Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55019
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林讚標
dc.contributor.authorChia-Ying Leeen
dc.contributor.author李佳縈zh_TW
dc.date.accessioned2021-06-16T03:44:31Z-
dc.date.available2015-03-16
dc.date.copyright2015-03-16
dc.date.issued2015
dc.date.submitted2015-02-09
dc.identifier.citationAndreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH, Zhu S, Qiu
JL, Micheelsen P, Rocher A, Petersen M, et al (2005) The MAP kinase substrate
MKS1 is a regulator of plant defense responses. EMBO J 24: 2579–2589
Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T,
Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate
immunity. Nature 415: 977–983
Chen C, Chen Z (2000) Isolation and characterization of two pathogen- and salicylic
acid-induced genes encoding WRKY DNA-binding proteins from tobacco. Plant Mol
Biol 42: 387–396
Chen L, Song Y , Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription
factors in plant abiotic stresses. Biochim Biophys Acta 1819: 120–128
Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G,
Lopez-Vidriero I, Lozano FM, Ponce MR, et al (2007) The JAZ family of
repressors is the missing link in jasmonate signalling. Nature 448: 666–671
Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE (2008) Studies on DNA-binding
selectivity of WRKY transcription factors lend structural clues into WRKY -domain
function. Plant Mol Biol 68: 81–92
Clough SJ, Bent AF (1998) Floral dip: a simplified method for
Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743
Cormack RS, Eulgem T, Rushton PJ, Ko‥chner P, Hahlbrock K, Somssich IE (2002)
Leucine zipper containing WRKY proteins widen the spectrum of immediate early
elicitor-induced WRKY transcription factors in parsley. Biochim Biophys Acta 1576:
92–100
de Pater S, Greco V, Pham K, Memelink J, Kijne J (1996) Characterization of a
zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Res 24:
4624–4631
Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of
plant transcription factors. Trends Plant Sci 5: 199–206
Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O,
Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-L-isoleucine is the
endogenous bioactive jasmonate. Nat Chem Biol 5: 344–350
Gendrel AV, Lippman Z, Martienssen R, Colot V (2005) Profiling histone
modification patterns in plants using genomic tiling microarrays. Nat Methods 2:
213–218
Gfeller A, Dubugnon L, Liechti R, Farmer EE (2010) Jasmonate biochemical
pathway. Sci Signal 3: cm3
Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol
59: 41–66
Hyun Y, Choi S, Hwang HJ, Yu J, Nam SJ, Ko J, Park JY, Seo YS, Kim EY, Ryu
SB, et al (2008) Cooperation and functional diversification of two closely related
galactolipase genes for jasmonate biosynthesis. Dev Cell 14: 183–192
Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant
Physiol. 146: 1459–1468
Li S, Fu Q, Chen L, Huang W, Yu D (2011) Arabidopsis thaliana WRKY25,
WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:
1237–1252
Mao P, Duan M, Wei C, Li Y (2007) WRKY62 transcription factor acts downstream of
cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression.
Plant Cell Physiol 48: 833–842
Mitsuda N, Ikeda M, Takada S, Takiguchi Y, Kondou Y, Yoshizumi T, Fujita M,
Shinozaki K, Matsui M, Ohme-Takagi M (2010) Efficient yeast one-/two-hybrid
screening using a library composed only of transcription factors in Arabidopsis
thaliana. Plant Cell Physiol 51: 2145–2151
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with
tobacco tissue cultures. Physiol Plant 15: 473–497.
Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the
ERF gene family in Arabidopsis and rice. Plant Physiol 140: 411–432
Nakano T, Suzuki K, Ohtsuki N, Tsujimoto Y, Fujimura T, Shinshi H (2006)
Identification of genes of the plant-specific transcription-factor families
cooperatively regulated by ethylene and jasmonate in Arabidopsis thaliana. J Plant
Res 119: 407–413
Pauwels L, Morreel K, De Witte E, Lammertyn F, Van Montagu M, Boerjan W,
Inze D, Goossens A (2008) Mapping methyl jasmonate-mediated transcriptional
reprogramming of metabolism and cell cycle progression in cultured Arabidopsis
cells. Proc Natl Acad Sci USA 105: 1380–1385
Pauwels L, Goossens A (201 1) The JAZ proteins: a crucial interface in the jasmonate
signaling cascade. Plant Cell 23: 3089–3100
Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012)
Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28: 489–521
Pre M (2006) ORA EST: functional analysis of jasmonate-responsive AP2/ERF domain
transcription factors in Arabidopsis thaliana. Ph.D. Thesis, Leiden University, Leiden,
The Netherlands.
Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda
O, Ratcliffe OJ, Samaha RR, et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105–2110
Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996)
Interaction of elicitor-induced DNA binding proteins with elicitor response elements
in the promoters of parsley PR1 genes. EMBO J 15: 5690–5700
Rushton PJ, Somssich IE, Ringler P , Shen QJ (2010) WRKY transcription factors.
Trends Plant Sci 15: 247–258
Seo HS, Song JT, Cheong JJ, Lee YH, Lee YW, Hwang I, Lee JS, Choi YD (2001)
Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated
plant responses. Proc Natl Acad Sci USA 98: 4788–4793
Skirycz A, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, Zanor MI,
Gershenzon J, Strnad M, Szopa J, et al (2006) DOF transcription factor AtDof1.1
(OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in
Arabidopsis. Plant J 47: 10–24
Song S, Qi T, Huang H, Ren Q, Wu D, Chang C, Peng W, Liu Y, Peng J, Xie D
(2011) The Jasmonate-ZIM domain proteins interact with the R2R3-MYB
transcription factors MYB21 and MYB24 to affect Jasmonate-regulated stamen
development in Arabidopsis. Plant Cell 23: 1000–1013
Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an
enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16: 2117–2127
van Verk MC, Bol JF, Linthorst HJ (2011) Prospecting for genes involved in
transcriptional regulation of plant defenses, a bioinformatics approach. BMC Plant
Biol 11: 88
Wang Z, Yang P, Fan B, Chen Z (1998) An oligo selection procedure for identification
of sequence-specific DNA-binding activities associated with plant defense. Plant J 16:
515–522
Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and
action in plant stress response, growth and development. Ann Bot 100: 681–697
Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal
transduction and action in plant stress response, growth and development. An update
to the 2007 review in Annals of Botany. Ann Bot 111: 1021–1058
Weiste C, Iven T, Fischer U, Onate-Sanchez L, Droge-Laser W (2007) In planta
ORFeome analysis by large-scale over-expression of GATEWAY -compatible cDNA
clones: screening of ERF transcription factors involved in abiotic stress defense.
Plant J 52: 382–390
Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell
system for transient gene expression analysis. Nat Protoc 2: 1565–1572
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55019-
dc.description.abstract許多研究報導指出當植物受到傷害逆境的時候,會傳遞茉莉酸 (JA)訊息並
且誘導由 MYCs 和 ERFs 轉錄因子所調控的下游基因,進而啟動防禦機制。阿拉
伯芥 ORA47 為 AP2/ERF 轉錄因子的一員,在傷害逆境下會被誘導表現,本實驗
室前人研究中發現,ORA47 藉由辨認下游基因啟動子區域中嶄新的 cis-element
(AC/GT)CGNCCA,正向調控 JA 生合成基因 LOX、AOS、AOC、OPR3、JAR1,
受傷害逆境活化的 MYC2 在傷害逆境下會辨認 ORA47 啟動子區域中的 G-box 序
列,作為 ORA47 上游正調控者,進而誘導 JA 生合成並形成正回饋路徑,在 MYC2
大量表現的轉殖株中可以偵測到被誘導表現的 ORA47 和 JA 生合成基因,然而在
myc2 knockout 突變株中,ORA47 和 JA 生合成基因表現量沒有顯著下降,所以
我們想找出其他的 ORA47 上游調控者。2008 年的文獻指出 WRKY 轉錄因子
WRKY26 具有能夠辨認 W-box-like (TTGATC)序列的能力,而我們在 ORA47 啟
動子區域中找到 4 個 W-box-like 可能的辨認位置,於是利用 EMSA 、 transactivation
assay 和 ChIP 等實驗證實,WRKY26 會結合 W-box-like 4 這段 ORA47 啟動子區
域中的 DNA 序列。WRKY26 大量表現的轉殖株中,ORA47 和 JA 生合成基因在
傷害逆境下表現量都會被誘導,植株本身則有根部延長受到抑制、側根發展較促
進、生長緩慢和延遲老化等 JA 大量累積的外表型,而 wrky26 knockdown 突變株
中,ORA47 和 JA 生合成基因表現量都有些微下降,突變株的外表型則與野生型
沒有太大差異。總結本篇研究證實 WRKY26 作為 ORA47 上游正向調控因子,參
與傷害逆境誘導的 JA 訊息傳遞中,活化 JA 生合成基因表現。
zh_TW
dc.description.abstractJasmonates (JAs) are plant signaling molecules that play important roles in
defense against insects and necrotrophic pathogens. The JA signaling pathway is
relatively well studied. In our lab, Arabidopsis ORA47 was demonstrated to be the
direct upstream regulator of many JA biosynthetic genes by recognizing a novel
cis-element, (AC/GT)CGNCCA, in their promoters. Furthermore, MYC2 was proved
to be the direct upstream regulator of ORA47 by recognizing the G-box in its promoter.
Gene expression analysis shows that ORA47 and JA biosynthesis genes are all up
regulated in 35S::MYC2-GFP overexpression transgenic plants, but are not down
regulated in myc2 knockout mutants. Therefore, we believed that there are other
transcription factors which regulate ORA47 gene expression. In this study, I
confirmed that Arabidopsis WRKY26 could recognize the W-box-like cis-acting
sequences, TTGATC, inthe ORA47 promoter region by EMSA, transactivation assay
and ChIP assay. We suggested WRKY26 may also involve in wound-induced JA
signaling via regulated ORA47 gene expression. Gene expression analysis shows that
ORA47 and JA biosynthesis genes are all up regulated in 35S::WRKY26-GFP
overexpression transgenic plants but down regulated in wrky26 knockdown mutants.
Also, 35S::WRKY26-GFP overexpression transgenic plants show JA-related
phenotype while wrky26 knockdown mutants show no difference compared with
wildtype. This study reveals that WRKY26 recognizes the W-box-like cis-acting
sequence in the ORA47 promoter region and is involved in wound-induced JA
signaling.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:44:31Z (GMT). No. of bitstreams: 1
ntu-104-R01b42012-1.pdf: 2472038 bytes, checksum: d64879a126b8ed3ac2ff0afb292b0f15 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 .........................................................i
摘要 ........................................................ii
Abstract .......................................................iii
縮寫對照表 ......................................................viii
第一章 序論............................................................................................................ 1
1.1 傷害逆境的訊息傳導 ............................................................................... 1
1.2 JA 在植物體內的功能和作用機制 .......................................................... 1
1.3 JA 在植物體內的生合成路徑 .................................................................. 2
1.4 阿拉伯芥 WRKY 轉錄因子 - WRKY26 ................................................. 2
1.5 DNA 序列上的 W-box 和 W-box-like 片段 ............................................. 3
1.6 阿拉伯芥 AP2/ERF 轉錄因子 - ORA47 ................................................. 3
1.7 實驗策略與研究目標 ............................................................................... 4
第二章 材料與方法................................................................................................ 5
2.1 植物材料、生長條件 ............................................................................... 5
2.2 基因序列分析 ........................................................................................... 5
2.3 篩選 T -DNA 插入的 wrky26-2 突變株 .................................................... 5
2.4 35S::WRKY26-GFP-His 轉基因植物的建立 ........................................... 6
2.5 DNA 萃取及聚合酶連鎖反應 Polymerase Chain Reaction (PCR) ......... 6
2.6 RNA 萃取及反轉錄聚合酶連鎖反應 Reverse Transcription PCR
(RT -PCR) ................................................................................................... 7
2.7 即時定量聚合酶連鎖反應 (Real-Time PCR) ......................................... 9
2.8 GST -WRKY26 重組蛋白質之純化 ........................................................ 10
2.9 電泳膠體位移分析 Electrophoretic Mobility Shift Assay (EMSA)....... 10
2.10 染色質免疫沉澱法 Chromatin Immunoprecipitation (ChIP) ................ 11
2.11 利用阿拉伯芥原生質體進行轉錄活性分析 Transactivation Assay .... 11
2.12 傷害逆境處理 ......................................................................................... 12
2.13 葉綠素含量測量 ..................................................................................... 12
第三章 結果.......................................................................................................... 13
3.1 阿拉伯芥 WRKY26 對 W-box-like 片段的辨認能力分析 ................... 13
3.2 WRKY26 辨認 W-box-like 片段的轉錄活性分析 ................................ 13
3.3 WRKY26 在植物體內結合 DNA 序列的能力 ..................................... 14
3.4 35S::WRKY26-GFP-His 轉基因植物的基因表現 ................................. 14
3.5 wrky26 knockdown 突變株的基因表現 ................................................. 15
3.6 35S::WRKY26-GFP-His 轉基因植物根部發育的外表型 ..................... 16
3.7 35S::WRKY26-GFP-His 轉基因植物生長發育的外表型 ..................... 16
3.8 35S::WRKY26-GFP-His 轉基因植物生長晚期的外表型 ..................... 17
第四章 討論.......................................................................................................... 18
參考文獻....................................................................................................................... 22
圖表............................................................................................................................... 25
附錄............................................................................................................................... 38
dc.language.isozh-TW
dc.subjectORA47zh_TW
dc.subject阿拉伯芥zh_TW
dc.subject傷害逆境zh_TW
dc.subject茉莉酸zh_TW
dc.subjectMYC2zh_TW
dc.subjectWRKY26zh_TW
dc.subjectwounden
dc.subjectORA47en
dc.subjectWRKY26en
dc.subjectMYC2en
dc.subjectjasmonatesen
dc.subjectArabidopsisen
dc.title阿拉伯芥 WRKY26 轉錄因子在傷害逆境訊息傳遞路徑中調控 ORA47 基因zh_TW
dc.titleArabidopsis WRKY26 transcription factor regulates
ORA47 gene expression involving in wounding signaling
en
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee顏宏真,鄭石通,吳克強,謝旭亮
dc.subject.keyword阿拉伯芥,傷害逆境,茉莉酸,MYC2,WRKY26,ORA47,zh_TW
dc.subject.keywordArabidopsis,wound,jasmonates,MYC2,WRKY26,ORA47,en
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2015-02-09
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
Appears in Collections:植物科學研究所

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
2.41 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved