Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54926
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃太煌(Tai-Huang Huang)
dc.contributor.authorShu-Yu Huangen
dc.contributor.author黃書毓zh_TW
dc.date.accessioned2021-06-16T03:41:45Z-
dc.date.available2018-03-16
dc.date.copyright2015-03-16
dc.date.issued2015
dc.date.submitted2015-02-12
dc.identifier.citationReferences:
1. de The, H., et al., The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell, 1991. 66(4): p. 675-84.
2. Goddard, A.D., et al., Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science, 1991. 254(5036): p. 1371-4.
3. Kastner, P., et al., Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins. EMBO J, 1992. 11(2): p. 629-42.
4. Hodges, M., et al., Structure, organization, and dynamics of promyelocytic leukemia protein nuclear bodies. Am J Hum Genet, 1998. 63(2): p. 297-304.
5. Sternsdorf, T., et al., Nuclear dots: actors on many stages. Immunobiology, 1997. 198(1-3): p. 307-31.
6. Zhong, S., P. Salomoni, and P.P. Pandolfi, The transcriptional role of PML and the nuclear body. Nat Cell Biol, 2000. 2(5): p. E85-90.
7. Wang, Z.G., et al., PML is essential for multiple apoptotic pathways. Nat Genet, 1998. 20(3): p. 266-72.
8. Jensen, K., C. Shiels, and P.S. Freemont, PML protein isoforms and the RBCC/TRIM motif. Oncogene, 2001. 20(49): p. 7223-33.
9. Condemine, W., et al., Characterization of endogenous human promyelocytic leukemia isoforms. Cancer Res, 2006. 66(12): p. 6192-8.
10. Reymond, A., et al., The tripartite motif family identifies cell compartments. EMBO J, 2001. 20(9): p. 2140-51.
11. Duprez, E., et al., SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. J Cell Sci, 1999. 112 ( Pt 3): p. 381-93.
12. Ishov, A.M., et al., PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol, 1999. 147(2): p. 221-34.
13. Zhong, S., et al., Role of SUMO-1-modified PML in nuclear body formation. Blood, 2000. 95(9): p. 2748-52.
14. Chu, Y. and X. Yang, SUMO E3 ligase activity of TRIM proteins. Oncogene, 2011. 30(9): p. 1108-1116.
15. Heun, P., SUMOrganization of the nucleus. Curr Opin Cell Biol, 2007. 19(3): p. 350-5.
16. Shen, T.H., et al., The mechanisms of PML-nuclear body formation. Mol Cell, 2006. 24(3): p. 331-9.
17. Dellaire, G., et al., Mitotic accumulations of PML protein contribute to the re-establishment of PML nuclear bodies in G1. J Cell Sci, 2006. 119(Pt 6): p. 1034-42.
18. Zhang, X.W., et al., Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science, 2010. 328(5975): p. 240-3.
19. Lallemand-Breitenbach, V., et al., Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol, 2008. 10(5): p. 547-55.
20. Tatham, M.H., et al., RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol, 2008. 10(5): p. 538-46.
21. Sardiello, M., et al., Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties. BMC Evol Biol, 2008. 8: p. 225.
22. Ozato, K., et al., TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol, 2008. 8(11): p. 849-60.
23. Meroni, G. and G. Diez-Roux, TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases. Bioessays, 2005. 27(11): p. 1147-1157.
24. Bernardi, R. and P.P. Pandolfi, Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol, 2007. 8(12): p. 1006-16.
25. Freemont, P.S., I.M. Hanson, and J. Trowsdale, A novel cysteine-rich sequence motif. Cell, 1991. 64(3): p. 483-4.
26. Borden, K.L., et al., The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J, 1995. 14(7): p. 1532-41.
27. Freemont, P.S., RING for destruction? Curr Biol, 2000. 10(2): p. R84-7.
28. Joazeiro, C.A., et al., The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science, 1999. 286(5438): p. 309-12.
29. Lorick, K.L., et al., RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci U S A, 1999. 96(20): p. 11364-9.
30. Urano, T., et al., Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth. Nature, 2002. 417(6891): p. 871-5.
31. Zhang, Y. and Y. Xiong, Control of p53 ubiquitination and nuclear export by MDM2 and ARF. Cell Growth Differ, 2001. 12(4): p. 175-86.
32. Boddy, M.N., et al., Surface residue mutations of the PML RING finger domain alter the formation of nuclear matrix-associated PML bodies. J Cell Sci, 1997. 110 ( Pt 18): p. 2197-205.
33. Torok, M. and L.D. Etkin, Two B or not two B? Overview of the rapidly expanding B-box family of proteins. Differentiation, 2001. 67(3): p. 63-71.
34. Borden, K.L., et al., Novel topology of a zinc-binding domain from a protein involved in regulating early Xenopus development. EMBO J, 1995. 14(23): p. 5947-56.
35. Cao, T., et al., Involvement of the rfp tripartite motif in protein-protein interactions and subcellular distribution. J Cell Sci, 1997. 110 ( Pt 14): p. 1563-71.
36. Borden, K.L., et al., In vivo and in vitro characterization of the B1 and B2 zinc-binding domains from the acute promyelocytic leukemia protooncoprotein PML. Proc Natl Acad Sci U S A, 1996. 93(4): p. 1601-6.
37. Percherancier, Y., et al., Role of SUMO in RNF4-mediated promyelocytic leukemia protein (PML) degradation: sumoylation of PML and phospho-switch control of its SUMO binding domain dissected in living cells. J Biol Chem, 2009. 284(24): p. 16595-608.
38. Lupas, A., Coiled coils: new structures and new functions. Trends Biochem Sci, 1996. 21(10): p. 375-82.
39. Grigoryan, G. and A.E. Keating, Structural specificity in coiled-coil interactions. Curr Opin Struct Biol, 2008. 18(4): p. 477-83.
40. Grignani, F., et al., Effects on differentiation by the promyelocytic leukemia PML/RARalpha protein depend on the fusion of the PML protein dimerization and RARalpha DNA binding domains. EMBO J, 1996. 15(18): p. 4949-58.
41. Le, X.F., P. Yang, and K.S. Chang, Analysis of the growth and transformation suppressor domains of promyelocytic leukemia gene, PML. J Biol Chem, 1996. 271(1): p. 130-5.
42. Fagioli, M., et al., Cooperation between the RING + B1-B2 and coiled-coil domains of PML is necessary for its effects on cell survival. Oncogene, 1998. 16(22): p. 2905-13.
43. Mrosek, M., et al., Structural analysis of B-Box 2 from MuRF1: identification of a novel self-association pattern in a RING-like fold. Biochemistry, 2008. 47(40): p. 10722-30.
44. Bodine, S.C. and L.M. Baehr, Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab, 2014. 307(6): p. E469-84.
45. Li, Y., et al., Structural insights into the TRIM family of ubiquitin E3 ligases. Cell Res, 2014. 24(6): p. 762-5.
46. Markley, J.L., et al., Recommendations for the presentation of NMR structures of proteins and nucleic acids--IUPAC-IUBMB-IUPAB Inter-Union Task Group on the standardization of data bases of protein and nucleic acid structures determined by NMR spectroscopy. Eur J Biochem, 1998. 256(1): p. 1-15.
47. Zwahlen, C., et al., Methods for Measurement of Intermolecular NOEs by Multinuclear NMR Spectroscopy: Application to a Bacteriophage lamda N-Peptide/boxB RNA Complex. J. Am. Chem. Soc., 1997. 119(29): p. 6711-6721.
48. Cornilescu, G., F. Delaglio, and A. Bax, Protein backbone angle restraints from searching a database for chemical shift and sequence homology. Journal of Biomolecular NMR, 1999. 13(3): p. 289-302.
49. Wishart, D.S. and B.D. Sykes, Chemical shifts as a tool for structure determination. Methods Enzymol, 1994. 239: p. 363-92.
50. Guntert, P., Automated NMR structure calculation with CYANA. Methods Mol Biol, 2004. 278: p. 353-78.
51. Schwieters, C.D., et al., The Xplor-NIH NMR molecular structure determination package. Journal of Magnetic Resonance, 2003. 160(1): p. 65-73.
52. Koradi, R., M. Billeter, and K. Wuthrich, MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics, 1996. 14: p. 51-55.
53. Laskowski, R.A., et al., AQUA and PROCHECK - NMR: Programs for Checking the Quality of Protein Structures Solved by NMR. J. Biomol. NMR, 1996. 8: p. 477-486.
54. Kay, L.E., Nicholson, L., Delaglio, F., Bax, A., and Torchia, D., Pulse sequences for removal of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanisms on the measurement of heteronuclear T1 and T2 values in proteins. J Magn Reson, 1992. 97: p. 39-375.
55. Farrow, N.A., et al., Spectral Density mapping using 15N relaxation data exclusively. J Biomol NMR, 1995. 6: p. 153-162.
56. Lefevre, J.F., et al., Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions. Biochemistry, 1996. 35(8): p. 2674-86.
57. Ottiger, M., F. Delaglio, and A. Bax, Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson, 1998. 131(2): p. 373-8.
58. Wishart, D.S. and B.D. Sykes, The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR, 1994. 4(2): p. 171-80.
59. Schmidt, E. and P. Guntert, A new algorithm for reliable and general NMR resonance assignment. J Am Chem Soc, 2012. 134(30): p. 12817-29.
60. Reimer, U., et al., Side-chain effects on peptidyl-prolyl cis/trans isomerisation. J Mol Biol, 1998. 279(2): p. 449-60.
61. Svergun, D.I., M.V. Petoukhov, and M.H. Koch, Determination of domain structure of proteins from X-ray solution scattering. Biophys J, 2001. 80(6): p. 2946-53.
62. Geourjon, C. and G. Deleage, SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci, 1995. 11(6): p. 681-4.
63. Garnier, J., J.F. Gibrat, and B. Robson, GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol, 1996. 266: p. 540-53.
64. Pollastri, G. and A. McLysaght, Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics, 2005. 21(8): p. 1719-20.
65. Whitmore, L. and B.A. Wallace, Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers, 2008. 89(5): p. 392-400.
66. de Vries, S.J., M. van Dijk, and A.M. Bonvin, The HADDOCK web server for data-driven biomolecular docking. Nat Protoc, 2010. 5(5): p. 883-97.
67. Meroni, G., Genomics and evolution of the TRIM gene family. Adv Exp Med Biol, 2012. 770: p. 1-9.
68. Cammas, F., et al., Trim Involvement in Transcriptional Regulation. Trim/Rbcc Proteins, 2012. 770: p. 59-76.
69. Bernier-Villamor, V., et al., Structural Basis for E2-Mediated SUMO Conjugation Revealed by a Complex between Ubiquitin-Conjugating Enzyme Ubc9 and RanGAP1. Cell, 2002. 108(3): p. 345-356.
70. Tatham, M.H., et al., Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nat Struct Mol Biol, 2005. 12(1): p. 67-74.
71. Han, X.F., H.J. Du, and M.A. Massiah, Detection and Characterization of the In Vitro E3 Ligase Activity of the Human MID1 Protein. Journal of Molecular Biology, 2011. 407(4): p. 505-520.
72. Tatham, M.H., et al., RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nature Cell Biology, 2008. 10(5): p. 538-546.
73. Yang, S., et al., PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol, 2002. 4(11): p. 865-70.
74. Sahin, U., et al., Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. J Cell Biol, 2014. 204(6): p. 931-45.
75. Hatakeyama, S., TRIM proteins and cancer. Nat Rev Cancer, 2011. 11(11): p. 792-804.
76. Berjanskii, M.V., S. Neal, and D.S. Wishart, PREDITOR: a web server for predicting protein torsion angle restraints. Nucleic Acids Res, 2006. 34(Web Server issue): p. W63-9.
77. Giraud, M.F., J.M. Desterro, and J.H. Naismith, Structure of ubiquitin-conjugating enzyme 9 displays significant differences with other ubiquitin-conjugating enzymes which may reflect its specificity for sumo rather than ubiquitin. Acta Crystallogr D Biol Crystallogr, 1998. 54(Pt 5): p. 891-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54926-
dc.description.abstractPML protein is mainly present inside the nucleus in the form of PML nuclear bodies (PML-NBs) and serves as a SUMO E3 ligase which facilitates SUMOylation on PML itself and proteins in PML-NBs. PML has a conserved N-terminal TRIM/RBCC region comprised of a RING finger domain, two B-boxes and a coiled-coil region. The purpose of this study is to investigate the structural basis of SUMOylation on PML TRIM domains which is essential in the formation of PML-NBs. However, not much of the structural information of PML is known today. In this work we solved the structures of RING finger and B-box 1 of dimer by advanced NMR techniques. We identified the residues involved in the binding of SUMO E2 enzyme Ubc9 and PML TRIM domains. The result of SPR indicated that dimeric domain RB1 showed much stronger interaction with Ubc9 (KD=16uM) than any single domain (KD=490uM for RING finger and KD=94uM for B-box 1), suggesting that RING finger and B-box 1 bound with Ubc9 in synergy. Here, we provide the structures of PML TRIM domains and the bindings with Ubc9 at molecular level in order to understand the SUMOylation mechanism on PML TRIM domains.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:41:45Z (GMT). No. of bitstreams: 1
ntu-104-D97b46020-1.pdf: 14668767 bytes, checksum: 0429dd414315a5c23547801c85395ed0 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsTable of Contents
Verification letter from the Oral Examination Committee i
Acknowledgements ii
Chinese Abstract iii
English Abstract iv
List of Figures vii
List of Tables viii
List of Abbreviations ix

Chapter 1: Introduction
1.1 PML and the PML-Nuclear Body 1
1.2 SUMOylation drives PML-NB formation 2
1.3 PML TRIM/RBCC domains 4

Chapter 2: Materials and Methods
2.1 Cloning, Expression, and Protein Purification 8
2.2 NMR Spectroscopy 10
2.3 NMR Structure Determination 11
2.4 Analysis of Protein Dynamics by NMR 12
2.5 Residual dipolar couplings (RDC) measurement 13
2.6 Hydrogen-deuterium exchange experiment 14
2.7 Mapping of protein-protein interaction site by NMR chemical shift perturbation (CSP) 15
2.8 Circular Dichroism (CD) measurement 15
2.9 Surface Plasmon Resonance (SPR) assay 16
2.10 Small Angle X-ray Scattering (SAXS) measurement 16

Chapter 3: Results
3.1 PML Domains Architecture and Sequence Alignment 18
3.2 Solution Structure of RING Finger 20
3.3 Dynamics analysis of RING Finger 24
3.4 Concentration dependence of B-box 1 dimerization 25
3.5 Solution Structure of B-box 1 26
3.6 Dynamics analysis of B-box 1 29
3.7 SAXS for PML Domains and Ubc9 32
3.8 Linker between RING Finger and B-box 1 33
3.9 Mapping the interaction sites of PML domains on Ubc9 35
3.10 Mapping the interaction site of Ubc9 on PML domains 37
3.11 SPR quantification of the Ubc9 binding affinity with PML domains 40
3.12 HADDOCK model of the complex 41
Chapter 4: Discussion 43
Chapter 5: Conclusion and Future Plan 50
References 94
Publications
dc.language.isoen
dc.subjectSUMOzh_TW
dc.subjectPMLzh_TW
dc.subjectTRIM/RBCCzh_TW
dc.subjectRING fingerzh_TW
dc.subjectB-box 1zh_TW
dc.title前骨髓性細胞白血病蛋白的結構和分子交互作用機制zh_TW
dc.titleStructural Characterization and Molecular Interaction with the TRIM Domains of Promyelocytic Leukemia Proteinen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.coadvisor陳瑞華(Ruey-Hwa Chen)
dc.contributor.oralexamcommittee施修明(Hsiu-Ming Shih),陳金榜(Chin-Pan Chen),蘇士哲(Shih-Che Sue)
dc.subject.keywordPML,TRIM/RBCC,RING finger,B-box 1,SUMO,zh_TW
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2015-02-12
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
14.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved