請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54928完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃建璋(Jian-Jang Huang) | |
| dc.contributor.author | Ching-Yu Shih | en |
| dc.contributor.author | 施靜妤 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:41:48Z | - |
| dc.date.available | 2025-08-06 | |
| dc.date.copyright | 2020-08-25 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-06 | |
| dc.identifier.citation | [1] Chvála, Aleš, et al. 'Analysis of multifinger power HEMTs supported by effective 3D device electrothermal simulation.' Microelectronics Reliability 78 (2017): 148-155.
[2] Mojab, Alireza, et al. 'Introducing optical cascode GaN HEMT.' IEEE Transactions on Electron Devices 64.3 (2017): 796-804. [3] Faramehr, Soroush, Karol Kalna, and Petar Igić. 'Drift-diffusion and hydrodynamic modeling of current collapse in GaN HEMTs for RF power application.' Semiconductor Science and Technology 29.2 (2014): 025007. [4] Vobecky, Jan. 'The current status of power semiconductors.' Facta Universitatis, Series: Electronics and Energetics 28.2 (2015): 193-203. [5] Ubochi, Brendan, et al. 'Operational frequency degradation induced trapping in scaled GaN HEMTs.' Microelectronics Reliability 71 (2017): 35-40. [6] Zhang, HengShuang, et al. 'Extraction method for parasitic capacitances and inductances of HEMT models.' Solid-State Electronics 129 (2017): 108-113. [7] Fletcher, AS Augustine, and D. Nirmal. 'A survey of Gallium Nitride HEMT for RF and high power applications.' Superlattices and Microstructures 109 (2017): 519-537. [8] McGrath, S., and T. Rodle. 'Moving past the hype: Real opportunities for wide bandgap compound semiconductors in RF power markets.' CSMantech On-Line Dig (2005). [9] Yamaki, Fumikazu, et al. 'A 65% drain efficiency GaN HEMT with 200 W peak power for 20 V to 65 V envelope tracking base station amplifier.' 2011 IEEE MTT-S International Microwave Symposium. IEEE, 2011. [10] Mitani, Eizo, et al. 'An 800-W AlGaN/GaN HEMT for S-band high-power application.' CSMantech On-Line Dig 0.2 (2007): 0-3. [11] Ambacher, O., et al. 'Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures.' Journal of applied physics 85.6 (1999): 3222-3233. [12] Ibbetson, James Paul, et al. 'Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors.' Applied Physics Letters 77.2 (2000): 250-252. [13] Lu, Wu, et al. 'AlGaN/GaN HEMTs on SiC with over 100 GHz fT and low microwave noise.' IEEE Transactions on Electron Devices 48.3 (2001): 581-585. [14] Pengelly, Raymond S., et al. 'A review of GaN on SiC high electron-mobility power transistors and MMICs.' IEEE Transactions on Microwave Theory and Techniques 60.6 (2012): 1764-1783. 48 [15] Chumbes, Eduardo M., et al. 'AlGaN/GaN high electron mobility transistors on Si (111) substrates.' IEEE Transactions on electron devices 48.3 (2001): 420-426. [16] Luong, Tien Tung, et al. 'RF loss mechanisms in GaN‐based high‐electron‐mobility‐transistor on silicon: Role of an inversion channel at the AlN/Si interface.' Physica status solidi (a) 214.7 (2017): 1600944. [17] Minko, A., et al. 'High microwave and noise performance of 0.17-μm AlGaN-GaN HEMTs on high-resistivity silicon substrates.' IEEE electron device letters 25.4 (2004): 167-169. [18] Marti, Diego, et al. 'RF performance of AlGaN/GaN high-electron-mobility transistors grown on silicon (110).' Applied physics express 4.6 (2011): 064105. [19] Chandrasekar, Hareesh, et al. 'Quantifying temperature-dependent substrate loss in GaN-on-Si RF technology.' IEEE Transactions on Electron Devices 66.4 (2019): 1681-1687. [20] Hoshi, Shinichi, et al. '12.88 W/mm GaN high electron mobility transistor on silicon substrate for high voltage operation.' Applied Physics Express 2.6 (2009): 061001. [21] Wong, Yuen-Yee, et al. 'Growth and fabrication of AlGaN/GaN HEMT on SiC substrate.' 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE). IEEE, 2012. [22] Benaissa, Kamel, et al. 'RF CMOS on high-resistivity substrates for system-on-chip applications.' IEEE Transactions on Electron Devices 50.3 (2003): 567-576. [23] Benaissa, K., et al. '0.1μm RFCMOS on High Resistivity Substrates for System on Chip (SOC) Applications.' Electron Devices Meeting. 2002. [24] Yang, Ru‐Yuan, et al. 'Loss characteristics of silicon substrate with different resistivities.' Microwave and Optical Technology Letters 48.9 (2006): 1773-1776. [25] Pfost, Martin, H-M. Rein, and Thomas Holzwarth. 'Modeling substrate effects in the design of high-speed Si-bipolar ICs.' IEEE Journal of Solid-State Circuits 31.10 (1996): 1493-1501. [26] Ducatteau, D., et al. 'Output power density of 5.1W/mm at 18 GHz with an AlGaN/GaN HEMT on Si substrate.' IEEE Electron Device Letters 27.1 (2005): 7-9. [27] Driad, S. Bouzid, et al. 'AlGaN/GaN HEMTs on silicon substrate with 206 GHz FMAX.' IEEE Electron Device Letters 34.1 (2013): 36-38. [28] Takenaka, Isao, et al. 'High-efficiency and high-power microwave amplifier using GaN-on-Si FET with improved high-temperature operation characteristics.' IEEE Transactions on Microwave Theory and Techniques 62.3 (2014): 502-512. [29] B. Lu and T. Palacios. 'High Breakdown (>1500V) AlGaN/GaN HEMTs by Substrate-Transfer Technology,' IEEE Electron Device Letters, 31.9 (2010) : 951-953 [30] Srivastava, Puneet, et al. 'Silicon substrate removal of GaN DHFETs for enhanced (< 1100 V) breakdown voltage.' IEEE Electron Device Letters 31.8 (2010): 851-853. [31] Das, Johan, et al. 'Substrate removal of AlGaN/GaN HEMTs using laser lift‐off.' physica status solidi (c) 2.7 (2005): 2655-2658. [32] Srivastava, Puneet, et al. 'Si trench around drain (STAD) technology of GaN-DHFETs on Si substrate for boosting power performance.' 2011 International Electron Devices Meeting. IEEE, 2011. [33] Drangeid, K. E., and R. Sommerhalder. 'Dynamic performance of Schottky-barrier field-effect transistors.' IBM Journal of Research and Development 14.2 (1970): 82-94. [34] Sze, Simon M., and Kwok K. Ng. Physics of semiconductor devices. John wiley sons, 2006, p. 349, 1981. [35] Nguyen, N. X., et al. 'Robust low microwave noise GaN MODFETs with 0.60 dB noise figure at 10 GHz.' Electronics Letters 36.5 (2000): 469-471. [36] Lee, J-W., et al. 'Microwave noise performances of AlGaN/GaN HEMTs on semi-insulating 6H‐SiC substrates.' Electronics Letters 40.1 (2004): 80-81. [37] Sun, Haifeng, et al. 'High-Performance 0.1-μm Gate AlGaN/GaN HEMTs on Silicon With Low-Noise Figure at 20 GHz.' IEEE electron device letters 30.2 (2008): 107-109. [38] Seo, Sanghyun, et al. 'Dispersion, high-frequency and power characteristics of AlN/GaN metal insulator semiconductor field effect transistors with in-situ MOCVD deposited Si3N4.' IEICE transactions on electronics 93.8 (2010): 1245-1250. [39] Meneghini, Matteo, et al. 'Buffer traps in Fe-doped AlGaN/GaN HEMTs: Investigation of the physical properties based on pulsed and transient measurements.' IEEE Transactions on Electron Devices 61.12 (2014): 4070-4077. [40] Wang, Maojun, et al. 