Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55019Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林讚標 | |
| dc.contributor.author | Chia-Ying Lee | en |
| dc.contributor.author | 李佳縈 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:44:31Z | - |
| dc.date.available | 2015-03-16 | |
| dc.date.copyright | 2015-03-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-02-09 | |
| dc.identifier.citation | Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH, Zhu S, Qiu
JL, Micheelsen P, Rocher A, Petersen M, et al (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24: 2579–2589 Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977–983 Chen C, Chen Z (2000) Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco. Plant Mol Biol 42: 387–396 Chen L, Song Y , Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 1819: 120–128 Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, et al (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666–671 Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE (2008) Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY -domain function. Plant Mol Biol 68: 81–92 Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743 Cormack RS, Eulgem T, Rushton PJ, Ko‥chner P, Hahlbrock K, Somssich IE (2002) Leucine zipper containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley. Biochim Biophys Acta 1576: 92–100 de Pater S, Greco V, Pham K, Memelink J, Kijne J (1996) Characterization of a zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Res 24: 4624–4631 Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5: 199–206 Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5: 344–350 Gendrel AV, Lippman Z, Martienssen R, Colot V (2005) Profiling histone modification patterns in plants using genomic tiling microarrays. Nat Methods 2: 213–218 Gfeller A, Dubugnon L, Liechti R, Farmer EE (2010) Jasmonate biochemical pathway. Sci Signal 3: cm3 Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59: 41–66 Hyun Y, Choi S, Hwang HJ, Yu J, Nam SJ, Ko J, Park JY, Seo YS, Kim EY, Ryu SB, et al (2008) Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Dev Cell 14: 183–192 Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant Physiol. 146: 1459–1468 Li S, Fu Q, Chen L, Huang W, Yu D (2011) Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233: 1237–1252 Mao P, Duan M, Wei C, Li Y (2007) WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Plant Cell Physiol 48: 833–842 Mitsuda N, Ikeda M, Takada S, Takiguchi Y, Kondou Y, Yoshizumi T, Fujita M, Shinozaki K, Matsui M, Ohme-Takagi M (2010) Efficient yeast one-/two-hybrid screening using a library composed only of transcription factors in Arabidopsis thaliana. Plant Cell Physiol 51: 2145–2151 Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15: 473–497. Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140: 411–432 Nakano T, Suzuki K, Ohtsuki N, Tsujimoto Y, Fujimura T, Shinshi H (2006) Identification of genes of the plant-specific transcription-factor families cooperatively regulated by ethylene and jasmonate in Arabidopsis thaliana. J Plant Res 119: 407–413 Pauwels L, Morreel K, De Witte E, Lammertyn F, Van Montagu M, Boerjan W, Inze D, Goossens A (2008) Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci USA 105: 1380–1385 Pauwels L, Goossens A (201 1) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23: 3089–3100 Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28: 489–521 Pre M (2006) ORA EST: functional analysis of jasmonate-responsive AP2/ERF domain transcription factors in Arabidopsis thaliana. Ph.D. Thesis, Leiden University, Leiden, The Netherlands. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105–2110 Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15: 5690–5700 Rushton PJ, Somssich IE, Ringler P , Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15: 247–258 Seo HS, Song JT, Cheong JJ, Lee YH, Lee YW, Hwang I, Lee JS, Choi YD (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci USA 98: 4788–4793 Skirycz A, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, Zanor MI, Gershenzon J, Strnad M, Szopa J, et al (2006) DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant J 47: 10–24 Song S, Qi T, Huang H, Ren Q, Wu D, Chang C, Peng W, Liu Y, Peng J, Xie D (2011) The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect Jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23: 1000–1013 Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16: 2117–2127 van Verk MC, Bol JF, Linthorst HJ (2011) Prospecting for genes involved in transcriptional regulation of plant defenses, a bioinformatics approach. BMC Plant Biol 11: 88 Wang Z, Yang P, Fan B, Chen Z (1998) An oligo selection procedure for identification of sequence-specific DNA-binding activities associated with plant defense. Plant J 16: 515–522 Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100: 681–697 Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111: 1021–1058 Weiste C, Iven T, Fischer U, Onate-Sanchez L, Droge-Laser W (2007) In planta ORFeome analysis by large-scale over-expression of GATEWAY -compatible cDNA clones: screening of ERF transcription factors involved in abiotic stress defense. Plant J 52: 382–390 Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2: 1565–1572 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55019 | - |
| dc.description.abstract | 許多研究報導指出當植物受到傷害逆境的時候,會傳遞茉莉酸 (JA)訊息並
且誘導由 MYCs 和 ERFs 轉錄因子所調控的下游基因,進而啟動防禦機制。阿拉 伯芥 ORA47 為 AP2/ERF 轉錄因子的一員,在傷害逆境下會被誘導表現,本實驗 室前人研究中發現,ORA47 藉由辨認下游基因啟動子區域中嶄新的 cis-element (AC/GT)CGNCCA,正向調控 JA 生合成基因 LOX、AOS、AOC、OPR3、JAR1, 受傷害逆境活化的 MYC2 在傷害逆境下會辨認 ORA47 啟動子區域中的 G-box 序 列,作為 ORA47 上游正調控者,進而誘導 JA 生合成並形成正回饋路徑,在 MYC2 大量表現的轉殖株中可以偵測到被誘導表現的 ORA47 和 JA 生合成基因,然而在 myc2 knockout 突變株中,ORA47 和 JA 生合成基因表現量沒有顯著下降,所以 我們想找出其他的 ORA47 上游調控者。2008 年的文獻指出 WRKY 轉錄因子 WRKY26 具有能夠辨認 W-box-like (TTGATC)序列的能力,而我們在 ORA47 啟 動子區域中找到 4 個 W-box-like 可能的辨認位置,於是利用 EMSA 、 transactivation assay 和 ChIP 等實驗證實,WRKY26 會結合 W-box-like 4 這段 ORA47 啟動子區 域中的 DNA 序列。WRKY26 大量表現的轉殖株中,ORA47 和 JA 生合成基因在 傷害逆境下表現量都會被誘導,植株本身則有根部延長受到抑制、側根發展較促 進、生長緩慢和延遲老化等 JA 大量累積的外表型,而 wrky26 knockdown 突變株 中,ORA47 和 JA 生合成基因表現量都有些微下降,突變株的外表型則與野生型 沒有太大差異。總結本篇研究證實 WRKY26 作為 ORA47 上游正向調控因子,參 與傷害逆境誘導的 JA 訊息傳遞中,活化 JA 生合成基因表現。 | zh_TW |
| dc.description.abstract | Jasmonates (JAs) are plant signaling molecules that play important roles in
defense against insects and necrotrophic pathogens. The JA signaling pathway is relatively well studied. In our lab, Arabidopsis ORA47 was demonstrated to be the direct upstream regulator of many JA biosynthetic genes by recognizing a novel cis-element, (AC/GT)CGNCCA, in their promoters. Furthermore, MYC2 was proved to be the direct upstream regulator of ORA47 by recognizing the G-box in its promoter. Gene expression analysis shows that ORA47 and JA biosynthesis genes are all up regulated in 35S::MYC2-GFP overexpression transgenic plants, but are not down regulated in myc2 knockout mutants. Therefore, we believed that there are other transcription factors which regulate ORA47 gene expression. In this study, I confirmed that Arabidopsis WRKY26 could recognize the W-box-like cis-acting sequences, TTGATC, inthe ORA47 promoter region by EMSA, transactivation assay and ChIP assay. We suggested WRKY26 may also involve in wound-induced JA signaling via regulated ORA47 gene expression. Gene expression analysis shows that ORA47 and JA biosynthesis genes are all up regulated in 35S::WRKY26-GFP overexpression transgenic plants but down regulated in wrky26 knockdown mutants. Also, 35S::WRKY26-GFP overexpression transgenic plants show JA-related phenotype while wrky26 knockdown mutants show no difference compared with wildtype. This study reveals that WRKY26 recognizes the W-box-like cis-acting sequence in the ORA47 promoter region and is involved in wound-induced JA signaling. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:44:31Z (GMT). No. of bitstreams: 1 ntu-104-R01b42012-1.pdf: 2472038 bytes, checksum: d64879a126b8ed3ac2ff0afb292b0f15 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 .........................................................i
摘要 ........................................................ii Abstract .......................................................iii 縮寫對照表 ......................................................viii 第一章 序論............................................................................................................ 1 1.1 傷害逆境的訊息傳導 ............................................................................... 1 1.2 JA 在植物體內的功能和作用機制 .......................................................... 1 1.3 JA 在植物體內的生合成路徑 .................................................................. 2 1.4 阿拉伯芥 WRKY 轉錄因子 - WRKY26 ................................................. 2 1.5 DNA 序列上的 W-box 和 W-box-like 片段 ............................................. 3 1.6 阿拉伯芥 AP2/ERF 轉錄因子 - ORA47 ................................................. 3 1.7 實驗策略與研究目標 ............................................................................... 4 第二章 材料與方法................................................................................................ 5 2.1 植物材料、生長條件 ............................................................................... 5 2.2 基因序列分析 ........................................................................................... 5 2.3 篩選 T -DNA 插入的 wrky26-2 突變株 .................................................... 5 2.4 35S::WRKY26-GFP-His 轉基因植物的建立 ........................................... 6 2.5 DNA 萃取及聚合酶連鎖反應 Polymerase Chain Reaction (PCR) ......... 6 2.6 RNA 萃取及反轉錄聚合酶連鎖反應 Reverse Transcription PCR (RT -PCR) ................................................................................................... 7 2.7 即時定量聚合酶連鎖反應 (Real-Time PCR) ......................................... 9 2.8 GST -WRKY26 重組蛋白質之純化 ........................................................ 10 2.9 電泳膠體位移分析 Electrophoretic Mobility Shift Assay (EMSA)....... 10 2.10 染色質免疫沉澱法 Chromatin Immunoprecipitation (ChIP) ................ 11 2.11 利用阿拉伯芥原生質體進行轉錄活性分析 Transactivation Assay .... 11 2.12 傷害逆境處理 ......................................................................................... 12 2.13 葉綠素含量測量 ..................................................................................... 12 第三章 結果.......................................................................................................... 13 3.1 阿拉伯芥 WRKY26 對 W-box-like 片段的辨認能力分析 ................... 13 3.2 WRKY26 辨認 W-box-like 片段的轉錄活性分析 ................................ 13 3.3 WRKY26 在植物體內結合 DNA 序列的能力 ..................................... 14 3.4 35S::WRKY26-GFP-His 轉基因植物的基因表現 ................................. 14 3.5 wrky26 knockdown 突變株的基因表現 ................................................. 15 3.6 35S::WRKY26-GFP-His 轉基因植物根部發育的外表型 ..................... 16 3.7 35S::WRKY26-GFP-His 轉基因植物生長發育的外表型 ..................... 16 3.8 35S::WRKY26-GFP-His 轉基因植物生長晚期的外表型 ..................... 17 第四章 討論.......................................................................................................... 18 參考文獻....................................................................................................................... 22 圖表............................................................................................................................... 25 附錄............................................................................................................................... 38 | |
| dc.language.iso | zh-TW | |
| dc.subject | ORA47 | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | 傷害逆境 | zh_TW |
| dc.subject | 茉莉酸 | zh_TW |
| dc.subject | MYC2 | zh_TW |
| dc.subject | WRKY26 | zh_TW |
| dc.subject | wound | en |
| dc.subject | ORA47 | en |
| dc.subject | WRKY26 | en |
| dc.subject | MYC2 | en |
| dc.subject | jasmonates | en |
| dc.subject | Arabidopsis | en |
| dc.title | 阿拉伯芥 WRKY26 轉錄因子在傷害逆境訊息傳遞路徑中調控 ORA47 基因 | zh_TW |
| dc.title | Arabidopsis WRKY26 transcription factor regulates
ORA47 gene expression involving in wounding signaling | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 顏宏真,鄭石通,吳克強,謝旭亮 | |
| dc.subject.keyword | 阿拉伯芥,傷害逆境,茉莉酸,MYC2,WRKY26,ORA47, | zh_TW |
| dc.subject.keyword | Arabidopsis,wound,jasmonates,MYC2,WRKY26,ORA47, | en |
| dc.relation.page | 45 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-02-09 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| Appears in Collections: | 植物科學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-104-1.pdf Restricted Access | 2.41 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
