請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54922
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭秋萍(Chiu-Ping Cheng) | |
dc.contributor.author | Chi Huang | en |
dc.contributor.author | 黃琪 | zh_TW |
dc.date.accessioned | 2021-06-16T03:41:38Z | - |
dc.date.available | 2020-03-02 | |
dc.date.copyright | 2015-03-02 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-02-12 | |
dc.identifier.citation | 王冠中。2009。植物青枯病菌及其噬菌體交互關係之探究。國立臺灣大學植物科學研究所碩士論文。
吳紅葳。2013。效應蛋白Pop3在青枯病菌毒力之功能研究與青枯病噬菌體裂解蛋白之分析。國立臺灣大學植物科學研究所碩士論文。 Addy, H.S., Askora, A., Kawasaki, T., Fujie, M., and Yamada, T. (2012a). Loss of virulence of the phytopathogen Ralstonia solanacearum through infection by ϕRSM filamentous phages. Phytopathology 102: 469-477. Addy, H.S., Askora, A., Kawasaki, T., Fujie, M., and Yamada, T. (2012b). The filamentous phage ϕRSS1 enhances virulence of phytopathogenic Ralstonia solanacearum on tomato. Phytopathology 102: 244-251. Agu, C.A., Klein, R., Schwab, S., Konig-Schuster, M., Kodajova, P., and Ausserlechner, M. (2006). The cytotoxicactivity of the bacteriophage lambda-holin protein reduces tumour growth rates in mammary cancer cell xenograft models. Journal of Gene Medicine 8: 229-241. Askora, A., Kawasaki, T., Usami, S., Fujie, M., and Yamada, T. (2009). Host recognition and integration of filamentous phage phiRSM in the phytopathogen, Ralstonia solanacearum. Virology 384: 69-76. Bayles, K.W. (2003). Are the molecular strategies that control apoptosis conserved in bacteria? Trends in Microbiology 11:306-311. Bayles, K.W. (2007). The biological role of death and lysis in biofilm development. Nature Reviews Microbiology 5:721-726. Boller, T., and Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology 60: 379-406. Charkowski, A., Blanco, C., Condemine, G., Expert, D., Franza, T., and Hayes, C. (2012).The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity. Annual Review of Phytopathology 50: 425-449. Chassot, C., Buchala, A., Schoonbeek, H.J., Metraux, J.P., and Lamotte, O. (2008). Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection. Plant Journal 55: 555-567. Conrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science 16: 524-531. Conrath, U., Pieterse, Corne.M.J., and Mauch-Mani, B. (2002). Priming in plant-pathogen interactions. Trends in Plant Science 7: 210-216. Daferera, D.J., Ziogas, B.N., and Polissiou, M.G. (2003). The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Lavibacter michiganensis sub sp. michiganensis. Crop Protection 22: 39-44. Dangl, J.L., Horvath, D.M., and Staskawicz, B.J. (2013). Pivoting the plant immunity system from dissection to deployment. Science 341: 746-751. De Lorenzo, G., Brutus, A., Savatin, D.V., Sicilia, F., and Cervone, F. (2011). Engineering plant resistance by constructing chimeric receptors that recognize damage-associated molecular patterns (DAMPs). FEBS Letters 585: 1521-1528. Denny, T.P. (2006). Plant pathogenic Ralstonia species. In Plant-Associated Bacteria, S.S. Gnanamanickam, ed. (Dordrecht, The Netherlands: Springer Science), p p. 573-644. Deslandes, L., and Rivas, S. (2012). Catch me if you can: bacterial effectors and plant targets. Trends in Plant Science 17: 644-655. Desvaux, M. (2012). Contribution of holins to protein trafficking: secretion, leakage or lysis? Trends in Microbiology 20: 259-261. Dong, S., Shew, H.D., Tredway, L.P., Lu, J., Sivamani, E., Miller, E.S., and Qu, R. (2008). Expression of the bacteriophage T4 lysozyme gene in tall fescue confers resistance to gray leaf spot and brown patch diseases. Transgenic Research 17: 47-57. During, K., Porsch, P., Fladung, M., and Horst, L. (1993). Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. Plant Journal 3: 587-598. Fujiwara, A., Fujisawa, M., Hamasaki, R., Kawasaki, T., Fujie, M., and Yamada, T. (2011). Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Applied and Environmental Microbiology 77: 4155-4162. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology 43: 205-227. Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166: 557-580. Jung, H.W., Tschaplinski, T.J., Wang, L., Glazebrook, J., and Greenberg, J.T. (2009). Priming in systemic plant immunity. Science 324: 89-91. Kawasaki, T., Satsuma, H., Fujie, M., Usami, S., and Yamada, T. (2007). Monitoring of phytopathogenic Ralstonia solanacearum cells using green fluorescent protein-expressing plasmid derived from bacteriophage phiRSS1. Journal of Bioscience and Bioengineering 104: 451-456. Kawasaki, T., Shimizu, M., Satsuma, H., Fujiwara, A., Fujie, M., Usami, S., and Yamada, T. (2009). Genomic characterization of Ralstonia solanacearum phage phiRSB1, a T7-like wide-host-range phage. Journal of Bacteriology 191: 422-427. Krol, E., Mentzel, T., Chinchilla, D., Boller, T. and Felix, G. (2010) Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. Biological Chemistry 285: 13471-13479. Lam, E., Kato, N., and Lawton, M. (2001). Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411: 848-853. Moussa, S.H., Kuznetsov, V., Tran, T.A., Sacchettini, J.C., and Young, R. (2012). Protein determinants of phage T4 lysis inhibition. Protein Science 21: 571-582. Muthamilarasan, M., and Prasad, M. (2013). Plant innate immunity: an updated insight into defense mechanism. Journal of Biosciences 38: 433-449. Nakaho, K., Hibino, H. and Miyagawa, H. (2000). Possible mechanisms limiting movement of Ralstonia solanacearum in resistant tomato tissues. Journal of Phytopathology 148: 181-190. Nguyen, H.P., Chakravarthy, S., Velasquez, A.C., McLane, H.L., and Zeng, L. (2010). Methods to study PAMP-triggered immunity using tomato and Nicotiana benthamiana. Molecular Plant-Microbe Interactions 23: 991-999. Pang, T., Savva, C.G., Fleming, K.G., Struck, D.K., and Young, R. (2009). Structure of the lethal phage pinhole. Proceedings of the National Academy of Sciences of the United States of America 106: 18966-18971. Pang, X., Moussa, S.H., Targy, N.M., Bose, J.L., George, N.M., Gries, C., Lopez, H., Zhang, L., Bayles, K.W., Young, R., and Luo, X. (2011). Active Bax and Bak are functional holins. Genes & Development 25: 2278-2290. Park, T., Struck, D.K., Deaton, J.F., and Young, R. (2006). Topological dynamics of holins in programmed bacterial lysis. Proceedings of the National Academy of Sciences of the United States of America 103: 19713-19718. Park, T., Struck, D.K., Dankenbring, C.A., and Young, R. (2007). The pinholin of lambdoid phage 21: control of lysis by membrane depolarization. Journal of Bacteriology 189: 9135-9139. Patton, T.G., Rice, K.C., Foster, M.K., and Bayles, K.W. (2005). The Staphylococcus aureus cidC gene encodes a pyruvate oxidase that affects acetate metabolism and cell death in stationary phase. Molecular Microbiology 56: 1664-1674. Pel, M.J.C., and Pieterse, C.M.J. (2013). Microbial recognition and evasion of host immunity. Journal of Experimental Botany 64:1237-1248. Pieterse, C.M., Leon-Reyes, A., Van der Ent, S., and Van Wees, S.C. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology 5: 308-316. Pietrarelli, L., Balestra, G.M., and Varvaro, L. (2006). Effects of simulated rain on Pseudomonas syringae pv. tomato populations on tomato plants. Journal of Plant Pathology 88: 245-251. Pozo, M.J. and Azcon-Aguilar, C. (2007). Unraveling mycorrhiza-induced resistance. Current Opinion Plant Biology 10: 393-398. Prusky, B.D., and Lichter, A. (2007). Activation of quiescent infections by postharvest pathogens during transition from the biotrophic to the necrotrophic stage. FEMS Microbiology Letters 268: 1-8. Ramanculov, E., and Young, R. (2001). An ancient player unmasked: T4 rI encodes a t-specific antiholin. Molecular Microbiology 41: 575-583. Sun, Q., Kuty, G.F., Arockiasamy, A., Xu, M., Young, R., and Sacchettini, J.C. (2009). Regulation of a muralytic enzyme by dynamic membrane topology. Nature Structural and Molecular Biology 16: 1192-1194. Takken, F.L., Luderer, R., Gabriels, S.H., Westerink, N., Lu, R., de Wit, P.J., and Joosten, M.H. (2000). A functional cloning strategy, based on a binary PVX-expression vector, to isolate HR-inducing cDNAs of plant pathogens. Plant Journal 24: 275-283. Tran, T.A.T., Struck, D.K., and Young, R. (2005). Periplasmic domains define holin-antiholin interactions in T4 lysis inhibition. Journal of Bacteriology 187: 6631-6640. Wang, I.N., Smith, D.L., and Young, R. (2000). Holins: The protein clocks of bacteriophage infections. Annual Review of Microbiology 54: 799-825. White, R., Tran, T.A., Dankenbring, C.A., Deaton, J., and Young, R. (2010). The N-terminal transmembrane domain of lambda S is required for holin but not antiholin function. Journal of Bacteriology 192: 725-733. Xu, M., Arulandu, A., Struck, D.K., Swanson, S., Sacchettini, J.C., and Young, R. (2005). Disulfide isomerization after membrane release of its SAR domain activates P1 lysozyme. Science 307: 113-117. Xue, M., Struck, D.K., Deaton, J., Wang, I.N., and Young, R. (2004). A signal-arrest-release sequence mediates export and control of the phage P1 endolysin. Proceedings of the National Academy of Sciences of the United States of America 101: 6415-6420. Yamada, T., Satoh, S., Ishikawa, H., Fujiwara, A., Kawasaki, T., Fujie, M., and Ogata, H. (2010). A jumbo phage infecting the phytopathogen Ralstonia solanacearum defines a new lineage of the Myoviridae family. Virology 398: 135-147. Young, R. (2013). Phage lysis: do we have the hole story yet? Current Opinion in Microbiology 16: 790-797. Zhang, J. and Zhou, J.M. (2010). Plant immunity triggered by microbial molecular signatures. Molecular Plant 3: 783-793. Ziegler, M.T., Thomas, S.R., and Danna, K.J. (2000). Accumulation of a thermostable endo-1,4-beta-D-glucanase in the apoplast of Arabidopsis thaliana leaves. Molecular Breeding 6: 37-46. Zipfel, C. (2008). Pattern-recognition receptors in plant innate immunity. Current Opinion in Immunology 20: 10-16. 饒益敏。2012。細菌D-glutamate生合成相關基因與青枯病菌gpsA基因之研究。國立臺灣大學植物科學研究所碩士論文。 Aldon, D., Brito, B., Boucher, C., and Genin, S. (2000). A bacterial sensor of plant cell contact controls the transcriptional induction of Ralstonia solanacearum pathogenicity genes. EMBO Journal 19: 2304-2314. Antony, G., Zhou, J., Huang, S., Li, T., Liu, B., White, F., and Yang, B. (2010). Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22: 3864-3876. Artero, R.D., Terol-Alcayde, J., Paricio, N., Ring, J., Barques, M., Torres, A., and Perez-Alonso, M. (1998). saliva, a new Drosophila gene expressed in the embryonic salivary glands with homologues in plants and vertebrates. Mechanism Development 75: 159-162. Baker, R.F., Leach, K.A., and Braun, D.M. (2012). SWEET as sugar: new sucrose effluxers in plants. Molecular Plant 5: 766-768. Brassinga, A.K.C., Gorbatyuk, B., Ouimet, M.C., and Marczynski, G.T. (2000). Selective cell cycle transcription requires membrane synthesis in Caulobacter. EMBO Journal 19: 702-709. Chanda, B., Venugopal, S.C., Kulshrestha, S., Navarre, D.A., and Downie, B. (2008). Glycerol-3-phosphate levels are associated with basal resistance to the hemibiotrophic fungus Colletotrichum higginsianum in Arabidopsis. Plant Physiology 147: 2017-2029. Chen, L.Q., Hou, B.H., Lalonde, S., Takanaga, H., Hartung, M.L., Qu, X.Q., Guo, W.J., Kim, J.G., Underwood, W., Chaudhuri, B., Chermak, D., Antony, G., White, F.F., Somerville, S.C., Mudgett, M.B., and Frommer, W.B. (2010). Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468: 527-532. Chen, Y.Y., Lin, Y.M., Chao, T.C., Wang, J.F., Liu, A.C., Ho, F.I., and Cheng, C.P. (2009). Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. Physiologia Plantarum 136: 324-335. Contreras, I., Bender, R.A., Mansour, J., Henry, S., and Shapiro, L. (1979). Caulobacter crescentus mutant defective in membrane phospholipid synthesis. Journal of Bacteriology 140: 612-619. den Blaauwen, T., and Driessen, A.J. (1996). Sec-dependent preprotein translocation in bacteria. Archives of Microbiology 165: 1-8. Denny, T.P. (2006). Plant pathogenic Ralstonia species. In Plant-Associated Bacteria, S.S. Gnanamanickam, ed. (Dordrecht, The Netherlands: Springer Science), p p. 573-644. Deutscher, J., Francke, C., and Postma, P.W. (2006). How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiology and Molecular Biology Reviews 70: 939-1031. Digonnet, C., Martinez, Y., Denance, N., Chasseray, M., Dabos, P., Ranocha, P., Marco, Y., Jauneau, A. and Goffner, D. (2012). Deciphering the route of Ralstonia solanacearum colonization in Arabidopsis thaliana roots during a compatible interaction: focus at the plant cell wall. Planta 236: 1419-1431. Eisenreich, W., Dandekar, T., Heesemann, J., and Goebel, W. (2010). Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nature Reviews Microbiology 8: 401-412. Figueiredo, A., Fortes, A.M., Ferreira, S., Sebastiana, M., Choi, Y.H., Sousa, L., Acioli-Santos, B., Pessoa, F., Verpoorte, R., and Pais, M.S. (2008). Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi. The Journal of Experimental Botany 59: 3371-3381. Gamas, P., Niebel, F.C., Lescure, N., and Cullimore, J. (1996). Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. Molecular Plant-Microbe Interactions 9: 233-242. Genin, S., and Denny, T.P. (2012). Pathogenomics of the Ralstonia solanacearum species complex. Annual Review of Phytopathology 50: 67-89. Gonzalez, A., Plener, L., Restrepo, S., Boucher, C., and Genin, S. (2011). Detection and functional characterization of a large genomic deletion resulting in decreased pathogenicity in Ralstonia solanacearum race 3 biovar 2 strains. Environmental Microbiology 13: 3172-3185. Guo, W., Zou, L.F., Li, Y.R., Cui, Y.P., Ji, Z.Y., Cai, L.L., Zou, H.S., Hutchin, W.C., Yang, C.H., and Chen, G.Y. (2012). Fructose-bisphophate aldolase exhibits functional roles between carbon metabolism and the hrp System in rice pathogen Xanthomonas oryzae pv. oryzicola. PLoS ONE 7: e31855. Hamada, M., Wada, S., Kobayashi, K., and Satoh, N. (2005). Ci-Rga, a gene encoding an MtN3/saliva family transmembrane protein, is essential for tissue differentiation during embryogenesis of the ascidian Ciona intestinalis. Differentiation 73: 364-376. Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166: 557-580. Jacobs, J.M., Babujee, L., Meng, F., Milling, A., and Allen, C. (2012). The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato. mBio 3: e00114-12. Jaunet, T.X., and Wang, J.F. (1999). Variation in genotype and aggressiveness of Ralstonia solanacearum race 1 isolated from tomato in Taiwan. Phytopathology 89: 320-327. Koncz, C., and Schell, J. (1986). The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Molecular Genetics and Genomics 204: 383-396. Kumamoto, C.A., and Beckwith, J. (1983). Mutations in a new gene, secB, cause defective protein localization in Escherichia coli. Journal of Bacteriology 154: 253-260. Lapin, D., and Van den Ackerveken, G. (2013). Susceptibility to plant disease: more than a failure of host immunity. Trends in Plant Science 18: 546-54. Lebeau, A., Daunay, M.C., Frary, A., Palloix, P., Wang, J.F., and Dintinger, J. (2011). Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. Phytopathology 101: 154-165. Loewy, B., Marczynski, G.T., Dingwall, A., and Shapiro, L. (1990). Regulatory interactions between phospholipid synthesis and DNA replication in Caulobacter crescentus. Journal of Bacteriology 172: 5523-5530. Mellgren, E.M., Kloek, A.P., and Kunkel, B.N. (2009). Mqo, a tricarboxylic acid cycle enzyme, is required for virulence of Pseudomonas syringae pv. tomato strain DC3000 on Arabidopsis thaliana. Journal of Bacteriology 191: 3132-3141. Meng, F. (2013). Ralstonia Solanacearum species complex and bacterial wilt disease. Journal of Bacteriology and Parasitology 4: e119. Monteiro, F., Sole, M., van Dijk, I., and Valls, M. (2012b). A chromosomal insertion toolbox for promoter probing, mutant complementation, and pathogenicity studies in Ralstonia solanacearum. Molecular Plant-Microbe Interactions 25: 557-568. Peeters, N., Guidot, A., Vailleau, F., and Valls, M. (2013). Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Molecular Plant Pathology 14: 651-662. Plener, L., Boistard, P., Gonzalez, A., Boucher, C., and Genin, S. (2012). Metabolic adaptation of Ralstonia solanacearum during plant infection: a methionine biosynthesis case study. PLoS One 7: e36877. Pumplin, N., and Voinnet, O. (2013). RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nature Reviews Microbiology 11: 745-760. Rico, A. and Preston, G.M. (2008). Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Molecular Plant-Microbe Interactions 21:269-282. Saier, M.H., Tran, C.V., and Barabote, R.D. (2006). TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Research 34: D181-D186. Salanoubat, M., Genin, S., Artiguenave, F., Gouzy, J., Mangenot, S., Arlat, M., Billault, A., Brottier, P., Camus, J.C., Cattolico, L., Chandler, M., Choisne, N., Claudel-Renard, C., Cunnac, S., Demange, N., Gaspin, C., Lavie, M., Moisan, A., Robert, C., Saurin, W., Schiex, T., Siguier, P., Thebault, P., Whalen, M., Wincker, P., Levy, M., Weissenbach, J., and Boucher, C.A. (2002). Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415: 497-502. Seo, P.J., Park, J.M., Kang, S.K., Kim, S.G., and Park, C.M. (2011). An Arabidopsis senescence-associated SAG29 regulates cell viability under high salinity. Planta 233: 189-200. Shimizu, H., Nishiyama, K., and Tokuda, H. (1997). Expression of gpsA encoding biosynthetic sn-glycerol 3-phosphate dehydrogenase suppresses both the LB- phenotype of a secB null mutant and the cold-sensitive phenotype of a secG null mutant. Molecular Microbiology 26: 1013-1021. Slewinski, T.L., and Braun, D.M. (2010). Current perspectives on the regulation of whole-plant carbohydrate partitioning. Plant Science 178: 341-349. Spoering, A.L., Vulic, M. and Lewis, K. (2006). GlpD and PlsB participate in persister cell formation in Escherichia coli. Journal of Bacteriology 188: 5136-5144. Tang, D.J., He, Y.Q., Feng, J.X., He, B.R., Jiang, B.L., Lu, G.T., Chen, B., and Tang, J.L. (2005). Xanthomonas campestris pv. campestris possesses a single gluconeogenic pathway that is required for virulence. Journal of Bacteriology 187: 6231-6237. Vasse, J., Frey, P., and Trigalet, A. (1995). Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Molecular Plant-Microbe Interactions 8: 241-251. Vasse, J., Genin, S., Frey, P., Boucher, C., and Brito, B. (2000). The hrpB and hrpG regulatory genes of Ralstonia solanacearum are required for different stages of the tomato root infection process. Molecular Plant-Microbe Interactions 13: 259-267. Wang, J.F., Hanson, P.M., and Barnes, J.A. (1998). Worldwide evaluationof an international set of resistance sources to bacterial wilt in tomato. In: Prior P, Allen C, and Elphinstone J (eds). Bacterial wilt disease: molecular and ecological aspects.Springer, Berlin, pp 269-275. Wang, J.F., Ho, F.I., Truong H.T.H., Huang, S.M., Balatero C.H., Dittapongpitch, V., and Hidayati, Nurul. (2013). Identification of major QTLs associated with stable resistance of tomato cultivar ‘Hawaii 7996’ to Ralstonia solanacearum. Euphytica 190: 241-252. Wei, Y., Shen, W., Dauk, M., Wang, F., Selvaraj, G., and Zou, J. (2004). Targeted gene disruption of glycerol-3-phosphate dehydrogenase in Colletotrichum gloeosporioides reveals evidence that glycerol is a significant transferred nutrient from host plant to fungal pathogen. Journal Biological of Chemistry 279: 429-435. Yao, J., and Allen, C. (2006). Chemotaxis is required for virulence and competitive fitness in the bacterial wilt pathogen Ralstonia solanacearum. Journal of Bacteriology 188: 3697-3708. Yao, J., and Allen, C. (2007). The plant pathogen Ralstonia solanacearum needs aerotaxis for normal biofilm formation and interactions with its tomato host. Journal of Bacteriology 189: 6415-6424. Yuan, M., and Wang, S. (2013). Rice MtN3/saliva/SWEET family genes and their homologues in cellular organisms. Molecular Plant 6: 665-674. Yuan, M., Zhao, J., Huang, R., Li, X., Xiao, J. and Wang, S. (2014). Rice MtN3/saliva/SWEET gene family: Evolution, expression profiling, and sugar transport. Journal of Integrative Plant Biology 56:559-570. Zhou,T., Wang, Y., Chen, J., Araki, H., Jing, Z., Jiang, K., Shen, J., and Tian, D. (2004). Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Molecular Genetic and Genomics 271:402-415. Zuluaga, A.P., Puigvert, M., and Valls, M. (2013). Novel plant inputs influencing Ralstonia solanacearum during infection. Frontiers in Microbiolgy 4: 349. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54922 | - |
dc.description.abstract | 植物經常會受到各種不同病原菌攻擊,導致嚴重作物生產損失,例如:由青枯病菌所引起的青枯病,即是全世界最嚴重的植物病害之一,影響全球許多重要經濟作物,造成極大損失。本研究包含兩個子題。在第一子題中,我們先前的研究顯示,在菸草中表現源自青枯病菌之噬菌體的一個裂解蛋白質H會造成被細菌感染誘導的植物細胞死亡,並使植物對數種病原細菌之抗性增加。本研究進一步證實,在番茄植株系統性表現H蛋白質可加強植物抵抗多種特性不同之細菌病害,亦會造成細菌誘發性細胞死亡與增強pathogen-associated molecular patterns (PAMPs)-triggered immunity (PTI) 反應,故表現H蛋白質可在植物體內誘導廣泛性防禦反應而促使植物得以抵抗不同的病原菌。在第二子題中,我們先前的研究顯示,青枯病菌參與糖解作用之酵素基因gpsA經破壞後,會導致病菌在番茄抗病品系中之毒力下降。本研究進一步證明gpsA確實是決定青枯病菌致病力的關鍵基因,並參與病菌之糖利用作用;同時,定量分析顯示番茄感病番茄品系L390之葡萄糖、果糖及蔗糖含量較抗病品系H7996高,且在L390根部能測到低量甘油 (glycerol) 而在H7996之各部位中均無法測得甘油;此外,L390在感染gpsA突變株後,其根部中之甘油含量下降趨勢比感染野生型菌株快速。這些結果顯示,在甘油含量低至無測得之抗病番茄品系H7996中,gpsA在青枯病菌感染的初期扮演重要角色,使病菌得以在甘油含量極低之H7996根部增殖,以達成後續的系統性感染,同時,這些發現也暗指番茄之含糖量可能與其青枯病抗性具一定相關性。另外,從本研究之番茄與馬鈴薯糖類傳輸蛋白 (sugar transporters) SWEETs序列分析結果發現,茄科植物之SWEETs基因可能比阿拉伯芥與水稻略多,且短暫基因靜默分析初步發現番茄SWEET2a (SISWEET2a) 參與植株生長發育。預期本研究所獲資訊將有助於瞭解植物病害發生之具體機制,並研擬防治病害之可能措施。 | zh_TW |
dc.description.abstract | Plants often suffer from attacks of different pathogens, causing serious losses in crop production. For example, bacterial wilt (BW), caused by Ralstonia solanacearum (Rs), is a serious disease affecting a wide range of economically important crops worldwide. This work contains two studies. Firstly, our previous studies revealed that expression of a lysis protein (H) derived from a bacteriophage of Rs promoted bacteria-induced cell death and resistance to several bacteria in Nicotiana benthamiana. Results from this study further revealed that systemic overexpression of H or signal peptide (sp)-fused H proteins enhanced tomato resistance against three distinct bacteria, bacteria-triggered cell death and pathogen-associated molecular patterns (PAMPs)-triggered immunity (PTI) responses. Therefore, expression of H protein can prime plants for enhanced defense responses, leading to boosted resistance to different pathogens. Secondly, our previous studies revealed that the disruption of Rs gpsA, which encodes an enzyme involved in glycolysis, led to differential bacterial virulence in BW-resistant and -susceptible tomato cultivars. Data from this study further evidence that gpsA is a general virulence determinant of Rs and is involved in sugar utilization. In addition, contents of sugars (glucose, fructose, sucrose) in BW-susceptible tomato cultivar L390 are higher than that in the resistant cultivar Hawaii7996 (H7996). The content of glycerol was detected at a very low level in the root of L390 but not in other tissues of L390, and glycerol was undetectable in various tissues of H7996. Moreover, the glycerol content in L390 root after the infection of Rs gpsA mutant decreased more dramatically than that after the infection of the wild-type strain. These results suggest that, to achieve a successful infection in H7996 with very limited glycerol, if there is any, functional gpsA is required for Rs sugary utilization and thus proliferation at the initial infection stage. In addition, these data imply an effect of sugar contents on tomato BW response. Furthermore, sequence analyses reveal a higher number of sugar transporters SWEET homologs in tomato and potato than that in Arabidopsis and rice. Moreover, transient gene silencing assay suggest a key role tomato SWEET2a (SISWEET2a) in plant growth. This work together with the proposed further studies are anticipated to provide important information on plant defense mechanisms and explore useful defense genes, potentially paving the way to assemble effective approaches for BW control. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:41:38Z (GMT). No. of bitstreams: 1 ntu-104-R01b42019-1.pdf: 6490787 bytes, checksum: 6046b09bb65d38688a00c6bcf7cedbee (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 目錄
口試委員審定書 ......................................................................................... ..... ii 謝誌 .......................................................................................................... ....... iii 中文摘要 ........................................................................................................... iv 英文摘要 ........................................................................................................... v 常用縮寫與全名對照表 ................................................................................... vii 目錄 .................................................................................................................. ix 表目錄 .............................................................................................................. xiv 圖目錄 .............................................................................................................. xv 附錄目錄 ........................................................................................................... xvii 青枯病菌噬菌體裂解蛋白之分析 .................................................................... 1 第一章 前言 ................................................................................................ 2 1. 植物病害防禦機制 .................................................................................... 2 1.1. 植物PTI防禦反應 .................................................................... 2 1.2. 植物ETI防禦反應 ..................................................................... 3 1.3. 植物DTI防禦反應 ..................................................................... 3 2. 本研究使用之作物病原菌 ........................................................................... 3 2.1. 青枯病菌 ………………………………………………………. 4 2.2. 細菌性細斑病菌 ………………………………………………. 4 2.3. 細菌性軟腐病菌 ……………………………………………….. 4 2.4. 灰黴病菌 ………………………………………………………. 5 3. 噬菌體之裂解蛋白 ...................................................................................... 5 3.1. 噬菌體λ的holin S105 ............................................................... 6 3.2. 噬菌體P21 的holin S21 ……………………………………… 6 3.3. 噬菌體T4 的holin T …………………………………………… 7 4. 青枯病菌噬菌體 ........................................................................................... 7 5. 前人研究與研究動機 ……………………................................................... 7 第二章 材料與方法 ................................................................................... 9 1. 供試菌株、質體及菌株培養條件 .............................................................. 9 2. 供試噬菌體培養件 ...................................................................................... 9 3. 供試植物培育條件 ...................................................................................... 9 4. 生物統計分析 .............................................................................................. 9 5. 番茄短暫性病毒誘導基因過量表現 .............................................………. 10 6. 病原菌處理 ................................................................................................. 10 6.1. 細菌性細斑病菌接種番茄試驗 ................................................ 10 6.2. 軟腐病菌接種番茄試驗 ............................................................ 10 6.3. 灰黴病菌接種番茄試驗 ........................................................... 11 7. 真空抽氣法接種第三型分泌蛋白損壞之突變菌株 ................................... 11 8. 錐藍染色法.................................................................................................... 11 9. 離子流失試驗................................................................................................ 12 10. 植物PTI防禦反應指標檢測...................................................................... 12 10.1. H2O2檢測…………………………………………..………….. 12 10.2. 癒傷葡聚糖堆積分析………………………………..………... 12 10.3. PTI反應相關標誌基因表現之檢測 ........................................ 13 10.3.1. 植物RNA萃取 .............................................................. 13 10.3.2. 去除DNA殘留 .............................................................. 13 10.3.3. 反轉錄聚合酶連鎖反應 ................................................ 14 10.3.4. 定量PCR ...................................................................... 14 第三章 結果 .............................................................................................. 15 1. 表現 RsφP29 holin或sp-holin對番茄病害反應之影響 ......................... 15 2. 表現 RsφP29 holin或sp-holin對病菌誘導之番茄細胞死亡的影響 ..... 15 3. 表現 RsφP29 holin或sp-holin對番茄PTI防禦反應之影響 ................ 16 第四章 討論 ............................................................................................... 18 1. 表現RsφP29 holin或sp-holin可提升植物之廣效抗病力 ....................... 18 2. 表現RsφP29 holin或sp-holin會造成病菌誘導性植物細胞死亡 ............. 18 3. 表現RsφP29 holin 或sp-holin會加強植物PTI反應 ............................... 19 4. 表現RsφP29 sp-holin或許也會誘發植物DTI反應 …………………… 20 5. 表現RsφP29 holin 或sp-holin使植物發生priming現象 ………………. 20 6. 結語 …………………………………………………………………….….. 21 參考文獻 ........................................................................................................... 22 青枯病菌gpsA對番茄青枯病反應之功能研究 .................................................. 48 第一章 前言 .................................................................................................. 49 1. 植物SWEETs功能之研究 ............................................................................. 49 2. 細菌碳水化合物的代謝途徑 .................................................................... 50 3. 細菌secB與gpsA之研究 .......................................................................... 51 4. 青枯病與青枯病菌 ..................................................................................... 51 5. 青枯病菌之致病過程與分子機制………………………………………….. 6. 前人研究與研究動機 ..................................................................................... 52 53 第二章 材料與方法 .................................................................................... 54 1. 供試菌株、質體及菌株培養條件 ............................................................... 54 2. 供試植物培育條件 ....................................................................................... 54 3. 生物資訊分析 .............................................................................................. 54 4. 生物統計分析 ............................................................................................... 54 5. 重組質體構築 ............................................................................................... 55 5.1. 聚合酶連鎖反應 ……………………………………………….. 55 5.2. DNA瓊脂糖凝膠電泳 …………………………………….….. 55 5.3. 質體萃取 ……………………………………………………….. 55 5.3.1. 大腸桿菌質體萃取 ……………………………………… 55 5.3.2. 青枯病菌質體萃取 ……………………………………… 56 5.4. DNA 純化 …………………………………………………….… 56 5.5. DNA限制酶反應 …………………………………………….… 56 5.6. DNA 片段接合 ……………………………………………….… 57 5.7. TOPOR 質體構築 ……………………………………………….. 57 5.8. LR 重組互換反應 ………………………………………………. 57 5.9. 大腸桿菌勝任細胞熱休克轉型作用 ……………………….….. 57 5.10. 電穿孔轉型作用之勝任細胞置備 ……………………………. 58 5.11. 電穿孔轉型作用 ………………………………………………. 58 5.12. 青枯病菌染色體DNA 萃取 ……………………………….…. 58 6. 青枯病菌GpsA功能研究 ………………………………………………… 59 6.1. 啟動子活性測試 ……………………………………………….. 59 6.2. 青枯病菌基因表現量 …………………………………………... 60 6.2.1. 青枯病菌RNA萃取 …………………………..……….… 60 6.2.2. 去除DNA殘留 ………………………………………...… 60 6.2.3. 反轉錄聚合酶連鎖反應 …………………………………. 61 6.2.4. 定量PCR ……………………………………………….… 61 6.3. 青枯病菌毒力測試 ………………………………………….….. 61 6.4. 青枯病菌植物體內增殖能力分析 ……………………………… 62 6.5. 青枯病菌的自然轉型作用 ……………………………………... 62 6.6. 青枯病菌使用碳源能力 ………………………………………... 62 6.7. 青枯病菌的生長情形 ……………………………………….….. 62 7. 檢測植物中各部位之糖類含量 ………………………………..………….. 63 8. 番茄SWEETs功能研究 …………………………………………………….. 63 8.1. 番茄短暫性病毒誘導基因靜默 ………………………………… 63 第三章 結果 1. secB與gpsA基因在不同毒力青枯病菌株中之序列比較 ………….…… 64 2. gpsA相關操縱組結構與其表現調控分析 …………………………….…. 64 3. 青枯病菌gpsA基因在跳躍子插入突變株中之轉錄表現分析 ……….…. 65 4. 青枯病菌突變株gpsA-在抗病番茄品系H7996中之增殖能力分析 ….… 65 5. 青枯病菌突變株gpsA-在不同番茄品系之致病力分析 ……………….…. 65 6. 中毒力與低毒力青枯病菌之gpsA突變菌株之致病力分析 ………….…. 66 7. 青枯病菌突變株gpsA-之營養使用分析 ………………………………..… 66 8. 抗病與感病番茄品系中主要糖類之含量分析 …………………………… 66 9. 青枯病抗病與感病番茄品系經青枯病菌感染後之糖類含量分析 …….... 67 10. 番茄SWEETs序列比對分析 ……………………………………………. 68 11. 以短暫基因靜默策略檢測番茄SWEETs對植株生長發育之影響 ……. 68 12. 以短暫基因靜默策略檢測番茄SWEETs對植株青枯病反應之影響 …. 69 第四章 討論 ............................................................................................... 70 1. 青枯病菌侵染造成番茄全株之糖含量快速減少 ......................................... 70 2. 番茄含糖量與抗青枯病能力可能有關聯 ................................................... 71 3. gpsA是具不同毒力之青枯病菌菌株共有的致病基因 ............................... 71 4. gpsA參與青枯病菌之糖利用功能 …………….. ......................................... 72 5. gpsA在青枯病菌感染番茄之初期扮演關鍵角色 ....................................... 73 6. 茄科植物SWEETs基因數比阿拉伯芥與水稻多且集中分佈在特定染色體 73 7. 番茄SWEET2a參與植株生長發育 ………………………………………. 74 8. 結語 …………………………………………………………………..…..… 74 參考文獻 ............................................................................................................. 76 表目錄 青枯病菌gpsA對番茄青枯病反應之功能研究 表一、secB 與gpsA在已完全解序之青枯病菌菌株基因組中之分析 ............. 81 表二、BiologTM分析青枯病菌Pss190野生型與gpsA突變株 ………........... 82 表三、番茄SWEETs蛋白質成員搜尋 ….............................…………............ 85 表四、不同植物中SWEET蛋白質之數目 ……….…....................................... 87 表五、不同植物中SWEET基因位在各染色體位置之數目 …….….............. 88 表六、本研究使用之番茄SWEETs基因之VIGS構築 …………………….. 89 圖目錄 青枯病菌噬菌體裂解蛋白之分析 圖一、短暫大量表現RsφP29 holin或sp-holin之番茄在接種細菌性細斑病菌 後之反應 ............................................................................................ 27 圖二、短暫大量表現RsφP29 holin或sp-holin之番茄在接種軟腐病菌後之反應 ......................................................................................................... 28 圖三、短暫大量表現RsφP29 holin或sp-holin之番茄在接種灰黴病菌後之反應 ......................................................................................................... 29 圖四、短暫大量表現RsφP29 holin或sp-holin之番茄在接種植物病菌後之細 胞死亡分析 ............................................................................................. 31 圖五、短暫大量表現RsφP29 holin或sp-holin之番茄在接種植物病菌後之細 胞染色死亡分析 .................................................................................... 31 圖六、短暫大量表現RsφP29 holin或sp-holin之番茄在接種植物病菌後之離 子流失檢測 ........................................................................................... 32 圖七、短暫大量表現RsφP29 holin或sp-holin之番茄接種植物病菌後之過氧 化氫含量檢測 ..................................................................................... 33 圖八、短暫大量表現RsφP29 holin或sp-holin之番茄接種植物病菌後之癒傷 葡聚糖含量檢測 ............................................................................... 34 圖九、短暫大量表現RsφP29 holin或sp-holin之番茄對PTI反應相關標誌基 因表現之影響 ...................................................................................... 35 青枯病菌gpsA對番茄青枯病反應之功能研究 圖一、不同毒力之青枯病菌株與GMI1000之SecB與GpsA胺基酸序列比對 ........................................................................................................... 90 圖二、不同毒力之青枯病菌株之secB與gpsA轉譯起始密碼子上游序列比對 ……………………………………………….................................... 91 圖三、gpsA基因組結構分析 ………………..…………………………..….... 92 圖四、gpsA啟動子受關鍵轉錄因子之調控分析 …………………………... 93 圖五、青枯病菌gpsA基因經跳躍子插入後之轉錄表現分析 ……….......... 94 圖六、青枯病菌gpsA-在抗病番茄品系H7996中之增殖情形 ………….…. 95 圖七、青枯病菌gpsA-在不同番茄品系之致病力測試 ………………….…. 96 圖八、中毒力與低毒力青枯病菌之gpsA突變菌株之致病力測試 ………... 97 圖九、青枯病菌gpsA-之營養使用特性 ………………………………….…. 98 圖十、青枯病抗病與感病番茄品系之glycerol、glucose、sucrose及fructose 含量檢測 ………………………………………………………………. 99 圖十一、青枯病抗病與感病番茄品系經青枯病菌感染後之糖類含量分析 ... 101 圖十二、番茄SWEETs之氨基酸序列親緣性分析 …………………………. 103 圖十三、感病番茄品系 L390 SWEET2a基因靜默後之植株生長情形 …..… 圖十四、抗病番茄品系H7996 SWEET2a基因靜默後之植株生長情形 ……. 104 105 附錄目錄 青枯病菌噬菌體裂解蛋白之分析 附表一、本研究所使用之質體與菌株特性 .................................................... 36 附表二、培養基與藥品配方 ........................................................................... 38 附表三、抗生素濃度與配方 ........................................................................... 41 附表四、本研究中所使用之引子 .................................................................... 42 附圖一、短暫表現RsφP29之裂解蛋白之菸草在接種青枯病菌後之反應 … 43 附圖二、短暫表現RsφP29 holin或sp-holin之菸草在接種青枯病菌後之細胞 死亡分析 ............................................................................................. 44 附圖三、短暫大量表現RsφP29 holin或sp-holin之菸草葉片的離子流失檢測 ........................................................................................................ 45 附圖四、短暫表現RsφP29 holin或sp-holin之菸草接種植物病原細菌後之應 ........................................................................................................ 46 附圖五、短暫大量表現RsφP29 holin或sp-holin之番茄接種青枯病菌後之反應 ........................................................................................................ 47 青枯病菌gpsA對番茄青枯病反應之功能研究 附表一、青枯病菌毒力數據 .......................................................................... 106 附表二、本研究團隊定序之青枯病菌菌株特性 .......................................... 107 附表三、本研究所使用之質體與菌株特性 ..................................................... 108 附表四、培養基與藥品配方 ............................................................................. 110 附表五、抗生素濃度與配方 ............................................................................. 114 附表六、本研究中所使用之引子 .................................................................... 115 圖一、青枯病菌Pss190 gpsA突變株之致病力與增殖分析 ………………… 117 圖二、青枯病菌gpsA突變株與基因互補株之致病力與增殖測試 ................. 118 圖三、qRT-PCR檢測青枯病菌gpsA基因在跳躍子插入突變株中之表現量 119 圖四、GpsA與其相關代謝途徑 …………………………………………….. 120 圖五、可被病菌誘導表現之阿拉伯芥SWEETs基因 ………………………. 121 圖六、番茄SWEET1之核苷酸與胺基酸序列比對 ………………………… 112 圖七、番茄SWEET2之核苷酸與胺基酸序列比對 ………………………… 124 圖八、番茄SWEET10之核苷酸與胺基酸序列比對 ………………………. 125 圖九、番茄SWEET17之核苷酸與胺基酸序列 ……………………………. 126 圖十、番茄SWEET11 之核苷酸與胺基酸序列比對 …………………….… 127 圖十一、VIGS番茄SWEET1cd基因靜默構築之比對 ……………………… 129 圖十二、VIGS番茄SWEET10/11/12基因靜默構築之比對 ………………… 130 圖十三、在感病番茄品系L390將SWEET基因靜默後之青枯病測試 …….. 131 圖十四、在感病番茄品系L390 SWEET2a基因靜默後之效率檢測 .……….. 132 | |
dc.language.iso | zh-TW | |
dc.title | 噬菌體裂解蛋白與青枯病菌gpsA對番茄青枯病反應之影響 | zh_TW |
dc.title | Effects of a phage lysis protein and Ralstonia solanacearum gpsA on tomato bacterial wilt response | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林乃君(Nai-Chun Lin),柯淳涵(Chun-Han Ko),王肇芬(Jaw-fen Wang),張英?(Ing-Feng Chang) | |
dc.subject.keyword | 番茄,青枯病菌,噬菌體,裂解蛋白質,gpsA,糖類,SWEET, | zh_TW |
dc.subject.keyword | tomato,Ralstonia solanacearum,bacteriophage,lysis protein,gpsA,sugars,SWEET, | en |
dc.relation.page | 134 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-02-12 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 6.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。