Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54947
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊嘉揚(Jia-Yang Juang)
dc.contributor.authorHung-Huei Leeen
dc.contributor.author李虹慧zh_TW
dc.date.accessioned2021-06-16T03:42:21Z-
dc.date.available2018-04-27
dc.date.copyright2015-04-27
dc.date.issued2015
dc.date.submitted2015-02-12
dc.identifier.citation[1] E. M. L. Landau, L. D., Theory of Elasticity, Third Edit. Oxford, UK: Pergamon, 1986.
[2] J. P. Butler, I. M. Tolić-Norrelykke, B. Fabry, and J. J. Fredberg, “Traction fields, moments, and strain energy that cells exert on their surroundings.,” Am. J. Physiol. Cell Physiol., vol. 282, no. 3, pp. C595–605, Mar. 2002.
[3] M. V. Manzanares, X. Ma, R. S. Adelstein, and A. R. Horwitz, “Non-muscle myosin II takes centre stage in cell adhesion and migration,” Nat Rev Mol Cell Biol, vol. 10, no. 11, pp. 778–790, 2009.
[4] J. T. Parsons, A. R. Horwitz, and M. a Schwartz, “Cell adhesion: integrating cytoskeletal dynamics and cellular tension.,” Nat. Rev. Mol. Cell Biol., vol. 11, no. 9, pp. 633–43, Sep. 2010.
[5] L. B. Leverett, J. D. Hellums, C. P. Alfrey, and E. C. Lynch, “Red blood cell damage by shear stress.,” Biophys. J., vol. 12, no. 3, pp. 257–73, Mar. 1972.
[6] W. Xiong and J. Zhang, “Shear stress variation induced by red blood cell motion in microvessel.,” Ann. Biomed. Eng., vol. 38, no. 8, pp. 2649–59, Aug. 2010.
[7] A. K. Yip, K. Iwasaki, C. Ursekar, H. Machiyama, M. Saxena, H. Chen, I. Harada, K.-H. Chiam, and Y. Sawada, “Cellular response to substrate rigidity is governed by either stress or strain.,” Biophys. J., vol. 104, no. 1, pp. 19–29, Jan. 2013.
[8] S. J. Han, K. S. Bielawski, L. H. Ting, M. L. Rodriguez, and N. J. Sniadecki, “Decoupling substrate stiffness, spread area, and micropost density: a close spatial relationship between traction forces and focal adhesions.,” Biophys. J., vol. 103, no. 4, pp. 640–8, Aug. 2012.
[9] A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification.,” Cell, vol. 126, no. 4, pp. 677–89, Aug. 2006.
[10] V. Vogel and M. Sheetz, “Local force and geometry sensing regulate cell functions.,” Nat. Rev. Mol. Cell Biol., vol. 7, no. 4, pp. 265–75, Apr. 2006.
[11] C. A. Reinhart-king, M. Dembo, and D. A. Hammer, “Endothelial Cell Traction Forces on RGD-Derivatized Polyacrylamide Substrata,” Langmuir, vol. 11, no. 7, pp. 1573–1579, 2003.
[12] M. Dembo and Y. L. Wang, “Stresses at the cell-to-substrate interface during locomotion of fibroblasts.,” Biophys. J., vol. 76, no. 4, pp. 2307–16, Apr. 1999.
[13] C. a Reinhart-King, M. Dembo, and D. a Hammer, “The dynamics and mechanics of endothelial cell spreading.,” Biophys. J., vol. 89, no. 1, pp. 676–89, Jul. 2005.
[14] P. W. Oakes, S. Banerjee, M. C. Marchetti, and M. L. Gardel, “Geometry Regulates Traction Stresses in Adherent Cells,” Biophys. J., vol. 107, no. 4, pp. 825–833, Aug. 2014.
[15] D. E. Discher, P. Janmey, and Y.-L. Wang, “Tissue cells feel and respond to the stiffness of their substrate.,” Science, vol. 310, no. 5751, pp. 1139–43, Nov. 2005.
[16] B. Geiger, J. P. Spatz, and A. D. Bershadsky, “Environmental sensing through focal adhesions.,” Nat. Rev. Mol. Cell Biol., vol. 10, no. 1, pp. 21–33, Jan. 2009.
[17] J. Yu-Li Wang, Robert J. Pelham, “Cell locomotion and focal adhesions are regulated by substrate flexibility,” Proc. Natl. Acad. Sci. U. S. A., vol. 94, no. December, pp. 13661–13665, 1997.
[18] C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric Control of Cell Life and Death,” Science (80-. )., vol. 276, no. May, pp. 1425–1428, 1997.
[19] J. Fu, Y.-K. Wang, M. T. Yang, R. a Desai, X. Yu, Z. Liu, and C. S. Chen, “Mechanical regulation of cell function with geometrically modulated elastomeric substrates.,” Nat. Methods, vol. 7, no. 9, pp. 733–6, Sep. 2010.
[20] M. Dembo and T. Oliver, “Imaging the Traction Stresses Exerted by Locomoting Cells with the Elastic Substratum Method,” Biophys. J., vol. 70, no. April 1996, pp. 2008–2022, 1996.
[21] U. S. Schwarz, N. Q. Balaban, D. Riveline, a Bershadsky, B. Geiger, and S. a Safran, “Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization.,” Biophys. J., vol. 83, no. 3, pp. 1380–94, Sep. 2002.
[22] K. L. Johnson, Contact Mechanics. New York, USA: Cambridge University Press, 1985.
[23] J. Toyjanova, E. Bar-Kochba, C. Lopez-Fagundo, J. Reichner, D. Hoffman-Kim, and C. Franck, “High resolution, large deformation 3D traction force microscopy.,” PLoS One, vol. 9, no. 4, p. e90976, Jan. 2014.
[24] Z. Yang, J.-S. Lin, J. Chen, and J. H.-C. Wang, “Determining substrate displacement and cell traction fields--a new approach.,” J. Theor. Biol., vol. 242, no. 3, pp. 607–16, Oct. 2006.
[25] S. S. Hur, Y. Zhao, Y.-S. Li, E. Botvinick, and S. Chien, “Live Cells Exert 3-Dimensional Traction Forces on Their Substrata.,” Cell. Mol. Bioeng., vol. 2, no. 3, pp. 425–436, Sep. 2009.
[26] C. Franck, S. a Maskarinec, D. a Tirrell, and G. Ravichandran, “Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions.,” PLoS One, vol. 6, no. 3, p. e17833, Jan. 2011.
[27] Randall J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. University of Washington, Seattle, Washington, 2007.
[28] J. N. Reddy, An Inroduction to the Finite Element Method, Third Edit. McGraw-Hill Inc, 2006.
[29] S. Moaveni, Finite Element Analysis-Theory and Application with ANSYS, Third Edit. Pearson Education Taiwan Ltd., 2013.
[30] N. Bonakdar, J. P. Butler, B. Fabry, T. M. Koch, and S. Mu, “3D Traction Forces in Cancer Cell Invasion,” PLOS o, vol. 7, no. 3, 2012.
[31] V. Peschetola, V. M. Laurent, A. Duperray, R. Michel, D. Ambrosi, L. Preziosi, and C. Verdier, “Time-dependent traction force microscopy for cancer cells as a measure of invasiveness.,” Cytoskeleton (Hoboken)., vol. 70, no. 4, pp. 201–14, Apr. 2013.
[32] A. K. Harris, P. Wild, and D. Stopak, “Silicone Rubber Substrata: A New Wrinkle in the Study of Cell Locomotion,” Science, 1980.
[33] K. Burton and D. L. Taylor, “Traction forces of cytokinesis measured with optically modified substrata,” Nature, vol. 385, pp. 450–454, 1997.
[34] A. K. Harris, D. Stopak, and P. Wild, “Fibroblast traction as a mechanism for collagen morphogenesis.pdf,” Nature, vol. 290, pp. 249–251, 1981.
[35] J. Lee, M. Leonard, T. Oliver, A. Ishihara, and K. Jacobson, “Traction Forces Generated by Locomoting Keratocytes,” J. Cell Biol., vol. 127, no. 6, pp. 1957–1964, 1994.
[36] T. Oliver, M. Dembo, and K. Jacobson, “Traction forces in locomoting cells.,” Cell Motil. Cytoskeleton, vol. 31, no. 3, pp. 225–40, Jan. 1995.
[37] U. S. Schwarz, N. Q. Balaban, D. Riveline, L. Addadi, a. Bershadsky, S. a. Safran, and B. Geiger, “Measurement of cellular forces at focal adhesions using elastic micro-patterned substrates,” Mater. Sci. Eng. C, vol. 23, no. 3, pp. 387–394, Mar. 2003.
[38] J. Huang, L. Qin, X. Peng, T. Zhu, C. Xiong, Y. Zhang, and J. Fang, “Cellular traction force recovery: An optimal filtering approach in two-dimensional Fourier space.,” J. Theor. Biol., vol. 259, no. 4, pp. 811–9, Aug. 2009.
[39] B. a Harley, T. M. Freyman, M. Q. Wong, and L. J. Gibson, “A new technique for calculating individual dermal fibroblast contractile forces generated within collagen-GAG scaffolds.,” Biophys. J., vol. 93, no. 8, pp. 2911–22, Oct. 2007.
[40] N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger, “Force and focal adhesion assembly : a close relationship studied using elastic micropatterned substrates,” Nat. Cell Biol., vol. 3, no. May, 2001.
[41] C. G. Galbraith and M. P. Sheetz, “A micromachined device provides a new bend on fibroblast traction forces,” Proc. Natl. Acad. Sci. U. S. A., vol. 94, no. August, pp. 9114–9118, 1997.
[42] J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen, “Cells lying on a bed of microneedles : An approach to isolate mechanical force,” Proc. Natl. Acad. Sci., vol. 100, no. 4, pp. 1484–1489, 2003.
[43] H. Reismann and P. S. Pawlik, Elasticity Theory and Applications. Buffalo, New York: John Wiley and Sons, 1980.
[44] J. M. Bernardo and A. F. M. Smith, Bayesian Theory. Chichester, UK: John Wiley and Sons, 1994.
[45] W. A. Marganski, M. Dembo, and Y.-L. Wang, “Measurements of cell-generated deformations on flexible substrata using correlation-based optical flow,” Methods Enzymol., vol. 361, pp. 197–211, 2003.
[46] P. C. Hansen, “REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems,” Numer. Algorithms, vol. 6, no. I 994, pp. 1–35, 1994.
[47] J. Honerkamp and J. Weese, “Tikhonovs regularization method for ill-posed problems,” Contin. Mech. Thermodyn., vol. 2, pp. 17–30, 1990.
[48] P. C. Hansen, “Regularization Tools version 4.0 for Matlab 7.3,” Numer. Algorithms, vol. 46, no. 2, pp. 189–194, Nov. 2007.
[49] J. Huang, X. Peng, L. Qin, T. Zhu, C. Xiong, Y. Zhang, and J. Fang, “Determination of cellular tractions on elastic substrate based on an integral Boussinesq solution.,” J. Biomech. Eng., vol. 131, no. 6, p. 061009, Jun. 2009.
[50] S. S. Ng, C. Li, and V. Chan, “Experimental and numerical determination of cellular traction force on polymeric hydrogels.,” Interface Focus, vol. 1, no. 5, pp. 777–91, Oct. 2011.
[51] S. Even-Ram and K. M. Yamada, “Cell migration in 3D matrix.,” Curr. Opin. Cell Biol., vol. 17, no. 5, pp. 524–32, Oct. 2005.
[52] M. H. Zaman, R. D. Kamm, P. Matsudaira, and D. a Lauffenburger, “Computational model for cell migration in three-dimensional matrices.,” Biophys. J., vol. 89, no. 2, pp. 1389–97, Aug. 2005.
[53] R. J. Bloom, J. P. George, A. Celedon, S. X. Sun, and D. Wirtz, “Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking.,” Biophys. J., vol. 95, no. 8, pp. 4077–88, Oct. 2008.
[54] W. R. Legant, C. K. Choi, J. S. Miller, L. Shao, L. Gao, E. Betzig, and C. S. Chen, “Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions.,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 3, pp. 881–6, Jan. 2013.
[55] S. a Maskarinec, C. Franck, D. a Tirrell, and G. Ravichandran, “Quantifying cellular traction forces in three dimensions.,” Proc. Natl. Acad. Sci. U. S. A., vol. 106, no. 52, pp. 22108–13, Dec. 2009.
[56] J. C. Del Alamo, R. Meili, B. Alvarez-Gonzalez, B. Alonso-Latorre, E. Bastounis, R. Firtel, and J. C. Lasheras, “Three-dimensional quantification of cellular traction forces and mechanosensing of thin substrata by fourier traction force microscopy.,” PLoS One, vol. 8, no. 9, p. e69850, Jan. 2013.
[57] H. Delanoe-Ayari, J. P. Rieu, and M. Sano, “4D Traction Force Microscopy Reveals Asymmetric Cortical Forces in Migrating Dictyostelium Cells,” Phys. Rev. Lett., vol. 105, no. 24, p. 248103, Dec. 2010.
[58] P. Hersen and B. Ladoux, “Biophysics: Push it, pull it,” Nature, vol. 470, no. 7334, pp. 340–341, 2011.
[59] W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices.,” Nat. Methods, vol. 7, no. 12, pp. 969–71, Dec. 2010.
[60] C. Truesdell and R. Toupin, The classical field theories. Springer, 1960.
[61] A. Teodor M. and G. Ardeshir, Theory of Elasticity for Scientists and Engineers. Springer, 2000.
[62] I. Fridtjov, Continuum Mechanics. Springer, 2008.
[63] F. P. Beer, E. R. Johnston, and J. T. Dewolf, Mechanics of Materials, Third. New York: McGraw-Hill Inc, 2004.
[64] T. M. Charlton, Energy Principles in Theory of Structures. Oxford University Press, 1973.
[65] Y.-F. Chou, “Chapter 2. Strain Energy and Complementary Energy,” in Energy Principle, 2013.
[66] A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th Edn. Cambridge University Press, 1952.
[67] T. Boudou, J. Ohayon, C. Picart, and P. Tracqui, “An extended relationship for the characterization of Young’s modulus and Poisson's ratio of tunable polyacrylamide gels,” Biorheology, vol. 43, pp. 721–728, 2006.
[68] Y. Li, Z. Hu, and C. Li, “New Method for Measuring Poisson’s Ratio in Polymer Gels,” J. Appl. Polym. Sci., pp. 1107–1111, 1993.
[69] X. Tang, A. Tofangchi, S. V Anand, and T. a Saif, “A novel cell traction force microscopy to study multi-cellular system.,” PLoS Comput. Biol., vol. 10, no. 6, p. e1003631, Jun. 2014.
[70] “Automated Inverted Microscope, Leica DMI4000.” [Online]. Available: http://www.leica-microsystems.com/products/light-microscopes/clinical/inverted-microscopes/details/product/leica-dmi4000-b/.
[71] Instruction Manual MCR Series. Austria, Europe: Anton Paar, 2014.
[72] “Rheometer Physica MCR 301, Anton Paar.” [Online]. Available: http://www.anton-paar.com/corp-en/products/details/mcr-rheometer-series/rheometer/.
[73] R. W. Style, C. Hyland, R. Boltyanskiy, J. S. Wettlaufer, and E. R. Dufresne, “Surface tension and contact with soft elastic solids.,” Nat. Commun., vol. 4, p. 2728, Jan. 2013.
[74] S. Timoshenko, “Theory of Elasticity.” McGraw-Hill Inc, New York, 1934.
[75] B. Sabass, M. L. Gardel, C. M. Waterman, and U. S. Schwarz, “High resolution traction force microscopy based on experimental and computational advances.,” Biophys. J., vol. 94, no. 1, pp. 207–20, Jan. 2008.
[76] “Benedikt Sabass.” [Online]. Available: http://www.thphys.uni-heidelberg.de/~biophys/index.php?lang=e&n1=sabass.
[77] J. Stricker, B. Sabass, U. S. Schwarz, and M. L. Gardel, “Optimization of traction force microscopy for micron-sized focal adhesions.,” J. Phys. Condens. Matter, vol. 22, no. 19, p. 194104, May 2010.
[78] S. V Plotnikov, B. Sabass, U. S. Schwarz, and C. M. Waterman, “High-resolution traction force microscopy.,” Methods Cell Biol., vol. 123, pp. 367–94, Jan. 2014.
[79] Y. Lee, J. Huang, Y. Wang, and K. Lin, “Three-dimensional fibroblast morphology on compliant substrates of controlled negative curvature.,” Integr. Biol. (Camb)., vol. 5, no. 12, pp. 1447–55, Dec. 2013.
[80] W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices.,” Nat. Methods, vol. 7, no. 12, pp. 969–71, Dec. 2010.
[81] R. Zielinski, C. Mihai, D. Kniss, and S. N. Ghadiali, “Finite element analysis of traction force microscopy: influence of cell mechanics, adhesion, and morphology.,” J. Biomech. Eng., vol. 135, no. 7, p. 71009, Jul. 2013.
[82] J. Soine, “Reconstruction and Simulation of Cellular Traction Forces,” Ruperto-Carola University of Heidelberg, Germany, 2014.
[83] C. Lopez-fagundo, E. Bar-kochba, L. L. Livi, D. Hoffman-kim, C. Franck, and C. Lo, “Three-dimensional traction forces of Schwann cells on compliant substrates,” J. R. Soc. Interface, no. May, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54947-
dc.description.abstract在細胞生物學領域中,了解細胞如何施力以及反應外界的環境是相當重要
且關鍵的,當細胞在移動時,細胞會透過複雜的機制對附著的基材產生抓力,為使我們能夠更了解細胞究竟如何與細胞外基質作用,測量與分析細胞抓力的方法佔了重要的一席之地。本研究採用將細胞培養在以聚丙烯醯胺凝膠(polyacrylamide gel,簡稱PA gel)製備而成的基材上,測量與分析其細胞抓力。聚丙烯醯胺凝膠為黏彈性材料,但若考慮黏彈性的材料性質會使得測量細胞抓力的情況過為複雜,因此目前在此相關領域中皆是以材料性質為線性彈性的假設下進行分析。針對細胞培養在平面基材上的實驗設置下,有相當多種分析細胞抓力的方法,傳統的方法以化簡為二維分析為主,忽略在垂直於基材表面方向所造成的位移和抓力,且普遍以由三維的包辛尼斯克-塞魯蒂方程式所化簡推導而得的二維格林函數為基礎作運算,其中又以傅立葉轉換法最為廣泛使用。然而近年的文獻多指出當細胞黏附在平面的基材上時,會對細胞外基質同時施加剪切和垂直的抓力,因此細胞在垂直方向的影響是不可忽略的,這也是近年來建立三維細胞抓力分析方法的重要性。與傅立葉轉換法相比,有限元素法能夠有效的應用於二維、三維抓力分析,並且能推廣至有複雜幾何形狀的基材和非彈性材料,不受限於包辛尼斯克-塞魯蒂方程式的限制。
本研究主要著重在計算方法的部分,並建立了各種分析方法以探討不同方
法間的差異。實驗中是利用追蹤細胞造成的內部螢光小球的位移場而回推細胞抓力,因此為了解基材中螢光小球濃度的影響,本研究利用模擬不同濃度的資料點密度,歸納出抓力能夠被回復的範圍。除此之外,我們也發現螢光小球密度較低時,傾向於更加低估抓力的大小值,且也導致回復的抓力位置有誤差。另外,本研究也藉由模擬分析細胞抓力回復和應變能回復來探討實驗雜訊所造成的影響,並且測試不同方法對雜訊影響的穩定度。透過自助抽樣法的結果,
實驗雜訊確實會增加細胞抓力偏差的標準差。而在二維分析方法中,在剪切抓力方向造成的標準差均約為20 帕,因此我們認為傅立葉分析法與二維的有限元素法對於雜訊處理的穩定度是足夠的。除了三維分析方法對於細胞在垂直方向的抓力計算之外,由於二維分析方法忽略垂直基材方向的影響,導致大量低估細胞的應變能,因此這也是提高三維分析方法重要性的原因之一。綜合而言,本研究建立了不同的細胞抓力分析方法,並比較各種方法間的差異,以及利用模擬方法提供細胞實驗部分建議的條件以及有用的資訊。
zh_TW
dc.description.abstractWhile migrating, cells generate traction forces to the polyacrylamide substrate through complex adhesion mechanism. Measuring such forces, known as traction force microscopy, is of critical importance in understanding how cells interact with extracellular matrix. The polyacrylamide gel is indeed a viscoelastic material. However, cellular traction force analysis considering viscoelastic models becomes too complicated to tackle, and is beyond the scope of this study. In this thesis, we focus on the traction force under static condition; therefore, we assume that the gel is linearly elastic material and conduct the numerical analysis accordingly.
Some analytical methods based on Boussinesq-Cerruti problem [1], such as two-dimensional Fourier-transform traction cytometry (FTTC) [2], have been widely used to reconstruct the cellular traction from substrate displacement field measured by confocal microscopy, and they often assume that cells exert only shear forces on an elastic flat substrate. However, recent studies indicated that cells on a planar substrate exert significant out-of-plane traction. Therefore, the out-of-plane component of the traction should not be neglected, and we found that neglecting the out-of-plane component results in considerable deviation from the more realistic traction force. Compared with the conventional FTTC method, finite element method (FEM) can be readily applied to substrates with complicated non-planar surfaces and those made of inelastic materials.
In this thesis, we focus on the computational methods, and develop several kinds of methods to understand the difference between different methods. In order to understand the influences of beads density, which represent the quantity of data points, we use simulations to find resolvable range for single focal adhesion recovery under different beads density. In addition, we also investigate whole normal traction field recovery and find that the lower beads density causes the recovered traction more dispersed and underestimated, and that also probably causes the deviation on the recovered positions of tractions. While further adding the noises effects during the traction force reconstruction, we investigate the strain energy recovery and traction force recovery, and test the reliability of different methods for noises treatment. We find that noises increasing the traction deviations between bootstrap iterations. For 2D analysis methods, there are only about 20 Pa of standard deviations in shear tractions, thus we think both the FTTC and 2D FEM are consistent enough for noises treatment. Beside the analysis of normal tractions, due to the neglecting in z direction, 2D analysis methods tend to much more underestimate the strain energy than the recovered strain energy in 3D analysis, and this also confirm the significance for 3D methods. In conclusion, we develop several analysis methods and compare between different methods, and use various simulations to provide the direction for improvement and helpful information for a given experimental setup.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:42:21Z (GMT). No. of bitstreams: 1
ntu-104-R02522507-1.pdf: 7990617 bytes, checksum: 305d7a132f6404497e18226ff449579f (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 I
中文摘要 III
ABSTRACT V
CONTENTS VII
LISTS OF TABLES XI
LISTS OF FIGURES XII
LISTS OF SYMBOLS XVIII
CHAPTER 1: INTRODUCTION 1
1.1 CELLULAR TRACTION FORCE 1
1.2 CELLULAR TRACTION FORCE MICROSCOPY 3
1.3 MOTIVATION AND OBJECTIVES 5
1.4 THESIS FRAMEWORK 6
CHAPTER 2: LITERATURE REVIEWS AND THEORETICAL BACKGROUND 9
2.1 LITERATURE REVIEWS 9
2.2 HOOKE’S LAW FOR ELASTIC ISOTROPIC MATERIALS 11
2.2.1 Generalized Hooke’s Law 11
2.2.2 Isotropy 13
2.3 TRACTION FIELD 17
2.3.1 Euler-Cauchy Stress Principle 17
2.3.2 Cauchy’s Stress Theorem 19
2.3.3 Components of Traction in Cartesian Coordinate 21
2.3.4 Components of Traction in Spherical Coordinate 22
2.4 STRAIN ENERGY 24
2.5 GREEN’S FUNCTION BASED ON BOUSSINESQ-CERRUTI EQUATION 25
2.5.1 Boussinesq-Cerruti Potential Functions 25
2.5.2 Concentrated Normal Force 28
2.5.3 Concentrated Shear Force 33
2.5.4 Three-Dimensional Green’s Function 35
2.5.5 Two-Dimensional Green’s Function 37
2.6 THEORETICAL BACKGROUND OF FINITE ELEMENT METHOD 39
CHAPTER 3: MATERIALS AND EXPERIMENTAL METHODS 41
3.1 GEL PREPARATION 41
3.1.1 Flat Substrate 41
3.1.2 Flat Substrate with Holes 44
3.2 CELL CULTURE 47
3.3 CONFOCAL MICROSCOPY AND IMAGE PROCESS 47
3.4 MECHANICAL PROPERTIES MEASUREMENT OF POLYACRYLAMIDE 50
CHAPTER 4: NUMERICAL SIMULATIONS AND COMPUTATIONAL METHODS 57
4.1 CELLS ON A FLAT SUBSTRATE 57
4.1.1 Two-Dimensional Cellular Traction Force Analysis 57
4.1.1.1 Solution Based on Green’s Function 58
4.1.1.2 Finite Element Method 61
4.1.2 Three-Dimensional Cellular Traction Force Analysis 62
4.1.2.1 Direct Method Based on Constitutive Relations 63
4.1.2.2 Finite Element Method 64
4.2 CELLS IN HOLES 66
4.2.1 Finite Element Method 67
4.3 SIMULATION OF DIFFERENT BEADS DENSITY 68
4.3.1 Single Focal Adhesion Recovery 69
4.3.2 Whole Cellular Traction Field Recovery 72
4.4 SIMULATION OF TRACTION FORCE RECOVERY 74
4.5 SIMULATION OF STRAIN ENERGY RECOVERY 75
CHAPTER 5: RESULTS AND DISCUSSION 77
5.1 ANALYSIS RESULTS OF CELLS ON FLAT SUBSTRATE 77
5.1.1 Two-Dimensional Cellular Traction Force Analysis Results 78
5.1.2 Three-Dimensional Cellular Traction Force Analysis Results 82
5.1.3 Comparison of Two-Dimensional Analysis and Three-Dimensional Analysis 86
5.2 ANALYSIS RESULTS OF CELLS IN HOLES 88
5.2.1 Analysis Results by Finite Element Method 88
5.3 RESULTS OF DIFFERENT BEADS DENSITY SIMULATION 93
5.3.1 Single Focal Adhesion Recovery 93
5.3.2 Whole Cellular Traction Field Recovery 101
5.4 RESULTS OF TRACTION FORCE RECOVERY SIMULATION 112
5.5 RESULTS OF STRAIN ENERGY RECOVERY SIMULATION 129
CHAPTER 6: CONCLUSIONS AND FUTURE WORK 133
6.1 CONCLUSIONS 133
6.2 FUTURE DIRECTIONS 137
REFERENCE 138
APPENDIX A: THE THICKNESS EFFECTS IN SIMULATIONS OF SINGLE FOCAL ADHESION 150
APPENDIX B: PROTOCOL FOR MECHANICAL PROPERTIES MEASUREMENT OF POLYACRYLAMIDE 152
APPENDIX C: PUBLICATIONS 160
dc.language.isoen
dc.title三維細胞抓力之量測與數值分析zh_TW
dc.titleThree-Dimensional Cellular Traction Force Microscopyen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林耿慧,蘇育全,周元昉
dc.subject.keyword三維,細胞抓力,有限元素法,螢光小球密度,雜訊影響,抓力回復,應變能回復,zh_TW
dc.subject.keywordThree-dimensional,Cellular traction force,Finite element method,Beads density,Noises effect,Traction force reconstruction,Strain energy recovery,en
dc.relation.page160
dc.rights.note有償授權
dc.date.accepted2015-02-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
7.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved