100.pdf 未授權公開取用 | 3.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
