Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54996
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李雅榮
dc.contributor.authorCheng-Yu Hoen
dc.contributor.author何正有zh_TW
dc.date.accessioned2021-06-16T03:43:49Z-
dc.date.available2020-03-13
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-02-10
dc.identifier.citation1. Kubiszewski, I., Cleveland, C. J. and Endres, P. K., “Meta-analysis of net energy return for wind power systems,” Renewable energy, 35, No. 1, pp. 218-225 (2010).
2. Henderson, A. R., Morgan, C., Smith, B., Sorensen, H. C., Barthelmie, R. J. and Boesmans, B., “Offshore wind energy in Europe - A review of the state-of-the-art,” Wind Energy, 6, No. 1, pp. 35-52 (2003).
3. Sclavounos, P., “Floating offshore wind turbines,” Marine Technology Society Journal, 42, No. 2, pp. 39-43 (2008).
4. Kaltschmitt, M., Streicher, W. and Wiese, A., Renewable Energy: Technology, Economics and Environment, Springer, (2010).
5. Butterfield, S., Musial, W., Jonkman, J. and Sclavounos, P., Engineering Challenges for Floating Offshore Wind Turbines, (2007).
6. Breton, S.-P. and Moe, G., “Status, plans and technologies for offshore wind turbines in Europe and North America,” Renewable Energy, 34, No. 3, pp. 646-654 (2009).
7. Wang, C., Utsunomiya, T., Wee, S. and Choo, Y., “Research on floating wind turbines: a literature survey,” The IES Journal Part A: Civil & Structural Engineering, 3, No. 4, pp. 267-277 (2010).
8. Chakrabarti, S., Handbook of Offshore Engineering (2-volume set), Elsevier Science, (2005).
9. Lee, K. H., “Responses of floating wind turbines to wind and wave excitation,” Massachusetts Institute of Technology, (2005).
10. Matha, D., “Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform, with a Comparison to Other Floating Turbine Concepts,” NREL Report, NREL/SR-500-45891, 2009, pp.|.
11. Suzuki, Hideyuki, Sato, Akira, “Load on Turbine Blade Induced by Motion of Floating Platform and Design Requirement for the Platform,” Proc. ASME Conference Proceedings, (2007), pp. 519-525.
12. Butterfield, C. P. M., W.; Jonkman, J.; Sclavounos, P.; and Wayman, L., “Engineering challenges for floating offshore wind turbines,” Proc. Copenhagen Offshore Wind 2005 Conference and Expedition Proceedings, National Renewable Energy Laboratory, (October 2005).
13. Bulder, v. H., Henderson, H., Pierik, S. and Wijnants, W., Studie naar haalbaarheid van en randvoorwaarden voor drijvende offshore windturbines (translation: Study of the feasibility and boundary conditions of floating offshore wind turbines),“DrijfWind”, TNO Report 2002-CMC-R043, Netherlands, 2002.
14. Jonkman, J. M. and Laboratory, N. R. E., Dynamics modeling and loads analysis of an offshore floating wind turbine, (2007).
15. Chen, Z.-Z., Tarp-Johansen, N. J. and Jensen, J. J., “Mechanical characteristics of some deepwater floater designs for offshore wind turbines,” Wind Engineering, 30, No. Compendex, pp. 417-430 (2006).
16. Heronemus, W. E., Pollution-free Energy from the Offshore Winds, Marine Technology Society, (1972).
17. Bulder, van Hees, Henderson, Huijsmans, Pierik, Snijders, Wijnants, Wolf, Studie naar haalbaarheid van en randvoorwaarden voor drijven de offshore windturbines, ECN, MARIN, Lagerwey the Windmaster, TNO, TUD, MSC, (Dec. 2002).
18. Kogaki, T., et al., “Prospect of offshore wind energy development in Japan,” International Journal of Environment and Sustainable Development, 1, No. 4, pp. 304-311 (2002).
19. Musial, W., Butterfield, S., Boone, A., “Feasibility of floating platform systems for wind turbines,” Proc. 23rd ASME Wind Energy Symposium Proceedings, (January 2004).
20. Hansen, M. H., Hansen, A., Larsen, T.J., Oye, S., Sorensen, P., Fuglsang, P., Control design for a pitch-regulated, variable speed wind turbine, Riso National Laboratory, January 2005.
21. Jonkman, J. M., “Dynamics of Offshore Floating Wind Turbines-Model Development and Verification,” Wind Energy, 12, No. 5, pp. 459-492 (2009).
22. Robertson, A. N. and Jonkman, J. M., Loads analysis of several offshore floating wind turbine concepts, National Renewable Energy Laboratory, US Department of Energy, Office of Energy Efficiency and Renewable Energy, (2011).
23. Shoele, K., Prowell, I., Zhu, Q. and Elgamal, A., “Dynamic and Structural Modeling of a Floating Wind Turbine,” International Journal of Offshore and Polar Engineering, 21, No. 2, pp. 155 (2011).
24. Karimirad, M. and Moan, T., “Feasibility of the Application of a Spar-type Wind Turbine at a Moderate Water Depth,” Energy Procedia, 24, pp. 340-350 (2012).
25. Karimirad, M., “Dynamic response of floating wind turbines,” Sci. Iran, 17, pp. 146-156 (2010).
26. Jeon, S., Cho, Y., Seo, M., Cho, J. and Jeong, W., “Dynamic response of floating substructure of spar-type offshore wind turbine with catenary mooring cables,” Ocean Engineering, 72, pp. 356-364 (2013).
27. Zhang, L., Wu, H. T., Ye, X. R. and Jing, F. M., “Coupled Dynamic Analysis of a Spar Type Floating Wind Turbine,” Advanced Materials Research, 346, pp. 433-439 (2012).
28. Nihei, Y., Matsuura, M., Fujioka, H. and Suzuki, H., “An approach for the optimum design of TLP type offshore wind turbines,” Proc. ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, (2011), pp. 219-227.
29. Roddier, D., Cermelli, C., Aubault, A. and Weinstein, A., “WindFloat: A floating foundation for offshore wind turbines,” Journal of Renewable and Sustainable Energy, 2, No. 3, pp. 033104 (2010).
30. Zhao, Y., Yang, J. and He, Y., “Preliminary Design of a Multi-Column TLP Foundation for a 5-MW Offshore Wind Turbine,” Energies, 5, No. 10, pp. 3874-3891 (2012).
31. Jonkman, J. and Musial, W., “Offshore Code Comparison Collaboration (OC3) for IEA Task 23 Offshore Wind Technology and Deployment,” Contract, 303, pp. 275-3000 (2010).
32. De Silva, C. W., Vibration and shock handbook, CRC Press, (2010).
33. 邱逢琛, “載具動力學講義,” (2010).
34. API, R., “2SM,” Recommended Practice for Design, Manufacture, Installation, and Maintenance of Synthetic Fiber Ropes for Offshore Mooring (2001).
35. Faltinsen, O., Sea loads on ships and offshore structures, Cambridge university press, (1993).
36. 吉田宏一郎, 海洋構造力学の基礎, 成山堂書店, (2010).
37. Le Mehaute, B., An introduction to hydrodynamics and water waves, Springer-Verlag New York, (1976).
38. Morison, J., Johnson, J. and Schaaf, S., “The force exerted by surface waves on piles,” Journal of Petroleum Technology, 2, No. 05, pp. 149-154 (1950).
39. Sarpkaya, T., Vortex shedding and resistance in harmonic flow about smooth and rough circular cylinders at high Reynolds numbers, Monterey, California. Naval Postgraduate School, 1976.
40. Chakrabarti, S. K., Hydrodynamics of offshore structures, Computational Mechanics, (1987).
41. Veritas, N., Environmental conditions and environmental loads, Det Norske Veritas, (1991).
42. Sarpkaya, T., “In-Line And Transverse Forces On Cylinders In Oscillatory Flow At High Reynolds Numbers,” Proc. Offshore Technology Conference, Offshore Technology Conference, (1976).
43. Jonkman, J. M., Butterfield, S., Musial, W. and Scott, G., Definition of a 5-MW reference wind turbine for offshore system development, National Renewable Energy Laboratory Golden, CO, (2009).
44. Nielsen, F. G., Hanson, T. D. and Skaare, B. r., “Integrated dynamic analysis of floating offshore wind turbines,” Proc. 25th International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers, (2006), pp. 671-679.
45. Lee, C.-H., WAMIT theory manual, Massachusetts Institute of Technology, Department of Ocean Engineering, (1995).
46. Veritas, D. N., “Offshore Standard DNV-OS-E301 Position Mooring,” October, 2008, pp.|.
47. Chakrabarti, S. K., Chakrabarti, S. K., Engineer, C. and Chakrabarti, S. K., Offshore structure modeling, World Scientific River Edge, NJ, (1994).
48. Jonkman, J. M., Definition of the Floating System for Phase IV of OC3, National Renewable Energy Laboratory, (2010).
49. Jonkman, J., Butterfield, S., Musial, W. and Scott, G., Definition of a 5-MW Reference Wind Turbine for Offshore System Development, National Renewable Energy Laboratory, 2009.
50. Suzuki, H. and Sato, A., “Load on turbine blade induced by motion of floating platform and design requirement for the platform,” Proc., ASME, (2007).
51. Hansen, M. O., Aerodynamics of wind turbines, Routledge, (2013).
52. Veritas, D. N., “Global performance analysis of deepwater floating structures,” Hovik: Det Norske Veritas (2010).
53. Hammond, G. and Jones, C., “ICE Inventory of Carbon and Energy V 2.0,” Sustainable Energy Research Team (SERT), Department of Mechanical Engineering, University of Bath, UK (2011).
54. Clough, R. W. and Penzien, J., Dynamics of structures, 1975.
55. Newman, J. N., Marine hydrodynamics, MIT press, (1977).
56. Storn, R. and Price, K., Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces, ICSI Berkeley, (1995).
57. Lee, Y.-J., Ho, C.-Y. and Huang, Z.-Z., “Hydrodynamic Responses of a Spar-Type Floating Wind Turbine in High Waves,” Journal of Mechanics, 31, No. 01, pp. 105-112 (2015).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54996-
dc.description.abstract石化燃料燃燒時產生的二氧化碳是造成全球氣候變遷的主要原因。如何減少二氧化碳排放,成為全球永續發展的重要課題。風能是一項最可行的綠色能源,然而陸上型風力發電機由於土地、噪音與景觀等因素,使其發展日趨困難。離岸型浮動式風力發電機為解決目前困境迎來一線曙光。
本研究為探討離岸型浮動式風力發電機因波浪的作用,造成風機運轉性能變化的情形,由浮動式風力發電機的運動特性及輸出特性兩方面進行分析。針對Spar型浮動平台的運動特性,開發時域運動分析軟體NTUOE-Spar,其模擬結果先與其他類似軟體比較,獲得相當吻合的模擬結果;再利用Spar型浮動式風力發電機於高海況下的水槽實驗,來驗證NTUOE-Spar的正確性,其比較結果也相當接近,惟heave方向阻尼有不足的現象。此外,由模擬結果發現在初始(preliminary)設計階段做分析時,可忽略葉片與塔柱的可撓性(flexibility),另一方面也發現Spar型浮動平台的縱搖角度在暴風雨的海況下仍在可接受的範圍,可使陸基型風機在簡易改良後就可使用於Spar型浮體上。
於輸出特性分析中發現風機塔頂的切線速度是影響風機輸出的主要因素,其速度越快,風機輸出的不穩定性越高。以差分演算法改良之單柱型 (spar)浮體,因較短之旋轉中心至輪轂的距離,會改善風機輸出的不穩定性,降低疲勞破壞發生的機率,並擴增單柱型浮動式風力發電機的適用水深範圍。
就浮動式風力發電機的運動特性及輸出特性而言,Spar型浮體為相當有潛力的浮體平台設計。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-16T03:43:49Z (GMT). No. of bitstreams: 1
ntu-104-D97525003-1.pdf: 11003841 bytes, checksum: f6a80022375424e3f9962da124ffed88 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌 謝 i
摘 要 ii
Abstract iii
目 錄 iv
圖 目 錄 vi
表 目 錄 xi
符 號 說 明 xii
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 8
1.3 研究目的 10
1.4 論文大綱 10
第2章 運動方程式 12
2.1 剛體運動方程式 12
2.2 Spar-type浮動式風力機運動方程式 15
2.3 繫泊系統 18
2.3.1 繫泊系統的種類 18
2.3.2 繫泊系統分析 19
2.3.2.1 懸垂式繫泊索分析 20
2.3.2.2 斜張式繫泊索分析 22
2.4 浮體之波浪負荷 23
2.4.1 波浪理論 23
2.4.2 波力 26
2.4.2.1 莫里森方程式(Morison’s Equation) 27
2.4.2.2 波力公式的選用 29
第3章 時域模擬程式 30
3.1 NTUOE-Spar程式架構 30
3.2 OC3-Hywind system模型 32
3.3 程式模擬結果比較 37
第4章 模型實驗 47
4.1 浮體模型設計 47
4.2 模型實驗 49
4.3 實驗與模擬結果 58
4.3.1 自由運動衰減實驗(Free Decay Test) 58
4.3.2 造波實驗 71
第5章 浮動式風力發電機之輸出 81
5.1 風力發電機塔柱傾斜所導致的入流風速減少 82
5.2 風力發電機輪轂(hub)縱搖時所產生的切線速度 82
5.3 縱搖對風機輸出的影響 83
5.4 單柱型浮體幾何改善 88
第6章 結論與建議 95
6.1 結論 95
6.2 未來研究建議 96
參考文獻 98
dc.language.isozh-TW
dc.subject差分演算法zh_TW
dc.subject莫里森方程式zh_TW
dc.subject時域分析zh_TW
dc.subject單柱型zh_TW
dc.subject離岸型浮動式風力發電機zh_TW
dc.subjectdifferential evolution methoden
dc.subjectMorison’s equationen
dc.subjectfloating offshore wind turbineen
dc.subjectspar typeen
dc.subjecttime domain analysisen
dc.title受波浪影響之離岸單柱型浮動式風力發電機的運動分析與輸出特性改善zh_TW
dc.titleMotion Analysis and Output Improvement of a Spar-Type Floating Offshore Wind Turbine Influenced by Wave-Induced Oscillationen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee邱逢琛,林輝政,呂學信,許泰文,梁卓中
dc.subject.keyword離岸型浮動式風力發電機,單柱型,時域分析,莫里森方程式,差分演算法,zh_TW
dc.subject.keywordfloating offshore wind turbine,spar type,time domain analysis,Morison’s equation,differential evolution method,en
dc.relation.page101
dc.rights.note有償授權
dc.date.accepted2015-02-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
10.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved