Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55011
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳金洌
dc.contributor.authorMing-Ching Linen
dc.contributor.author林明靜zh_TW
dc.date.accessioned2021-06-16T03:44:16Z-
dc.date.available2020-03-13
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-02-09
dc.identifier.citationAbdul-Sater AA, Koo E, Hacker G, Ojcius DM. 2009. Inflammasome-dependent caspase-1 activation in cervical epithelial cells stimulates growth of the intracellular pathogen Chlamydia trachomatis. J Biol Chem 284(39): 26789-96.
Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G. 2006. Inflammation and cancer: how hot is the link? Biochem Pharmacol 72(11): 1605-21.
Akira S, Takeda K. 2004. Toll-like receptor signalling. Nat Rev Immunol 4(7): 499-511.
Alexander C, Rietschel ET. 2001. Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7(3): 167-202.
Alvarez-Sanchez ME, Carvajal-Gamez BI, Solano-Gonzalez E, Martinez-Benitez M, Garcia AF, Alderete JF, Arroyo R. 2008. Polyamine depletion down-regulates expression of the Trichomonas vaginalis cytotoxic CP65, a 65-kDa cysteine proteinase involved in cellular damage. Int J Biochem Cell Biol 40(11): 2442-51.
An H, Yu Y, Zhang M, Xu H, Qi R, Yan X, Liu S, Wang W, Guo Z, Guo J, Qin Z, Cao X. 2002. Involvement of ERK, p38 and NF-kappaB signal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cells. Immunology 106(1): 38-45.
Bachmann LH, Hobbs MM, Sena AC, Sobel JD, Schwebke JR, Krieger JN, McClelland RS, Workowski KA. 2011. Trichomonas vaginalis genital infections: progress and challenges. Clin Infect Dis 53 Suppl 3: S160-72.
Backhed F, Hornef M. 2003. Toll-like receptor 4-mediated signaling by epithelial surfaces: necessity or threat? Microbes Infect 5(11): 951-9.
Bergsson G, Agerberth B, Jornvall H, Gudmundsson GH. 2005. Isolation and identification of antimicrobial components from the epidermal mucus of Atlantic cod (Gadus morhua). FEBS J 272(19): 4960-9.
Brown KL, Hancock RE. 2006. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 18(1): 24-30.
Carmona-Ribeiro AM, de Melo Carrasco LD. 2014. Novel formulations for antimicrobial peptides. Int J Mol Sci. 15(10): 18040-83.
Cauci S, Culhane JF. 2007. Modulation of vaginal immune response among pregnant women with bacterial vaginosis by Trichomonas vaginalis, Chlamydia trachomatis, Neisseria gonorrhoeae, and yeast. Am J Obstet Gynecol 196(2): 133 e1-7.
Chang JH, Park JY, Kim SK. 2006. Dependence on p38 MAPK signalling in the up-regulation of TLR2, TLR4 and TLR9 gene expression in Trichomonas vaginalis-treated HeLa cells. Immunology 118(2): 164-70.
Chang WT, Pan CY, Rajanbabu V, Cheng CW, Chen JY. 2011. Tilapia (Oreochromis mossambicus) antimicrobial peptide, hepcidin 1-5, shows antitumor activity in cancer cells. Peptides 32(2): 342-52.
Chen JY, Lin WJ, Lin TL. 2009a. A fish antimicrobial peptide, tilapia hepcidin TH2-3, shows potent antitumor activity against human fibrosarcoma cells. Peptides 30(9): 1636-42.
Chen JY, Lin WJ, Wu JL, Her GM, Hui CF. 2009b. Epinecidin-1 peptide induces apoptosis which enhances antitumor effects in human leukemia U937 cells. Peptides 30(12): 2365-73.
Chia TJ, Wu YC, Chen JY, Chi SC. 2010. Antimicrobial peptides (AMP) with antiviral activity against fish nodavirus. Fish Shellfish Immunol 28(3): 434-9.
Cho JH, Park IY, Kim MS, Kim SC. 2002. Matrix metalloproteinase 2 is involved in the regulation of the antimicrobial peptide parasin I production in catfish skin mucosa. FEBS Lett 531(3): 459-63.
Chu-Kung AF, Bozzelli KN, Lockwood NA, Haseman JR, Mayo KH, Tirrell MV. 2004. Promotion of peptide antimicrobial activity by fatty acid conjugation. Bioconjug Chem 15(3): 530-5.
De Domenico I, Zhang TY, Koening CL, Branch RW, London N, Lo E, Daynes RA, Kushner JP, Li D, Ward DM, Kaplan J. 2010. Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice. J Clin Invest 120(7): 2395-405.
Diks SH, Richel DJ, Peppelenbosch MP. 2004. LPS signal transduction: the picture is becoming more complex. Curr Top Med Chem 4(11): 1115-26.
Eckelman BP, Salvesen GS, Scott FL. 2006. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7(10): 988-94.
Evan GI, Vousden KH. 2001. Proliferation, cell cycle and apoptosis in cancer. Nature 411(6835): 342-8.
Falco A, Ortega-Villaizan M, Chico V, Brocal I, Perez L, Coll JM, Estepa A. 2009. Antimicrobial peptides as model molecules for the development of novel antiviral agents in aquaculture. Mini Rev Med Chem 9(10): 1159-64.
Fassi Fehri L, Wroblewski H, Blanchard A. 2007. Activities of antimicrobial peptides and synergy with enrofloxacin against Mycoplasma pulmonis. Antimicrob Agents Chemother 51(2): 468-74.
Gatski M, Kissinger P. 2010. Observation of probable persistent, undetected Trichomonas vaginalis infection among HIV-positive women. Clin Infect Dis 51(1): 114-5.
Ghobrial IM, Witzig TE, Adjei AA. 2005. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 55(3): 178-94.
Goral J, Kovacs EJ. 2005. In vivo ethanol exposure down-regulates TLR2-, TLR4-, and TLR9-mediated macrophage inflammatory response by limiting p38 and ERK1/2 activation. J Immunol 174(1): 456-63.
Guzik TJ, Korbut R, Adamek-Guzik T. 2003. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 54(4): 469-87.
Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408(6813): 740-5.
Hirono I, Hwang JY, Ono Y, Kurobe T, Ohira T, Nozaki R, Aoki T. 2005. Two different types of hepcidins from the Japanese flounder Paralichthys olivaceus. FEBS J 272(20): 5257-64.
Hoskin DW, Ramamoorthy A. 2008. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778(2): 357-75.
Hsieh JC, Pan CY, Chen JY. 2010. Tilapia hepcidin (TH)2-3 as a transgene in transgenic fish enhances resistance to Vibrio vulnificus infection and causes variations in immune-related genes after infection by different bacterial species. Fish Shellfish Immunol 29(3): 430-9.
Hsu HM, Ong SJ, Lee MC, Tai JH. 2009. Transcriptional regulation of an iron-inducible gene by differential and alternate promoter entries of multiple Myb proteins in the protozoan parasite Trichomonas vaginalis. Eukaryot Cell 8(3): 362-72.
Hsu JC, Lin LC, Tzen JT, Chen JY. 2011a. Pardaxin-induced apoptosis enhances antitumor activity in HeLa cells. Peptides 32(6): 1110-6.
Hsu RY, Chan CH, Spicer JD, Rousseau MC, Giannias B, Rousseau S, Ferri LE. 2011b. LPS-induced TLR4 signaling in human colorectal cancer cells increases beta1 integrin-mediated cell adhesion and liver metastasis. Cancer Res 71(5): 1989-98.
Huang GT, Zhang HB, Kim D, Liu L, Ganz T. 2002. A model for antimicrobial gene therapy: demonstration of human beta-defensin 2 antimicrobial activities in vivo. Hum Gene Ther 13(17): 2017-25.
Huang HN, Pan CY, Rajanbabu V, Chan YL, Wu CJ, Chen JY. 2011a. Modulation of immune responses by the antimicrobial peptide, epinecidin (Epi)-1, and establishment of an Epi-1-based inactivated vaccine. Biomaterials 32(14): 3627-36.
Huang HN, Rajanbabu V, Pan CY, Chan YL, Hui CF, Chen JY, Wu CJ. 2011b. Modulation of the immune-related gene responses to protect mice against Japanese encephalitis virus using the antimicrobial peptide, tilapia hepcidin 1-5. Biomaterials 32(28): 6804-14.
Huang TC, Lee JF, Chen JY. 2011c. Pardaxin, an antimicrobial peptide, triggers caspase-dependent and ROS-mediated apoptosis in HT-1080 cells. Mar Drugs 9(10): 1995-2009.
Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H. 2001. Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104(5): 781-90.
Ibana JA, Belland RJ, Zea AH, Schust DJ, Nagamatsu T, AbdelRahman YM, Tate DJ, Beatty WL, Aiyar AA, Quayle AJ. 2011. Inhibition of indoleamine 2,3-dioxygenase activity by levo-1-methyl tryptophan blocks gamma interferon-induced Chlamydia trachomatis persistence in human epithelial cells. Infect Immun 79(11): 4425-37.
Ikebe M, Kitaura Y, Nakamura M, Tanaka H, Yamasaki A, Nagai S, Wada J, Yanai K, Koga K, Sato N, Kubo M, Tanaka M, Onishi H, Katano M. 2009. Lipopolysaccharide (LPS) increases the invasive ability of pancreatic cancer cells through the TLR4/MyD88 signaling pathway. J Surg Oncol 100(8): 725-31.
Kennedy MN, Mullen GE, Leifer CA, Lee C, Mazzoni A, Dileepan KN, Segal DM. 2004. A complex of soluble MD-2 and lipopolysaccharide serves as an activating ligand for Toll-like receptor 4. J Biol Chem 279(33): 34698-704.
Kischkel FC, Lawrence DA, Tinel A, LeBlanc H, Virmani A, Schow P, Gazdar A, Blenis J, Arnott D, Ashkenazi A. 2001. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 276(49): 46639-46.
Kissinger P, Secor WE, Leichliter JS, Clark RA, Schmidt N, Curtin E, Martin DH. 2008. Early repeated infections with Trichomonas vaginalis among HIV-positive and HIV-negative women. Clin Infect Dis 46(7): 994-9.
Kovacs-Nolan J, Mapletoft JW, Latimer L, Babiuk LA, Hurk S. 2009. CpG oligonucleotide, host defense peptide and polyphosphazene act synergistically, inducing long-lasting, balanced immune responses in cattle. Vaccine 27(14): 2048-54.
Kucknoor A, Mundodi V, Alderete JF. 2005. Trichomonas vaginalis adherence mediates differential gene expression in human vaginal epithelial cells. Cell Microbiol 7(6): 887-97.
Kucknoor AS, Mundodi V, Alderete JF. 2007. The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65. Cell Microbiol 9(11): 2586-97.
Kyriakis JM, Avruch J. 2001. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81(2): 807-69.
Lama A, Kucknoor A, Mundodi V, Alderete JF. 2009. Glyceraldehyde-3-phosphate dehydrogenase is a surface-associated, fibronectin-binding protein of Trichomonas vaginalis. Infect Immun 77(7): 2703-11.
Lau KS, Grange RW, Isotani E, Sarelius IH, Kamm KE, Huang PL, Stull JT. 2000. nNOS and eNOS modulate cGMP formation and vascular response in contracting fast-twitch skeletal muscle. Physiol Genomics 2(1): 21-7.
Lee SC, Pan CY, Chen JY. 2012. The antimicrobial peptide, epinecidin-1, mediates secretion of cytokines in the immune response to bacterial infection in mice. Peptides 36(1): 100-8.
Levy SB, Marshall B. 2004. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10(12 Suppl): S122-9.
Li B, Zhang YL. 2002. Identification of up-regulated genes in human uterine leiomyoma by suppression subtractive hybridization. Cell Res 12(3-4): 215-21.
Lin MC, Hui CF, Chen JY, Wu JL. 2013a. The antimicrobial peptide, shrimp anti-lipopolysaccharide factor (SALF), inhibits proinflammatory cytokine expressions through the MAPK and NF-κB pathways in Trichomonas vaginalis adherent to HeLa cells. Peptides 38(2): 197-207.
Lin MC, Hui CF, Chen JY, Wu JL. 2013b. Truncated antimicrobial peptides from marine organisms retain anticancer activity and antibacterial activity against multidrug-resistant Staphylococcus aureus. Peptides 44: 139-48.
Lin MC, Lin SB, Chen JC, Hui CF, Chen JY. 2010a. Shrimp anti-lipopolysaccharide factor peptide enhances the antitumor activity of cisplatin in vitro and inhibits HeLa cells growth in nude mice. Peptides 31(6): 1019-25.
Lin MC, Lin SB, Lee SC, Lin CC, Hui CF, Chen JY. 2010b. Antimicrobial peptide of an anti-lipopolysaccharide factor modulates of the inflammatory response in RAW264.7 cells. Peptides 31(7): 1262-72.
Lin MC, Pan CY, Hui CF, Chen JY, Wu JL. 2013c. Shrimp anti-lipopolysaccharide factor (SALF), an antimicrobial peptide, inhibits proinflammatory cytokine expressions through the MAPK and NF-κB pathways in LPS-induced HeLa cells. Peptides 40: 42-8.
Lin WJ, Chien YL, Pan CY, Lin TL, Chen JY, Chiu SJ, Hui CF. 2009. Epinecidin-1, an antimicrobial peptide from fish (Epinephelus coioides) which has an antitumor effect like lytic peptides in human fibrosarcoma cells. Peptides 30(2): 283-90.
Liu L, Li YH, Niu YB, Sun Y, Guo ZJ, Li Q, Li C, Feng J, Cao SS, Mei QB. 2010. An apple oligogalactan prevents against inflammation and carcinogenesis by targeting LPS/TLR4/NF-kappaB pathway in a mouse model of colitis-associated colon cancer. Carcinogenesis 31(10): 1822-32.
Mader JS, Mookherjee N, Hancock RE, Bleackley RC. 2009. The human host defense peptide LL-37 induces apoptosis in a calpain- and apoptosis-inducing factor-dependent manner involving Bax activity. Mol Cancer Res 7(5): 689-702.
Mader JS, Salsman J, Conrad DM, Hoskin DW. 2005. Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol Cancer Ther 4(4): 612-24.
Makovitzki A, Avrahami D, Shai Y. 2006. Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci U S A 103(43): 15997-6002.
McClelland RS. 2008. Trichomonas vaginalis infection: can we afford to do nothing? J Infect Dis 197(4): 487-9.
Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K, Roche FM, Mu R, Doho GH, Pistolic J, Powers JP, Bryan J, Brinkman FS, Hancock RE. 2006. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol 176(4): 2455-64.
Motzkus D, Schulz-Maronde S, Heitland A, Schulz A, Forssmann WG, Jubner M, Maronde E. 2006. The novel beta-defensin DEFB123 prevents lipopolysaccharide-mediated effects in vitro and in vivo. FASEB J 20(10): 1701-2.
Munson E, Napierala M, Olson R, Endes T, Block T, Hryciuk JE, Schell RF. 2008. Impact of Trichomonas vaginalis transcription-mediated amplification-based analyte-specific-reagent testing in a metropolitan setting of high sexually transmitted disease prevalence. J Clin Microbiol 46(10): 3368-74.
Murakami T, Obata T, Kuwahara-Arai K, Tamura H, Hiramatsu K, Nagaoka I. 2009. Antimicrobial cathelicidin polypeptide CAP11 suppresses the production and release of septic mediators in D-galactosamine-sensitized endotoxin shock mice. Int Immunol 21(8): 905-12.
Murakami T, Yomogida S, Someya A, Kuwahara-Arai K, Tamura H, Nagaoka I. 2007. Antibacterial cathelicidin peptide CAP11 suppresses the anandamide production from lipopolysaccharide-stimulated mononuclear phagocytes. FEBS Lett 581(1): 140-4.
Nagaoka I, Hirota S, Niyonsaba F, Hirata M, Adachi Y, Tamura H, Heumann D. 2001. Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-alpha by blocking the binding of LPS to CD14(+) cells. J Immunol 167(6): 3329-38.
Narimatsu R, Wolday D, Patterson BK. 2005. IL-8 increases transmission of HIV type 1 in cervical explant tissue. AIDS Res Hum Retroviruses 21(3): 228-33.
Nathan C. 2002. Points of control in inflammation. Nature 420(6917): 846-52.
Noga EJ, Ullal AJ, Corrales J, Fernandes JM. 2011. Application of antimicrobial polypeptide host defenses to aquaculture: Exploitation of downregulation and upregulation responses. Comp Biochem Physiol Part D Genomics Proteomics 6(1): 44-54.
Oberyszyn TM. 2007. Inflammation and wound healing. Front Biosci 12: 2993-9.
Okumura CY, Baum LG, Johnson PJ. 2008. Galectin-1 on cervical epithelial cells is a receptor for the sexually transmitted human parasite Trichomonas vaginalis. Cell Microbiol 10(10): 2078-90.
Okun N, Gronau KA, Hannah ME. 2005. Antibiotics for bacterial vaginosis or Trichomonas vaginalis in pregnancy: a systematic review. Obstet Gynecol 105(4): 857-68.
Palsson-McDermott EM, O'Neill LA. 2004. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113(2): 153-62.
Pan CY, Chao TT, Chen JC, Chen JY, Liu WC, Lin CH, Kuo CM. 2007a. Shrimp (Penaeus monodon) anti-lipopolysaccharide factor reduces the lethality of Pseudomonas aeruginosa sepsis in mice. Int Immunopharmacol 7(5): 687-700.
Pan CY, Chen JY, Cheng YS, Chen CY, Ni IH, Sheen JF, Pan YL, Kuo CM. 2007b. Gene expression and localization of the epinecidin-1 antimicrobial peptide in the grouper (Epinephelus coioides), and its role in protecting fish against pathogenic infection. DNA Cell Biol 26(6): 403-13.
Pan CY, Chen JY, Lin TL, Lin CH. 2009. In vitro activities of three synthetic peptides derived from epinecidin-1 and an anti-lipopolysaccharide factor against Propionibacterium acnes, Candida albicans, and Trichomonas vaginalis. Peptides 30(6): 1058-68.
Pan CY, Chow TY, Yu CY, Yu CY, Chen JC, Chen JY. 2010a. Antimicrobial peptides of an anti-lipopolysaccharide factor, epinecidin-1, and hepcidin reduce the lethality of Riemerella anatipestifer sepsis in ducks. Peptides 31(5): 806-15.
Pan CY, Rajanbabu V, Chen JY, Her GM, Nan FH. 2010b. Evaluation of the epinecidin-1 peptide as an active ingredient in cleaning solutions against pathogens. Peptides 31(8): 1449-58.
Pan CY, Wu JL, Hui CF, Lin CH, Chen JY. 2011. Insights into the antibacterial and immunomodulatory functions of the antimicrobial peptide, epinecidin-1, against Vibrio vulnificus infection in zebrafish. Fish Shellfish Immunol 31(6): 1019-25.
Park Y, Kim HJ, Hahm KS. 2004. Antibacterial synergism of novel antibiotic peptides with chloramphenicol. Biochem Biophys Res Commun 321(1): 109-15.
Pattullo L, Griffeth S, Ding L, Mortensen J, Reed J, Kahn J, Huppert J. 2009. Stepwise diagnosis of Trichomonas vaginalis infection in adolescent women. J Clin Microbiol 47(1): 59-63.
Peravali JB, Kotra SR, Sobha K, Nelson R, Rajesh KV, Pulicherla KK. 2013. Antimicrobial peptides: an effective alternative for antibiotic therapy. Min J Pharm Med Sci 2(2): 1-7.
Peschel A, Sahl HG. 2006. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4(7): 529-36.
Chiou P, Khoo J, Bols NC, Douglas S, Chen TT. 2006. Effects of linear cationic alpha-helical antimicrobial peptides on immune-relevant genes in trout macrophages. Dev Comp Immunol 30(9): 797-806.
Peterman TA, Tian LH, Metcalf CA, Malotte CK, Paul SM, Douglas JM, Jr. 2009. Persistent, undetected Trichomonas vaginalis infections? Clin Infect Dis 48(2): 259-60.
Pitti RM, Marsters SA, Lawrence DA, Roy M, Kischkel FC, Dowd P, Huang A, Donahue CJ, Sherwood SW, Baldwin DT, Godowski PJ, Wood WI, Gurney AL, Hillan KJ, Cohen RL, Goddard AD, Botstein D, Ashkenazi A. 1998. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 396(6712): 699-703.
Pridmore AC, Jarvis GA, John CM, Jack DL, Dower SK, Read RC. 2003. Activation of toll-like receptor 2 (TLR2) and TLR4/MD2 by Neisseria is independent of capsule and lipooligosaccharide (LOS) sialylation but varies widely among LOS from different strains. Infect Immun 71(7): 3901-8.
Radzishevsky IS, Rotem S, Bourdetsky D, Navon-Venezia S, Carmeli Y, Mor A. 2007. Improved antimicrobial peptides based on acyl-lysine oligomers. Nat Biotechnol 25(6): 657-9.
Rajanbabu V, Chen JY. 2011a. The antimicrobial peptide, tilapia hepcidin 2-3, and PMA differentially regulate the protein kinase C isoforms, TNF-alpha and COX-2, in mouse RAW264.7 macrophages. Peptides 32(2): 333-41.
Rajanbabu V, Chen JY. 2011b. Antiviral function of tilapia hepcidin 1-5 and its modulation of immune-related gene expressions against infectious pancreatic necrosis virus (IPNV) in Chinook salmon embryo (CHSE)-214 cells. Fish Shellfish Immunol 30(1): 39-44.
Rajanbabu V, Chen JY. 2011c. Applications of antimicrobial peptides from fish and perspectives for the future. Peptides 32(2): 415-20.
Rajanbabu V, Pan CY, Lee SC, Lin WJ, Lin CC, Li CL, Chen JY. 2010. Tilapia hepcidin 2-3 peptide modulates lipopolysaccharide-induced cytokines and inhibits tumor necrosis factor-alpha through cyclooxygenase-2 and phosphodiesterase 4D. J Biol Chem 285(40): 30577-86.
Ramon-Luing Lde L, Rendon-Gandarilla FJ, Puente-Rivera J, Avila-Gonzalez L, Arroyo R. 2011. Identification and characterization of the immunogenic cytotoxic TvCP39 proteinase gene of Trichomonas vaginalis. Int J Biochem Cell Biol 43(10): 1500-11.
Rand KH, Houck H. 2004. Daptomycin synergy with rifampicin and ampicillin against vancomycin-resistant enterococci. J Antimicrob Chemother 53(3): 530-2.
Rankin JA. 2004. Biological mediators of acute inflammation. AACN Clin Issues 15(1): 3-17.
Rao KM, Meighan T, Bowman L. 2002. Role of mitogen-activated protein kinase activation in the production of inflammatory mediators: differences between primary rat alveolar macrophages and macrophage cell lines. J Toxicol Environ Health A 65(10): 757-68.
Rathinakumar R, Wimley WC. 2008. Biomolecular engineering by combinatorial design and high-throughput screening: small, soluble peptides that permeabilize membranes. J Am Chem Soc 130(30): 9849-58.
Ren JD, Gu JS, Gao HF, Xia PY, Xiao GX. 2008. A synthetic cyclic peptide derived from Limulus anti-lipopolysaccharide factor neutralizes endotoxin in vitro and in vivo. Int Immunopharmacol 8(6): 775-81.
Riedl SJ, Salvesen GS. 2007. The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8(5): 405-13.
Sartor RB. 2008. Microbial influences in inflammatory bowel diseases. Gastroenterology 134(2): 577-94.
Schindler JF, Monahan JB, Smith WG. 2007. p38 pathway kinases as anti-inflammatory drug targets. J Dent Res 86(9): 800-11.
Shafir SC, Sorvillo FJ, Smith L. 2009. Current issues and considerations regarding trichomoniasis and human immunodeficiency virus in African-Americans. Clin Microbiol Rev 22(1): 37-45, Table of Contents.
Sharma S, Yedery RD, Patgaonkar MS, Selvaakumar C, Reddy KV. 2011. Antibacterial activity of a synthetic peptide that mimics the LPS binding domain of Indian mud crab, Scylla serrata anti-lipopolysaccharide factor (SsALF) also involved in the modulation of vaginal immune functions through NF-kB signaling. Microb Pathog 50(3-4): 179-91.
Siegel RM. 2006. Caspases at the crossroads of immune-cell life and death. Nat Rev Immunol 6(4): 308-17.
Smith VJ, Desbois AP, Dyrynda EA. 2010. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar Drugs 8(4): 1213-62.
Spear GT, St John E, Zariffard MR. 2007. Bacterial vaginosis and human immunodeficiency virus infection. AIDS Res Ther 4: 25.
Subramanian S, Ross NW, Mackinnon SL. 2008. Comparison of the biochemical composition of normal epidermal mucus and extruded slime of hagfish (Myxine glutinosa L.). Fish Shellfish Immunol 25(5): 625-32.
Sung WS, Lee J, Lee DG. 2008. Fungicidal effect and the mode of action of piscidin 2 derived from hybrid striped bass. Biochem Biophys Res Commun 371(3): 551-5.
Szajnik M, Szczepanski MJ, Czystowska M, Elishaev E, Mandapathil M, Nowak-Markwitz E, Spaczynski M, Whiteside TL. 2009. TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene 28(49): 4353-63.
Tew GN, Liu D, Chen B, Doerksen RJ, Kaplan J, Carroll PJ, Klein ML, DeGrado WF. 2002. De novo design of biomimetic antimicrobial polymers. Proc Natl Acad Sci U S A 99(8): 5110-4.
Thorburn A. 2004. Death receptor-induced cell killing. Cell Signal 16(2): 139-44.
Tsai CD, Liu HW, Tai JH. 2002. Characterization of an iron-responsive promoter in the protozoan pathogen Trichomonas vaginalis. J Biol Chem 277(7): 5153-62.
Uematsu S, Akira S. 2006. Toll-like receptors and innate immunity. J Mol Med (Berl) 84(9): 712-25.
Ullal AJ, Noga EJ. 2010. Antiparasitic activity of the antimicrobial peptide HbbetaP-1, a member of the beta-haemoglobin peptide family. J Fish Dis 33(8): 657-64.
Wang XH, Yan GT, Wang LH, Hao XH, Zhang K, Xue H. 2004. The mediating role of cPLA2 in IL-1 beta and IL-6 release in LPS-induced HeLa cells. Cell Biochem Funct 22(1): 41-4.
Wang YD, Kung CW, Chen JY. 2010. Antiviral activity by fish antimicrobial peptides of epinecidin-1 and hepcidin 1-5 against nervous necrosis virus in medaka. Peptides 31(6): 1026-33.
Westrop GD, Georg I, Coombs GH. 2009. The mercaptopyruvate sulfurtransferase of Trichomonas vaginalis links cysteine catabolism to the production of thioredoxin persulfide. J Biol Chem 284(48): 33485-94.
Xie C, Kang J, Li Z, Schauss AG, Badger TM, Nagarajan S, Wu T, Wu X. 2012. The acai flavonoid velutin is a potent anti-inflammatory agent: blockade of LPS-mediated TNF-alpha and IL-6 production through inhibiting NF-kappaB activation and MAPK pathway. J Nutr Biochem 23(9): 1184-91.
Zariffard MR, Harwani S, Novak RM, Graham PJ, Ji X, Spear GT. 2004. Trichomonas vaginalis infection activates cells through toll-like receptor 4. Clin Immunol 111(1): 103-7.
Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415(6870): 389-95.
Zhang B, Liu ZY, Li YY, Luo Y, Liu ML, Dong HY, Wang YX, Liu Y, Zhao PT, Jin FG, Li ZC. 2011a. Antiinflammatory effects of matrine in LPS-induced acute lung injury in mice. Eur J Pharm Sci 44(5): 573-9.
Zhang J, Wu L, Qu JM. 2011b. Inhibited proliferation of human lung fibroblasts by LPS is through IL-6 and IL-8 release. Cytokine 54(3): 289-95.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55011-
dc.description.abstract多功能抗菌胜肽具有抗菌、抗發炎及抗腫瘤的活性。在抗菌的部分,將不同片段的抗菌胜肽(蝦類抗脂多醣因子、石斑魚抗菌胜肽和石紋豹鰨抗菌胜肽)對8株細菌進行測試最小抑菌濃度值,也測試抗菌胜肽和非肽類抗生素之間的協同作用,發現抗菌胜肽(石斑魚抗菌胜肽-0217和石紋豹鰨抗菌胜肽-0127)對革蘭氏陽性和陰性菌皆具有大範圍的抗菌活性。而此兩個抗菌胜肽可以提高抗生素對於具有抗藥性金黃色葡萄球菌的作用效力,展現協同作用。
在抗發炎的部分,本研究透過酵素免疫分析法,顯示蝦類抗脂多醣因子抑制由脂多醣誘導上皮細胞產生發炎激素蛋白質,這些發炎激素包括腫瘤壞死因子(TNF)-α、白細胞介素(IL)-1α、IL-6、IL-1β,及單核細胞趨化蛋白(MCP)-1。透過反轉錄聚合酶連鎖反應,顯示蝦類抗脂多醣因子也抑制發炎激素訊息核醣核酸(il-6、il-8、il-1α及mcp-1)的產生。同時,蝦類抗脂多醣因子可能透過絲裂原活化蛋白激酶(MAPK)和轉錄因子(NF-κB)的途徑調節上皮細胞免疫反應。此外,酵素免疫分析法的結果顯示,蝦類抗脂多醣因子能降低由陰道滴蟲造成上皮細胞所分泌的發炎激素(TNF-α,IL-1α,IL-6,IL-8和MCP-1)。我們還進行反轉錄聚合酶連鎖反應的實驗,確定蝦類抗脂多醣因子影響許多發炎激素基因表達。透過西方點墨法的分析,我們確認蝦類抗脂多醣因子是透過為MAPK的路徑之一及NF-κB之路徑,抑制陰道滴蟲誘導上皮細胞的發炎反應。甚至,採用了不同的抑制劑,並且由酵素免疫分析法和西方點墨法,再次確認蝦類抗脂多醣因子的作用途徑。
另外,在抗癌的部分,研究了蝦類抗脂多醣因子對四種子宮頸癌細胞株的毒性。由流式細胞儀及細胞毒性測試結果顯示,蝦類抗脂多醣因子誘導子宮頸癌細胞死亡以及影響細胞G2/M週期。透過共軛焦顯微鏡也觀察到蝦類抗脂多醣因子在24小時處理下,會影響子宮頸癌細胞細胞質及細胞核的部分。AO/EtBr及DNA片段化實驗證實蝦類抗脂多醣因子誘導子宮頸癌細胞凋亡。此外,我們在體外用不同凋亡蛋白酶抑制劑,以及體內免疫組織染色確認蝦類抗脂多醣因子參與凋亡蛋白酶-3及-9的細胞凋亡路徑。也證明了蝦類抗脂多醣因子讓子宮頸癌細胞線粒體膜的去極化,其機制與凋亡蛋白酶的路徑有關。另一方面,也觀察到石斑魚抗菌胜肽-0217和石紋豹鰨抗菌胜肽-0127能抑制人類子宮頸癌細胞(HeLa)和纖維肉瘤細胞(HT-1080)的生長。
zh_TW
dc.description.abstractAnti-microbial peptides (AMPs) have many functions, such as anti-bacteria, anti-inflammation, and anti-cancer. Considering the anti-bacterial function of AMPs, we initially synthesized a series of truncated AMP derivatives of shrimp anti-lipopolysaccharide factor (SALF), epinecidin-1, and pardaxin. We then determined the minimum inhibitory concentrations (MICs) of these derivatives against eight bacterial species. We also examined the synergistic effect between peptide and non-peptide antibiotics. We found that epinecidin-0217 and pardaxin-0127 exhibited a broad range of activity against Gram-positive and Gram-negative bacteria. Moreover, a combination of these AMPs with antibiotics resulted in a synergistic improvement in the anti-bacterial activity against methicillin-resistant Staphylococcus aureus.
Considering the anti-inflammatory function of AMPs, we performed ELISA to show that SALF inhibits the production of inflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-1α, IL-6, and IL-1β, as well as the secretion of monocyte chemoattractant protein (MCP)-1 in cervical epithelial cells treated with lipopolysaccharide (LPS). We also conducted RT-PCR to demonstrate that SALF suppresses il-6, il-8, il-1α, and mcp-1 expressions. Moreover, we provided evidence that SALF may regulate vaginal epithelial cell immune responses via mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB pathways. We then conducted ELISA to confirm that SALF downregulates the secretion of pro-inflammatory cytokines (TNF-α, IL-1α, IL-6, IL-8, and MCP-1) in cervical epithelial cells infected by Trichomonas vaginalis. We futher employed real-time PCR to show that SALF affects the expression of several pro-inflammatory genes. Conducting Western blot analysis, we demonstrated that SALF treatment inhibits T. vaginalis infection of cervical epithelial cells via p38 and NF-κB pathways. These pathways were observed by using appropriate inhibitors and by performing ELISA/Western blot analysis.
Considering the anti-cancer function of AMPs, we investigated the cytotoxic activity of SALF on four cervical cancer cell lines. We performed fluorescence-activated cell sorting analysis to show that SALF induces cervical cancer cell death and G2/M phase arrest in vitro. Furthermore, we observed the localization of SALF to the cytosol and nuclei of human epithelial carcinoma (HeLa) cells at 24 h after treatment by confocal imaging. AO/EtBr and DNA fragmentation results indicated that SALF induces apoptosis in HeLa cells. Moreover, we used various caspase inhibitors in vitro and immunohistochemistry in vivo to show that caspase-3 and caspase-9 are involved in SALF-induced apoptosis. We also showed that SALF induces mitochondrial membrane depolarization associated with caspase-dependent pathway in HeLa cells. Our findings indicated that SALF exhibits promising anti-cancer activity by triggering apoptosis. SALF may be applied in single or combinatorial therapy against cervical cancer. We also reported that epinecidin-0217 and pardaxin-0127 inhibit the growth of HeLa and fibrosarcoma (HT-1080) cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:44:16Z (GMT). No. of bitstreams: 1
ntu-104-D98b47401-1.pdf: 6057753 bytes, checksum: 2d550836e24527878883c4f49370c1e7 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 I
ABSTRACT II
中文摘要 IV
Contents VI
List of Tables IX
List of Figures X
List of Appendix XII
Chapter 1. INTRODUCTION 1
1. 1. Antimicrobial peptides 1
1. 2. Structures of antimicrobial peptides 1
1. 3. Mechanisms of antimicrobial peptides 2
1. 4. Functions of antimicrobial peptides 2
1. 4. 1. Anti-bacteria function of antimicrobial peptides 3
1. 4. 2. Anti-inflammatory function of antimicrobial peptides 3
1. 4. 3. Anti-cancer function of antimicrobial peptides 6
1. 5. Marine antimicrobial peptides 7
1. 5. 1. Shrimp anti-lipopolysaccharide factor (SALF) 9
1. 5. 2. Epinecidin-1 9
1. 5. 3. Pardaxin 10
1. 6. Aim of this thesis 10
Chapter 2. MATERIALS AND METHODS 12
2. 1. Cell lines 12
2. 2. Bacteria and parasite 12
2. 3. Peptides, reagents, and antibodies 13
2. 4. In vitro cytotoxicity assay 13
2. 5. Enzyme-linked immunosorbent assay (ELISA) 13
2. 6. Real-time polymerase chain reaction (PCR) 14
2. 7. Western blot analysis 14
2. 8. Mitochondrial membrane potential assay 15
2. 9. Acridine orange/ Ethidium Bromide (Ao/EtBr) staining 15
2. 10. DNA fragmentation assay 16
2. 11. Detection of annexin V and propidium iodide (PI) by flow cytometry 16
2. 12. Mitochondrial membrane potential detect by flow cytometry 16
2. 13. Cell cycle analysis by flow cytometry 17
2. 14. Confocal fluorescence microscopy 17
2. 15. Immunohistochemistry 17
2. 16. Minimum inhibitory concentrations (MICs) 17
2. 17. Hemolytic-activity testing 18
2. 18. Synergy effect 19
2. 19. Statistical analysis 19
Chapter 3. RESULTS 20
3. 1. Anti-bacterial function of SALF, epinecidin-1, and pardaxin 20
3. 1. 1. The anti-bacterial activity of antimicrobial peptides 20
3. 1. 2. Effect of synergy on peptide antimicrobial activity 22
3. 2. Anti-inflammatory function of SALF 23
3. 2. 1. SALF’s effects on T. vaginalis induced inflammation in epithelial cells 23
3. 2. 2. SALF’s effects on LPS induced inflammation in epithelial cells 27
3. 3. Anti-cancer function of SALF 29
3. 3. 1. Effect of toxicity on inhibit cancer cell growths of the peptides 29
3. 3. 2. The SALF exhibit cytotoxic properties in cervical cancer cells 29
3. 3. 3. The SALF arrests cell-cycle progression 30
3. 3. 4. Characterize of SALF localization and the study of its effects on apoptosis in HeLa cells 30
3. 3. 5. The apoptosis of SALF-induced HeLa cells required caspase activities 31
3. 3. 6. The SALF induced mitochondrial membrane depolarization associated with AIF translocation to the nucleus and modulated the expressions of Bcl-2 family proteins in HeLa cells 32
3. 3. 7. Detection of apoptotic cells in nude mice using activated caspase-3 and caspase-9 immunohistochemistry 33
Chapter 4. DISCUSSION 34
4. 1. Antimicrobial peptides effect on anti-bacterial activity 34
4. 2. Antimicrobial peptides effect on anti-inflammatory activity 35
4. 3. Antimicrobial peptides effect on anti-cancer activity 40
Chapter 5. CONCLUSIONS AND FUTURE WORK 43
TABLES 45
FIGURES 53
REFERENCES 85
APPENDIX 99
dc.language.isoen
dc.subject抗癌zh_TW
dc.subject蝦類抗脂多醣因子zh_TW
dc.subject石斑魚抗菌胜?zh_TW
dc.subject石紋豹鰨抗菌胜?zh_TW
dc.subject抗菌zh_TW
dc.subject抗發炎zh_TW
dc.subjectanti-inflammationen
dc.subjectanti-canceren
dc.subjectSALFen
dc.subjectepinecidin-1en
dc.subjectpardaxinen
dc.subjectanti-bacteriaen
dc.title探討SALF、epinecidin-1及pardaxin抗菌肽之抗菌、抗發炎及抗癌活性zh_TW
dc.titleStudy on the anti-bacterial, anti-inflammatory, and anti-cancer activities of shrimp anti-lipopolysaccharide factor (SALF), epinecidin-1, and pardaxinen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.coadvisor陳志毅
dc.contributor.oralexamcommittee黃慶璨,吳彰哲,陳威戎,許祖法,潘子明
dc.subject.keyword蝦類抗脂多醣因子,石斑魚抗菌胜?,石紋豹鰨抗菌胜?,抗菌,抗發炎,抗癌,zh_TW
dc.subject.keywordSALF,epinecidin-1,pardaxin,anti-bacteria,anti-inflammation,anti-cancer,en
dc.relation.page104
dc.rights.note有償授權
dc.date.accepted2015-02-09
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
5.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved