Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55001Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林頌然 | |
| dc.contributor.author | Tsung-Sheng Lee | en |
| dc.contributor.author | 李宗昇 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:43:58Z | - |
| dc.date.available | 2020-02-25 | |
| dc.date.copyright | 2015-02-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-02-09 | |
| dc.identifier.citation | [1] Headington JT. Cicatricial alopecia. Dermatologic clinics. 1996;14:773-82.
[2] Callen JP. Chronic cutaneous lupus erythematosus. Clinical, laboratory, therapeutic, and prognostic examination of 62 patients. Arch Dermatol. 1982;118:412-6. [3] Otberg N, Kang H, Alzolibani AA, Shapiro J. Folliculitis decalvans. Dermatologic therapy. 2008;21:238-44. [4] Sperling LC, Winton GB. The transverse anatomy of androgenic alopecia. J Dermatol Surg Oncol. 1990;16:1127-33. [5] Kaufman KD. Androgen metabolism as it affects hair growth in androgenetic alopecia. Dermatol Clin. 1996;14:697-711. [6] Carey AH, Waterworth D, Patel K, White D, Little J, Novelli P, et al. Polycystic ovaries and premature male pattern baldness are associated with one allele of the steroid metabolism gene CYP17. Human molecular genetics. 1994;3:1873-6. [7] Fiedler VC. Alopecia areata. A review of therapy, efficacy, safety, and mechanism. Archives of dermatology. 1992;128:1519-29. [8] Tobin DJ, Orentreich N, Fenton DA, Bystryn JC. Antibodies to hair follicles in alopecia areata. J Invest Dermatol. 1994;102:721-4. [9] Peters EM, Liotiri S, Bodo E, Hagen E, Biro T, Arck PC, et al. Probing the effects of stress mediators on the human hair follicle: substance P holds central position. Am J Pathol. 2007;171:1872-86. [10] Madani S, Shapiro J. Alopecia areata update. J Am Acad Dermatol. 2000;42:549-66; quiz 67-70. [11] Headington JT. Telogen effluvium. New concepts and review. Archives of dermatology. 1993;129:356-63. [12] Rebora A. Telogen effluvium revisited. Giornale italiano di dermatologia e venereologia : organo ufficiale, Societa italiana di dermatologia e sifilografia. 2014;149:47-54. [13] Buhl AE, Waldon DJ, Conrad SJ, Mulholland MJ, Shull KL, Kubicek MF, et al. Potassium channel conductance: a mechanism affecting hair growth both in vitro and in vivo. J Invest Dermatol. 1992;98:315-9. [14] Lachgar S, Charveron M, Gall Y, Bonafe JL. Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells. Br J Dermatol. 1998;138:407-11. [15] Wester RC, Maibach HI, Guy RH, Novak E. Minoxidil stimulates cutaneous blood flow in human balding scalps: pharmacodynamics measured by laser Doppler velocimetry and photopulse plethysmography. J Invest Dermatol. 1984;82:515-7. [16] Shapiro J, Price VH. Hair regrowth. Therapeutic agents. Dermatol Clin. 1998;16:341-56. [17] Olsen EA, Weiner MS. Topical minoxidil in male pattern baldness: effects of discontinuation of treatment. J Am Acad Dermatol. 1987;17:97-101. [18] Rittmaster RS. Finasteride. The New England journal of medicine. 1994;330:120-5. [19] Dallob AL, Sadick NS, Unger W, Lipert S, Geissler LA, Gregoire SL, et al. The effect of finasteride, a 5 alpha-reductase inhibitor, on scalp skin testosterone and dihydrotestosterone concentrations in patients with male pattern baldness. J Clin Endocrinol Metab. 1994;79:703-6. [20] Kaufman KD, Olsen EA, Whiting D, Savin R, DeVillez R, Bergfeld W, et al. Finasteride in the treatment of men with androgenetic alopecia. Finasteride Male Pattern Hair Loss Study Group. J Am Acad Dermatol. 1998;39:578-89. [21] Whiting DA. Advances in the treatment of male androgenetic alopecia: a brief review of finasteride studies. European journal of dermatology : EJD. 2001;11:332-4. [22] Orentreich N. Autografts in alopecias and other selected dermatological conditions. Ann N Y Acad Sci. 1959;83:463-79. [23] Pirotta T. Hair-grafting: a practical possibility. Med J Aust. 1969;2:590-2. [24] Qiao J, Zawadzka A, Philips E, Turetsky A, Batchelor S, Peacock J, et al. Hair follicle neogenesis induced by cultured human scalp dermal papilla cells. Regenerative medicine. 2009;4:667-76. [25] Schneider MR, Schmidt-Ullrich R, Paus R. The hair follicle as a dynamic miniorgan. Current biology : CB. 2009;19:R132-42. [26] Schlake T. Determination of hair structure and shape. Seminars in cell & developmental biology. 2007;18:267-73. [27] Jahoda CA, Horne KA, Oliver RF. Induction of hair growth by implantation of cultured dermal papilla cells. Nature. 1984;311:560-2. [28] Oliver RF, Jahoda CA. Dermal-epidermal interactions. Clinics in dermatology. 1988;6:74-82. [29] Krause K, Foitzik K. Biology of the hair follicle: the basics. Seminars in cutaneous medicine and surgery. 2006;25:2-10. [30] Fujie T, Katoh S, Oura H, Urano Y, Arase S. The chemotactic effect of a dermal papilla cell-derived factor on outer root sheath cells. J Dermatol Sci. 2001;25:206-12. [31] Paus R, Foitzik K, Welker P, Bulfone-Paus S, Eichmuller S. Transforming growth factor-beta receptor type I and type II expression during murine hair follicle development and cycling. The Journal of investigative dermatology. 1997;109:518-26. [32] Reddy S, Andl T, Bagasra A, Lu MM, Epstein DJ, Morrisey EE, et al. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mechanisms of development. 2001;107:69-82. [33] Millar SE. Molecular mechanisms regulating hair follicle development. The Journal of investigative dermatology. 2002;118:216-25. [34] Sennett R, Rendl M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Seminars in cell & developmental biology. 2012;23:917-27. [35] Mou C, Jackson B, Schneider P, Overbeek PA, Headon DJ. Generation of the primary hair follicle pattern. Proc Natl Acad Sci U S A. 2006;103:9075-80. [36] Hardy MH. The secret life of the hair follicle. Trends Genet. 1992;8:55-61. [37] Philpott M, Paus R. Principles of hair follicle morphogenesis. Molecular Basis of Epithelial Appendage Morphogenesis. 1998:75–110. [38] Stenn KS, Paus R. Controls of hair follicle cycling. Physiological reviews. 2001;81:449-94. [39] Garza LA, Liu Y, Yang Z, Alagesan B, Lawson JA, Norberg SM, et al. Prostaglandin D2 inhibits hair growth and is elevated in bald scalp of men with androgenetic alopecia. Science translational medicine. 2012;4:126ra34. [40] Plikus MV, Mayer JA, de la Cruz D, Baker RE, Maini PK, Maxson R, et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature. 2008;451:340-4. [41] Festa E, Fretz J, Berry R, Schmidt B, Rodeheffer M, Horowitz M, et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell. 2011;146:761-71. [42] Oliver RF. The experimental induction of whisker growth in the hooded rat by implantation of dermal papillae. J Embryol Exp Morphol. 1967;18:43-51. [43] Reynolds AJ, Jahoda CA. Cultured dermal papilla cells induce follicle formation and hair growth by transdifferentiation of an adult epidermis. Development. 1992;115:587-93. [44] Jahoda CA, Oliver RF. Vibrissa dermal papilla cell aggregative behaviour in vivo and in vitro. J Embryol Exp Morphol. 1984;79:211-24. [45] Jahoda CA, Reynolds AJ. Dermal-epidermal interactions. Adult follicle-derived cell populations and hair growth. Dermatologic clinics. 1996;14:573-83. [46] McElwee KJ, Kissling S, Wenzel E, Huth A, Hoffmann R. Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. The Journal of investigative dermatology. 2003;121:1267-75. [47] Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature. 2007;447:316-20. [48] Chuong CM. Regenerative biology: new hair from healing wounds. Nature. 2007;447:265-6. [49] Ihara S, Watanabe M, Nagao E, Shioya N. Formation of hair follicles from a single-cell suspension of embryonic rat skin by a two-step procedure in vitro. Cell Tissue Res. 1991;266:65-73. [50] Qiao J, Turetsky A, Kemp P, Teumer J. Hair morphogenesis in vitro: formation of hair structures suitable for implantation. Regen Med. 2008;3:683-92. [51] Chueh SC, Lin SJ, Chen CC, Lei M, Wang LM, Widelitz R, et al. Therapeutic strategy for hair regeneration: hair cycle activation, niche environment modulation, wound-induced follicle neogenesis, and stem cell engineering. Expert opinion on biological therapy. 2013;13:377-91. [52] Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnology and bioengineering. 2003;83:173-80. [53] Potapova IA, Cohen IS, Doronin SV. Apoptotic endothelial cells demonstrate increased adhesiveness for human mesenchymal stem cells. Journal of cellular physiology. 2009;219:23-30. [54] Kachgal S, Putnam AJ. Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis. 2011;14:47-59. [55] Cargill RS, 3rd, Dee KC, Malcolm S. An assessment of the strength of NG108-15 cell adhesion to chemically modified surfaces. Biomaterials. 1999;20:2417-25. [56] Glicklis R, Shapiro L, Agbaria R, Merchuk JC, Cohen S. Hepatocyte behavior within three-dimensional porous alginate scaffolds. Biotechnology and bioengineering. 2000;67:344-53. [57] Conrad C, Niess H, Huss R, Huber S, von Luettichau I, Nelson PJ, et al. Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo. Circulation. 2009;119:281-9. [58] Ueland J, Yuan A, Marlier A, Gallagher AR, Karihaloo A. A novel role for the chemokine receptor Cxcr4 in kidney morphogenesis: an in vitro study. Developmental dynamics : an official publication of the American Association of Anatomists. 2009;238:1083-91. [59] Neuss S, Schneider RK, Tietze L, Knuchel R, Jahnen-Dechent W. Secretion of fibrinolytic enzymes facilitates human mesenchymal stem cell invasion into fibrin clots. Cells, tissues, organs. 2010;191:36-46. [60] Hiwase SD, Dyson PG, To LB, Lewis ID. Cotransplantation of placental mesenchymal stromal cells enhances single and double cord blood engraftment in nonobese diabetic/severe combined immune deficient mice. Stem cells. 2009;27:2293-300. [61] Lin RZ, Chang HY. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnology journal. 2008;3:1172-84. [62] Yin Y, Zhao X, Fang Y, Yu S, Zhao J, Song M, et al. SDF-1alpha involved in mobilization and recruitment of endothelial progenitor cells after arterial injury in mice. Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology. 2010;19:218-27. [63] Wichterle O, Lim D. Hydrophilic gels for biological use. Nature. 1960;185:117-8. [64] Hiraizumi Y, Transfeldt EE, Fujimaki E, Nambu M. Application of polyvinyl alcohol hydrogel membrane as anti-adhesive interposition after spinal surgery. Spine. 1995;20:2272-7. [65] Muschert S, Siepmann F, Leclercq B, Carlin B, Siepmann J. Drug release mechanisms from ethylcellulose: PVA-PEG graft copolymer-coated pellets. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2009;72:130-7. [66] Muschert S, Siepmann F, Leclercq B, Carlin B, Siepmann J. Simulated food effects on drug release from ethylcellulose: PVA-PEG graft copolymer-coated pellets. Drug development and industrial pharmacy. 2010;36:173-9. [67] Singh B, Lal H, Pal L, Sharma V. In vitro release profile of anti-ulcer drug rabeprazole from biocompatible psyllium-PVA hydrogels. Journal of materials science Materials in medicine. 2012;23:1021-32. [68] Gupta B, Agarwal R, Sarwar Alam M. Antimicrobial and release study of drug loaded PVA/PEO/CMC wound dressings. Journal of materials science Materials in medicine. 2014;25:1613-22. [69] Chen MH, Chen YJ, Liao CC, Chan YH, Lin CY, Chen RS, et al. Formation of salivary acinar cell spheroids in vitro above a polyvinyl alcohol-coated surface. Journal of biomedical materials research Part A. 2009;90:1066-72. [70] Li Y, Li GQ, Lin CM, Cai XN. One-step collagenase I treatment: an efficient way for isolation and cultivation of human scalp dermal papilla cells. Journal of dermatological science. 2005;37:58-60. [71] Chavez MG, Hu J, Seidel K, Li C, Jheon A, Naveau A, et al. Isolation and culture of dental epithelial stem cells from the adult mouse incisor. Journal of visualized experiments : JoVE. 2014. [72] Miyashita H, Hakamata Y, Kobayashi E, Kobayashi K. Characterization of hair follicles induced in implanted, cultured rat keratinocyte sheets. Experimental dermatology. 2004;13:491-8. [73] Mueller AK, Labaied M, Kappe SH, Matuschewski K. Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature. 2005;433:164-7. [74] Zheng Y, Du X, Wang W, Boucher M, Parimoo S, Stenn K. Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cells. J Invest Dermatol. 2005;124:867-76. [75] Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proceedings of the National Academy of Sciences of the United States of America. 1987;84:2302-6. [76] Rheinwald JG, Green H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature. 1977;265:421-4. [77] Morris RJ, Tacker KC, Baldwin JK, Fischer SM, Slaga TJ. A new medium for primary cultures of adult murine epidermal cells: application to experimental carcinogenesis. Cancer letters. 1987;34:297-304. [78] Marcelo CL. Differential effects of cAMP and cGMP on in vitro epidermal cell growth. Experimental cell research. 1979;120:201-10. [79] Okada N, Kitano Y, Ichihara K. Effects of cholera toxin on proliferation of cultured human keratinocytes in relation to intracellular cyclic AMP levels. The Journal of investigative dermatology. 1982;79:42-7. [80] Hirobe T. Basic fibroblast growth factor stimulates the sustained proliferation of mouse epidermal melanoblasts in a serum-free medium in the presence of dibutyryl cyclic AMP and keratinocytes. Development. 1992;114:435-45. [81] du Cros DL, LeBaron RG, Couchman JR. Association of versican with dermal matrices and its potential role in hair follicle development and cycling. J Invest Dermatol. 1995;105:426-31. [82] Soma T, Tajima M, Kishimoto J. Hair cycle-specific expression of versican in human hair follicles. J Dermatol Sci. 2005;39:147-54. [83] Kishimoto J, Ehama R, Wu L, Jiang S, Jiang N, Burgeson RE. Selective activation of the versican promoter by epithelial- mesenchymal interactions during hair follicle development. Proc Natl Acad Sci U S A. 1999;96:7336-41. [84] Jahoda CA, Reynolds AJ, Chaponnier C, Forester JC, Gabbiani G. Smooth muscle alpha-actin is a marker for hair follicle dermis in vivo and in vitro. Journal of cell science. 1991;99 ( Pt 3):627-36. [85] Eckert RL, Rorke EA. Molecular biology of keratinocyte differentiation. Environmental health perspectives. 1989;80:109-16. [86] Yi R, Fuchs E. MicroRNA-mediated control in the skin. Cell death and differentiation. 2010;17:229-35. [87] Coulombe PA, Kopan R, Fuchs E. Expression of keratin K14 in the epidermis and hair follicle: insights into complex programs of differentiation. The Journal of cell biology. 1989;109:2295-312. [88] Reichelt J, Bauer C, Porter R, Lane E, Magin V. Out of balance: consequences of a partial keratin 10 knockout. Journal of cell science. 1997;110 ( Pt 18):2175-86. [89] Maytin EV, Lin JC, Krishnamurthy R, Batchvarova N, Ron D, Mitchell PJ, et al. Keratin 10 gene expression during differentiation of mouse epidermis requires transcription factors C/EBP and AP-2. Developmental biology. 1999;216:164-81. [90] Tsuji Y, Akiyama M, Arita K, Senshu T, Shimizu H. Changing pattern of deiminated proteins in developing human epidermis. The Journal of investigative dermatology. 2003;120:817-22. [91] Kratochwil K, Dull M, Farinas I, Galceran J, Grosschedl R. Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes & development. 1996;10:1382-94. [92] Millar SE, Willert K, Salinas PC, Roelink H, Nusse R, Sussman DJ, et al. WNT signaling in the control of hair growth and structure. Developmental biology. 1999;207:133-49. [93] Andl T, Reddy ST, Gaddapara T, Millar SE. WNT signals are required for the initiation of hair follicle development. Developmental cell. 2002;2:643-53. [94] Havlickova B, Biro T, Mescalchin A, Tschirschmann M, Mollenkopf H, Bettermann A, et al. A human folliculoid microsphere assay for exploring epithelial- mesenchymal interactions in the human hair follicle. The Journal of investigative dermatology. 2009;129:972-83. [95] McLean WH. Combing the genome for the root cause of baldness. Nature genetics. 2008;40:1270-1. [96] Kobielak K, Pasolli HA, Alonso L, Polak L, Fuchs E. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. The Journal of cell biology. 2003;163:609-23. [97] Noonan DM, Fulle A, Valente P, Cai S, Horigan E, Sasaki M, et al. The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein-receptor, and the neural cell adhesion molecule. The Journal of biological chemistry. 1991;266:22939-47. [98] Paulsson M. Basement membrane proteins: structure, assembly, and cellular interactions. Critical reviews in biochemistry and molecular biology. 1992;27:93-127. [99] Kubota Y, Kleinman HK, Martin GR, Lawley TJ. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. The Journal of cell biology. 1988;107:1589-98. [100] Couchman JR, King JL, McCarthy KJ. Distribution of two basement membrane proteoglycans through hair follicle development and the hair growth cycle in the rat. The Journal of investigative dermatology. 1990;94:65-70. [101] Morris RJ, Fischer SM, Slaga TJ. New methods for studying the proliferation and differentiation of epidermal keratinocytes from adult mice. Progress in clinical and biological research. 1991;369:303-22. [102] Yuspa SH, Harris CC. Altered differentiation of mouse epidermal cells treated with retinyl acetate in vitro. Experimental cell research. 1974;86:95-105. [103] Fusenig NE, Breitkreutz D, Dzarlieva RT, Boukamp P, Bohnert A, Tilgen W. Growth and differentiation characteristics of transformed keratinocytes from mouse and human skin in vitro and in vivo. The Journal of investigative dermatology. 1983;81:168s-75s. [104] Roop DR, Hawley-Nelson P, Cheng CK, Yuspa SH. Keratin gene expression in mouse epidermis and cultured epidermal cells. Proceedings of the National Academy of Sciences of the United States of America. 1983;80:716-20. [105] Greenhalgh DA, Welty DJ, Strickland JE, Yuspa SH. Spontaneous Ha-ras gene activation in cultured primary murine keratinocytes: consequences of Ha-ras gene activation in malignant conversion and malignant progression. Molecular carcinogenesis. 1989;2:199-207. [106] Rouabhia M, Germain L, Belanger F, Guignard R, Auger FA. Optimization of murine keratinocyte culture for the production of graftable epidermal sheets. The Journal of dermatology. 1992;19:325-34. [107] Hager B, Bickenbach JR, Fleckman P. Long-term culture of murine epidermal keratinocytes. The Journal of investigative dermatology. 1999;112:971-6. [108] Caldelari R, Suter MM, Baumann D, De Bruin A, Muller E. Long-term culture of murine epidermal keratinocytes. The Journal of investigative dermatology. 2000;114:1064-5. [109] Yano S, Okochi H. Long-term culture of adult murine epidermal keratinocytes. The British journal of dermatology. 2005;153:1101-4. [110] Lim TC, Leong MF, Lu H, Du C, Gao S, Wan AC, et al. Follicular dermal papilla structures by organization of epithelial and mesenchymal cells in interfacial polyelectrolyte complex fibers. Biomaterials. 2013;34:7064-72. [111] Havlickova B, Biro T, Mescalchin A, Arenberger P, Paus R. Towards optimization of an organotypic assay system that imitates human hair follicle-like epithelial-mesenchymal interactions. The British journal of dermatology. 2004;151:753-65. [112] Yen CM, Chan CC, Lin SJ. High-throughput reconstitution of epithelial-mesenchymal interaction in folliculoid microtissues by biomaterial-facilitated self-assembly of dissociated heterotypic adult cells. Biomaterials. 2010;31:4341-52. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55001 | - |
| dc.description.abstract | 毛囊在每個生長週期能夠產生新毛髮的一個器官。毛囊的發育、生長和再生週期循環是由毛囊內部的上皮-間質之間廣泛且密集的交互作用支配與協同所產生。因此,以組織工程的方式於體外發展一套能夠模擬三維毛囊類結構的系統,將是研究瞭解毛囊內部上皮-間質交互作用的一大利器,也是本實驗研究最主要目標。
本研究主要目的是開發三維共培養系統,用以能夠高效生產角質-真皮乳突毛囊組織球,模擬仿造毛囊內部上皮-間質訊息溝通與交互作用,以應用於毛囊之研究。本研究可分為三大主軸探討:細胞擴展、製造類毛囊球微組織及功能檢測。 第一、細胞擴展:建立細胞長程培養方法,並於體外大規模地繁殖真皮乳突細胞 (dermal papilla cells) 與角質細胞 (keratinocytes) 以利研究進行。有效及大規模長程培養成鼠角質細胞方法的建立,透過 3T3-J2 cells 的滋養、表皮生長因子 (epidermal growth factor, EGF) 與霍亂毒素 (cholera toxin, CT) 的額外添加促進細胞複製增殖及生長,克服了成鼠角質細胞不易培養的挑戰。長程培養所得的角質細胞不僅細胞型態正常,且為具強力形成細胞群落能力與具分化力的基底層角質細胞型態。 第二、製造類毛囊球微組織:利用角質細胞及真皮乳突細胞於親水性生醫材料不貼附的特性,先將真皮乳突細胞種植於已塗佈聚乙烯醇 (PVA) 的 PCR 孔盤內並快速聚集為單一細胞球體;而後,再植入角質細胞於管內與成球的真皮乳突細胞共培養,藉此形成毛囊球內部的雙層構造(即真皮乳突細胞於中心,角質細胞包覆於外圍)。其中特別的是,細胞存活率於共培養其間內皆達 90% 之上。 第三、功能檢測:藉由測試與毛囊生長發育及分化的重要識別蛋白與基因表現(如 Keratin 6, Keratin 14, Keratin 75, AE 13, LEF1),發現組織球內部保有毛囊內部上皮-間質交互作用訊號溝通特性並誘使組織球趨往毛囊分化的路徑。此外,組織球內兩層細胞彼此間亦如同毛囊結構形成基底膜,且在毛囊再生試驗中證實植入的類毛囊球具有誘導毛囊新生能力而生成髮幹。如此種種特徵證實所製造的類毛囊球組織不論結構、細胞、功能表現皆與真實毛囊球極度相仿。 本實驗成功地建立了簡單的組織真皮乳突細胞與角質細胞之共培養系統,以形成類似毛囊球雙層細胞的排列構造,模擬與促進毛囊內部上皮-間質交互作用,達成體外發展出培養毛囊雛形組織,並於體內具誘導毛囊再生力的目標。此外,此系統更具有搭配自動化設備大量生產的潛力。於未來,此大規模生產類毛囊球系統,不僅有應用於藥物測試的潛力,甚至能推廣至人體其他上皮與間質相互作用方式發育及再生的器官研究。 | zh_TW |
| dc.description.abstract | The hair follicle is a regenerating organ which produces a new hair shaft during each growth cycle. The morphogenesis, development and cycling of the hair follicle is dependent on extensive ,collaborative and well-orchestrated epithelial-mesenchymal interaction. Accordingly, development of an engineered three-dimensional hair follicle organoid model can help to explore and test the epithelial-mesenchymal interaction in vitro.
The aim of this study was to develop a three-dimensional co-culture system for efficient production of folliculoid keratinocyte-dermal papilla (DP) microtissues to imitate epithelial-mesenchymal interaction in vitro. The study consists of three parts: cell expansion, production of hair bulb-like structure and functional testing. The first was to establish methods for cell expansion. We constituted the method for long-term adult C57BL/6 mouse keratinocyte culture using fibroblast feeder layers, EGF and cholera toxin. The keratinocytes obtained were morphologically normal with hight proliferative ability. Secondly, we developed a method for scalable production of hair follicle bulb-like microtissues. Due to the poor adherence of DP cells and keratinocytes to hydrophilic polyvinyl alcohol (PVA), the seeded DP cells in PVA-coated 96-welled commercial PCR tube arrays quickly aggregate into single spheroids with progressive compaction. Keratinoctes were then seeded for co-culturing. DP cells and keratinocytes quickly formed a hybrid spheroid with a core-shell structure with DP cells surrounded by keratinocytes. This structure was similar to the native hair bulb. In our method, cell viability remained as high as 90% in the microtissues. Thirdly, we examined the differentiation and function of the hair bulb-like microtissues. We were able to investigate and identify several markers important for the hair follicle development and differentiation (for example, Keratin 6, Keratin 14, Keratin 75, AE 13, LEF1). We showed that these hair bulb-like spheroids, cultured under well-defined conditions, retained several crucial characters of hair follicle epithelial-mesenchymal interaction. We found that DP cells and keratinocytes were in close physical contact with production basement membrane extracellular matrix components. Functionally, these spheroids could regenerate new hair follicles after transplantation in vivo. We successfully set up an easy system for fast organization of DP cells and keratinocytes into follicular structures, that resembled the native hair bulb orientation with epithelial layer surrounding the DP aggregate, to mimic and promote epithelial-mesenchymal interaction. Furthermore, this method is of scalable potential with automatic equipment. In the future, our system of mass preparation of 3D engineered follicular structures is potential to be not only use in drug testing assays, but also applied to mass generation of other epithelial organ primordia in vitro. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:43:58Z (GMT). No. of bitstreams: 1 ntu-104-R01548065-1.pdf: 8050700 bytes, checksum: 579608aea1800feed8599df47642b891 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 碩士論文口試委員會審定書 i
誌謝 ii 摘要 iii Abstract v 1 第一章 緒論 1 1.1 禿髮與治療 1 1.2 毛髮結構 4 1.3 毛囊發育 6 1.4 毛囊再生的發展 8 1.5 三維成球 12 1.6 生醫材料:聚乙烯醇 (polyvinyl alcohol, PVA) 15 2 第二章 研究目標與實驗設計 16 2.1 研究目標 16 2.2 實驗設計 18 3 第三章 實驗材料與方法 20 3.1 C57BL/6 鼷鼠真皮乳突細胞培養 20 3.2 C57BL/6 鼷鼠角質細胞分離 21 3.3 C57BL/6 鼷鼠角質細胞長程培養 22 3.4 高分子材料製備 24 3.5 立體雙層組織球共培養方式 24 3.6 三維組織球型態觀察 25 3.7 Hematoxylin & Eosin 染色 (H&E staining) 25 3.8 組織球體內細胞存活率分析 (cell viability assay) 26 3.9 TUNEL assay (TdT-mediated dUTP Nick-End Labeling assay) 26 3.10 RNA 萃取 27 3.11 逆轉錄聚合酶連鎖反應 (Reverse transcription, RT) 28 3.12 即時定量聚合酶連鎖反應 (Real-Time Quantitative Polymerase Chain Reaction, qPCR) 28 3.13 雙重免疫螢光染色 (Double immunofluorescence stain) 30 3.14 動物實驗 32 4 第四章 實驗結果 33 4.1 C57BL/6 鼷鼠角質細胞二維長程培養細胞型態觀察 33 4.2 建立三維共培養系統製造類毛囊球結構 35 4.2.1 細胞球體結構的觀測 37 4.2.2 細胞球體結構的分析 39 4.3 三維共培養之組織球聚合分析 41 4.4 類毛囊球細胞鑑定 44 4.5 類毛囊球細胞存活觀察及增殖分析 (Cell viability assay, TUNEL assay, Proliferation assay) 46 4.6 探討三維共培養系統是否具細胞比例可調性 49 4.7 探討三維共培養系統是否具細胞種類可調性 53 4.8 探討三維共培養系統內細胞種植順序對成球影響性 58 4.9 類毛囊球之上皮-間質交互作用對於類毛囊球組織分化表現 62 4.9.1 組織球是否具備分化能力的探討 62 4.9.2 組織球是否趨往表皮分化的探討 65 4.9.3 組織球是否趨往毛囊分化的探討 68 4.9.4 組織球內部是否有基底膜成形的探討 80 4.10 毛囊再生能力 82 5 第五章 討論 85 6 第六章 結論 89 7 第七章 參考文獻 90 | |
| dc.language.iso | zh-TW | |
| dc.subject | 聚乙烯醇 | zh_TW |
| dc.subject | 角質細胞 | zh_TW |
| dc.subject | 類毛囊球 | zh_TW |
| dc.subject | 上皮-間質交互作用 | zh_TW |
| dc.subject | 毛囊再生 | zh_TW |
| dc.subject | 三維培養 | zh_TW |
| dc.subject | hair follicle regeneration | en |
| dc.subject | epithelial-mesenchymal interaction | en |
| dc.subject | three dimension culture | en |
| dc.subject | keratinocyte | en |
| dc.subject | polyvinyl alcohol | en |
| dc.subject | hair bulb-like spheroids | en |
| dc.title | 於聚乙烯醇表面建立三維共培養系統製造類毛囊球結構應用於上皮-間質交互作用之探討 | zh_TW |
| dc.title | Establishment of three-dimensional co-culture system on polyvinyl alcohol surface to produce hair bulb-like microtissues: a model for exploring epithelial-mesenchymal interaction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊台鴻,陳文彬 | |
| dc.subject.keyword | 上皮-間質交互作用,三維培養,角質細胞,聚乙烯醇,類毛囊球,毛囊再生, | zh_TW |
| dc.subject.keyword | epithelial-mesenchymal interaction,three dimension culture,keratinocyte,polyvinyl alcohol,hair bulb-like spheroids,hair follicle regeneration, | en |
| dc.relation.page | 98 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-02-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| Appears in Collections: | 醫學工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-104-1.pdf Restricted Access | 7.86 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