'Investigation of Surface-and Buffer-Induced Current Collapse in GaN High-Electron Mobility Transistors Using a Soft Switched Pulsed I-V Measurement.' IEEE Electron Device Letters 35.11 (2014): 1094-1096. [41] Meneghini, Matteo, et al. 'Temperature-Dependent Dynamic Ron in GaN-Based MIS-HEMTs: Role of Surface Traps and Buffer Leakage.' IEEE transactions on 50 electron devices 62.3 (2015): 782-787. [42] Chen, Guang, et al. 'A low gate bias model extraction technique for AlGaN/GaN HEMTs.' IEEE Transactions on microwave theory and techniques 54.7 (2006): 2949-2953. [43] Chugh, Nisha, et al. 'Extraction of admittance parameters of symmetrically doped AlGaN/GaN/AlGaN DH-HEMT for microwave frequency applications.' Microsystem Technologies (2020): 1-8. [44] Kumar, Ramnish, Sandeep K. Arya, and Anil Ahlawat. 'Microwave analysis for two-dimensional CV and noise model of AlGaN/GaN MODFET.' Advances in Materials Science and Engineering 2014 (2014). [45] Moll, Nick, Mark R. Hueschen, and Alice Fischer-Colbrie. 'Pulse-doped AlGaAs/InGaAs pseudomorphic MODFETs.' IEEE Transactions on Electron Devices 35.7 (1988): 879-886. [46] Chung, J. W., et al. 'Effect of image charges in the drain delay of AlGaN∕GaN high electron mobility transistors.' Applied Physics Letters 92.9 (2008): 093502. [47] Zheng, Xun, et al. 'Analysis of MOCVD SiNx Passivated N-Polar GaN MIS-HEMTs on Sapphire With High fmax · VDS,Q.' IEEE Electron Device Letters 39.3 (2018): 409-412. [48] Liu, R., et al. 'Atomic arrangement at the AlN/Si (111) interface.' Applied Physics Letters 83.5 (2003): 860-862. [49] Sayadi, Luca, et al. 'The role of silicon substrate on the leakage current through GaN-on-Si epitaxial layers.' IEEE Transactions on Electron Devices 65.1 (2017): 51-58. [50] Jarndal, Anwar. 'A simplified modelling approach for AlGaN/GaN HEMTs using pinched cold S-parameters.' 2013 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO). IEEE, 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54928 | - |
| dc.description.abstract | 氮化鋁鎵/氮化鎵高電子遷移率電晶體在高頻應用上很有前景,而矽基板則是在商業化下最吸引人的選擇。但是在運用在高頻及高功率放大器時,低阻值的矽基板會造成寄生效應而降低其高頻表現。而矽基板移除是個被期待的辦法去跨越這個寄生效應衍生的瓶頸並保有低阻值矽基板的優點。在這個論文中,我們探討氮化鋁鎵/氮化鎵高電子遷移率電晶體在完全及局部移除矽基板之後的特性,並建立相對應的小訊號模型。
在第二章,我們探討氮化鋁鎵/氮化鎵高電子遷移率電晶體完全移除源極和汲極間矽基板之後的特性。元件在移除基板後在低頻下有較差的順向增益電壓,但在高頻下卻有較好的順向增益電壓,因為低頻時挖除基板的電晶體受到較嚴重的熱效應導致增益降低,但在高頻時因為移除矽基板降低漏流效果高於熱效應的影響,而可取得較好的順向增益電壓。我們觀察到挖除基板的電晶體有較高的電流增益截止頻率和功率增益截止頻率,雜訊的表現也被提升。 在先前的探討中,我們得知矽基板移除能有效的改善元件的高頻特性,在第三章,我們再更深入的研究在不同的操作偏壓下,選擇性移除矽基板時的高頻特性。矽基板背後製程的前後之間,直流特性並沒有太大的改變。磨薄及不同的矽穿孔對電流增益截止頻率並無太大影響。在矽基板背後製程前,功率增益截止頻率相差很大因為受非線性缺陷影響,而在汲極偏壓提升時,其變化也會被非線性缺陷屏蔽住。而在矽基板背後製程後,非線性缺陷被抑制,且寄生效應減少越多功率增益截止頻率有越大的提升。選擇性移除矽基板在汲極偏壓提升時,其寄生效應會跟著提升,導致其回到矽基板背後製程的前的狀態,而完全移除寄生效應相關部件則不會有隨著汲極偏壓提升而提升的寄生效應。最後包括寄生效應相關部件的小訊號模型被建立且模擬出上述探討的理論機制。結果再度顯示矽基板的移除能改善高頻特性,並且在不同的偏壓下,完全移除寄生效應相關部件有較穩定的高頻特性提升。 | zh_TW |
| dc.description.abstract | AlGaN/GaN HEMTs are very promising devices for high frequency applications and Si substrate is the most attractive choice for commercialization. For high-frequency and high-power amplifiers, the parasitic loss by the conductive Si substrate can degrade the performance of the devices. Si substrate removal is a promising approach to overcome the obstacles and sustain the advantages of the low-resistivity(LR) Si. In this thesis, we fabricated AlGaN/GaN/Si HEMTs with full and selective Si substrate removal. DC electrical properties and RF characterizations are investigated. Small signal models with parasitic elements are also developed.
In chapter 2, the full Si substrate removal between source and drain pad on microwave performance is investigated. Our results show a lower transconductance, gm, due to heat effect which degrades forward voltage gain, S21, at low frequency. Nevertheless, the 2DEG in the channel couples with conductive substrate at high frequency which has larger impact on S21 than heat effect and results in a larger S21 at high frequency after Si removal. The current gain cut-off frequency, fT, and power gain cut-off frequency, fmax, are also improved since higher power efficiency being achieved. Moreover, substrate leakage current has a longer response time comparing to channel current and plays a role as a noise current. The measurement results show the noise figure can be improved after Si removal. From earlier discussion, we conclude that Si removal is an effective method to increase microwave performance of HEMT on LR Si. In chapter 3, the impact of selective substrate removal at different bias conditions on microwave performance is studied. The DC electrical properties remain consistent after backside process. Thinning down the low-resistivity Si substrate and the removal of the Si substrate underneath the mesa region have little impact on fT. Before backside process, fmax differs a lot because of the non-linear defects. The tendency of fmax is also screened by these defects as increasing VD. After backside process, the non-linear effect is diminished and the more the decrease of the coupling effect by the backside process, the higher the fmax will be. Without full removal of the Si substrate under all the mesa area, fmax before and after backside process shrink with a higher VD due to increasing coupling effect. Nevertheless, fmax of the device with full removal of the parasitic elements remain consistent with increasing VD. Finally, a small signal circuit model with parasitic elements is employed to elucidate the idea. The results can conclude that Si removal can improve RF performance and full removal of the parasitic elements can have more stable improvement at different bias condition. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:41:48Z (GMT). No. of bitstreams: 1 U0001-3107202021470800.pdf: 4330767 bytes, checksum: 8a859d2e7ebaa591dffd46bffe75e573 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 摘要 i Abstract iii Contents v List of figures vii List of tables x Chapter 1 Introduction 1 1.1 Overview of GaN-based electronics 1 1.2 Fundamental principle of AlGaN/GaN HEMTs 2 1.3 Parasitic loss of GaN-on-Si HEMTs 3 1.4 Thesis Outline 5 Chapter 2 RF characterizations of GaN HEMTs with full Si removal 6 2.1 Introduction 6 2.2 Fabrication of GaN RF HEMTs by gate-last approach with full Si removal 7 2.3 Microwave performance 9 2.4 Small signal circuit model 17 2.5 Summary 19 Chapter 3 RF characterizations of GaN HEMTs with Si substrate VIA 21 3.1 Introduction 21 3.2 Fabrication of GaN RF HEMTs by gate-first approach with selective Si VIA 21 3.3 DC electrical properties 25 3.4 Microwave performance 27 3.5 Small signal circuit model 40 3.6 Summary 42 Chapter 4 Conclusion 44 Reference 47 | |
| dc.language.iso | en | |
| dc.subject | 高電子遷移率電晶體 | zh_TW |
| dc.subject | 矽基板移除技術 | zh_TW |
| dc.subject | 高頻訊號 | zh_TW |
| dc.subject | 雜訊指數 | zh_TW |
| dc.subject | 小訊號模型 | zh_TW |
| dc.subject | substrate removal | en |
| dc.subject | microwave power | en |
| dc.subject | noise figure | en |
| dc.subject | small signal model | en |
| dc.subject | GaN-on-Si HEMTs | en |
| dc.title | 矽基板穿孔之氮化鎵高電子遷移率電晶體之高頻特性分析及其小訊號模型 | zh_TW |
| dc.title | RF characterizations and modeling of GaN HEMTs with Si substrate VIA | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳育任(Yuh-Renn Wu),吳肇欣(Chao-Hsin Wu),賴韋志(Wei-Chi Lai) | |
| dc.subject.keyword | 高電子遷移率電晶體,矽基板移除技術,高頻訊號,雜訊指數,小訊號模型, | zh_TW |
| dc.subject.keyword | GaN-on-Si HEMTs,substrate removal,microwave power,noise figure,small signal model, | en |
| dc.relation.page | 53 | |
| dc.identifier.doi | 10.6342/NTU202002187 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-07 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3107202021470800.pdf 未授權公開取用 | 4.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
