Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54871
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳水田(Shui-Tein Chen)
dc.contributor.authorChih-Ru Linen
dc.contributor.author林芷如zh_TW
dc.date.accessioned2021-06-16T03:40:21Z-
dc.date.available2020-03-16
dc.date.copyright2015-03-16
dc.date.issued2015
dc.date.submitted2015-02-13
dc.identifier.citation1. Alitheen, N. B., Oon, C. L., Keong, Y. S., Chuan, T. K., Li, H. K., and Yong, H. W. (2011) Cytotoxic effects of commercial wheatgrass and fiber towards human acute promyelocytic leukemia cells (HL60). Pakistan journal of pharmaceutical sciences 24, 243-250
2. Das, A., Raychaudhuri, U., and Chakraborty, R. (2012) Effect of freeze drying and oven drying on antioxidant properties of fresh wheatgrass. International journal of food sciences and nutrition 63, 718-721
3. Shah, S. (2007) Dietary factors in the modulation of inflammatory bowel disease activity. MedGenMed : Medscape general medicine 9, 60
4. Nenonen, M. T., Helve, T. A., Rauma, A. L., and Hanninen, O. O. (1998) Uncooked, lactobacilli-rich, vegan food and rheumatoid arthritis. British journal of rheumatology 37, 274-281
5. Marawaha, R. K., Bansal, D., Kaur, S., and Trehan, A. (2004) Wheat grass juice reduces transfusion requirement in patients with thalassemia major: a pilot study. Indian pediatrics 41, 716-720
6. Shakya, G., Randhi, P. K., Pajaniradje, S., Mohankumar, K., and Rajagopalan, R. (2014) Hypoglycaemic role of wheatgrass and its effect on carbohydrate metabolic enzymes in type II diabetic rats. Toxicology and industrial health
7. Kulkarni, S. D., Acharya, R., Nair, A. G. C., Rajurkar, N. S., and Reddy, A. V. R. (2006) Determination of elemental concentration profiles in tender wheatgrass (Triticum aestivum L.) using instrumental neutron activation analysis. Food Chem 95, 699-707
8. Chernomorsky, S. A., and Segelman, A. B. (1988) Biological activities of chlorophyll derivatives. New Jersey medicine : the journal of the Medical Society of New Jersey 85, 669-673
9. Mackinnon, A. L., and Taunton, J. (2009) Target Identification by Diazirine Photo-Cross-linking and Click Chemistry. Current protocols in chemical biology 1, 55-73
10. Dubinsky, L., Krom, B. P., and Meijler, M. M. (2012) Diazirine based photoaffinity labeling. Bioorganic & medicinal chemistry 20, 554-570
11. Kolb, H. C., Finn, M. G., and Sharpless, K. B. (2001) Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie 40, 2004-2021
12. Dranoff, G. (2004) Cytokines in cancer pathogenesis and cancer therapy. Nature reviews. Cancer 4, 11-22
13. Kupper, T. S., and Fuhlbrigge, R. C. (2004) Immune surveillance in the skin: mechanisms and clinical consequences. Nature reviews. Immunology 4, 211-222
14. Bilate, A. M., and Lafaille, J. J. (2012) Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annual review of immunology 30, 733-758
15. Shevach, E. M. (2011) Biological functions of regulatory T cells. Advances in immunology 112, 137-176
16. O'Garra, A., and Vieira, P. (2004) Regulatory T cells and mechanisms of immune system control. Nature medicine 10, 801-805
17. Josefowicz, S. Z., Lu, L. F., and Rudensky, A. Y. (2012) Regulatory T cells: mechanisms of differentiation and function. Annual review of immunology 30, 531-564
18. Brunkow, M. E., Jeffery, E. W., Hjerrild, K. A., Paeper, B., Clark, L. B., Yasayko, S. A., Wilkinson, J. E., Galas, D., Ziegler, S. F., and Ramsdell, F. (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature genetics 27, 68-73
19. Wildin, R. S., Ramsdell, F., Peake, J., Faravelli, F., Casanova, J. L., Buist, N., Levy-Lahad, E., Mazzella, M., Goulet, O., Perroni, L., Bricarelli, F. D., Byrne, G., McEuen, M., Proll, S., Appleby, M., and Brunkow, M. E. (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nature genetics 27, 18-20
20. Bennett, C. L., Christie, J., Ramsdell, F., Brunkow, M. E., Ferguson, P. J., Whitesell, L., Kelly, T. E., Saulsbury, F. T., Chance, P. F., and Ochs, H. D. (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature genetics 27, 20-21
21. Josefowicz, S. Z., and Rudensky, A. (2009) Control of regulatory T cell lineage commitment and maintenance. Immunity 30, 616-625
22. Malek, T. R., and Castro, I. (2010) Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 33, 153-165
23. Xu, L., Kitani, A., and Strober, W. (2010) Molecular mechanisms regulating TGF-beta-induced Foxp3 expression. Mucosal immunology 3, 230-238
24. Beal, A. M., Ramos-Hernandez, N., Riling, C. R., Nowelsky, E. A., and Oliver, P. M. (2012) TGF-beta induces the expression of the adaptor Ndfip1 to silence IL-4 production during iTreg cell differentiation. Nature immunology 13, 77-85
25. Maruyama, T., Konkel, J. E., Zamarron, B. F., and Chen, W. (2011) The molecular mechanisms of Foxp3 gene regulation. Seminars in immunology 23, 418-423
26. Coombes, J. L., Siddiqui, K. R., Arancibia-Carcamo, C. V., Hall, J., Sun, C. M., Belkaid, Y., and Powrie, F. (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. The Journal of experimental medicine 204, 1757-1764
27. Siddiqui, K. R., and Powrie, F. (2008) CD103+ GALT DCs promote Foxp3+ regulatory T cells. Mucosal immunology 1 Suppl 1, S34-38
28. Marzio, R., Mauel, J., and Betz-Corradin, S. (1999) CD69 and regulation of the immune function. Immunopharmacology and immunotoxicology 21, 565-582
29. Gonzalez-Amaro, R., Cortes, J. R., Sanchez-Madrid, F., and Martin, P. (2013) Is CD69 an effective brake to control inflammatory diseases? Trends in molecular medicine 19, 625-632
30. Lopez-Cabrera, M., Santis, A. G., Fernandez-Ruiz, E., Blacher, R., Esch, F., Sanchez-Mateos, P., and Sanchez-Madrid, F. (1993) Molecular cloning, expression, and chromosomal localization of the human earliest lymphocyte activation antigen AIM/CD69, a new member of the C-type animal lectin superfamily of signal-transmitting receptors. The Journal of experimental medicine 178, 537-547
31. D'Ambrosio, D., Trotta, R., Vacca, A., Frati, L., Santoni, A., Gulino, A., and Testi, R. (1993) Transcriptional regulation of interleukin-2 gene expression by CD69-generated signals. European journal of immunology 23, 2993-2997
32. Santis, A. G., Campanero, M. R., Alonso, J. L., Tugores, A., Alonso, M. A., Yague, E., Pivel, J. P., and Sanchez-Madrid, F. (1992) Tumor necrosis factor-alpha production induced in T lymphocytes through the AIM/CD69 activation pathway. European journal of immunology 22, 1253-1259
33. Caruso, A., Licenziati, S., Corulli, M., Canaris, A. D., De Francesco, M. A., Fiorentini, S., Peroni, L., Fallacara, F., Dima, F., Balsari, A., and Turano, A. (1997) Flow cytometric analysis of activation markers on stimulated T cells and their correlation with cell proliferation. Cytometry 27, 71-76
34. Cosulich, M. E., Rubartelli, A., Risso, A., Cozzolino, F., and Bargellesi, A. (1987) Functional characterization of an antigen involved in an early step of T-cell activation. Proceedings of the National Academy of Sciences of the United States of America 84, 4205-4209
35. Sancho, D., Gomez, M., and Sanchez-Madrid, F. (2005) CD69 is an immunoregulatory molecule induced following activation. Trends in immunology 26, 136-140
36. Lauzurica, P., Sancho, D., Torres, M., Albella, B., Marazuela, M., Merino, T., Bueren, J. A., Martinez, A. C., and Sanchez-Madrid, F. (2000) Phenotypic and functional characteristics of hematopoietic cell lineages in CD69-deficient mice. Blood 95, 2312-2320
37. Sancho, D., Gomez, M., Viedma, F., Esplugues, E., Gordon-Alonso, M., Garcia-Lopez, M. A., de la Fuente, H., Martinez, A. C., Lauzurica, P., and Sanchez-Madrid, F. (2003) CD69 downregulates autoimmune reactivity through active transforming growth factor-beta production in collagen-induced arthritis. The Journal of clinical investigation 112, 872-882
38. Cruz-Adalia, A., Jimenez-Borreguero, L. J., Ramirez-Huesca, M., Chico-Calero, I., Barreiro, O., Lopez-Conesa, E., Fresno, M., Sanchez-Madrid, F., and Martin, P. (2010) CD69 limits the severity of cardiomyopathy after autoimmune myocarditis. Circulation 122, 1396-1404
39. Esplugues, E., Sancho, D., Vega-Ramos, J., Martinez, C., Syrbe, U., Hamann, A., Engel, P., Sanchez-Madrid, F., and Lauzurica, P. (2003) Enhanced antitumor immunity in mice deficient in CD69. The Journal of experimental medicine 197, 1093-1106
40. Martin, P., Gomez, M., Lamana, A., Matesanz Marin, A., Cortes, J. R., Ramirez-Huesca, M., Barreiro, O., Lopez-Romero, P., Gutierrez-Vazquez, C., de la Fuente, H., Cruz-Adalia, A., and Sanchez-Madrid, F. (2010) The leukocyte activation antigen CD69 limits allergic asthma and skin contact hypersensitivity. The Journal of allergy and clinical immunology 126, 355-365, 365 e351-353
41. Radstake, T. R., van Bon, L., Broen, J., Wenink, M., Santegoets, K., Deng, Y., Hussaini, A., Simms, R., Cruikshank, W. W., and Lafyatis, R. (2009) Increased frequency and compromised function of T regulatory cells in systemic sclerosis (SSc) is related to a diminished CD69 and TGFbeta expression. PloS one 4, e5981
42. Martin-Gayo, E., Sierra-Filardi, E., Corbi, A. L., and Toribio, M. L. (2010) Plasmacytoid dendritic cells resident in human thymus drive natural Treg cell development. Blood 115, 5366-5375
43. Radulovic, K., Manta, C., Rossini, V., Holzmann, K., Kestler, H. A., Wegenka, U. M., Nakayama, T., and Niess, J. H. (2012) CD69 regulates type I IFN-induced tolerogenic signals to mucosal CD4 T cells that attenuate their colitogenic potential. Journal of immunology 188, 2001-2013
44. de la Fuente, H., Cruz-Adalia, A., Martinez Del Hoyo, G., Cibrian-Vera, D., Bonay, P., Perez-Hernandez, D., Vazquez, J., Navarro, P., Gutierrez-Gallego, R., Ramirez-Huesca, M., Martin, P., and Sanchez-Madrid, F. (2014) The leukocyte activation receptor CD69 controls T cell differentiation through its interaction with galectin-1. Molecular and cellular biology 34, 2479-2487
45. Gebhardt, C., Nemeth, J., Angel, P., and Hess, J. (2006) S100A8 and S100A9 in inflammation and cancer. Biochemical pharmacology 72, 1622-1631
46. Schiopu, A., and Cotoi, O. S. (2013) S100A8 and S100A9: DAMPs at the crossroads between innate immunity, traditional risk factors, and cardiovascular disease. Mediators of inflammation 2013, 828354
47. Averill, M. M., Kerkhoff, C., and Bornfeldt, K. E. (2012) S100A8 and S100A9 in cardiovascular biology and disease. Arteriosclerosis, thrombosis, and vascular biology 32, 223-229
48. Simard, J. C., Cesaro, A., Chapeton-Montes, J., Tardif, M., Antoine, F., Girard, D., and Tessier, P. A. (2013) S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-kappaB(1.). PloS one 8, e72138
49. Markowitz, J., and Carson, W. E., 3rd. (2013) Review of S100A9 biology and its role in cancer. Biochimica et biophysica acta 1835, 100-109
50. Averill, M. M., Barnhart, S., Becker, L., Li, X., Heinecke, J. W., Leboeuf, R. C., Hamerman, J. A., Sorg, C., Kerkhoff, C., and Bornfeldt, K. E. (2011) S100A9 differentially modifies phenotypic states of neutrophils, macrophages, and dendritic cells: implications for atherosclerosis and adipose tissue inflammation. Circulation 123, 1216-1226
51. Sinha, P., Okoro, C., Foell, D., Freeze, H. H., Ostrand-Rosenberg, S., and Srikrishna, G. (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. Journal of immunology 181, 4666-4675
52. Turovskaya, O., Foell, D., Sinha, P., Vogl, T., Newlin, R., Nayak, J., Nguyen, M., Olsson, A., Nawroth, P. P., Bierhaus, A., Varki, N., Kronenberg, M., Freeze, H. H., and Srikrishna, G. (2008) RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis 29, 2035-2043
53. Srikrishna, G., Panneerselvam, K., Westphal, V., Abraham, V., Varki, A., and Freeze, H. H. (2001) Two proteins modulating transendothelial migration of leukocytes recognize novel carboxylated glycans on endothelial cells. Journal of immunology 166, 4678-4688
54. Martin, P., Gomez, M., Lamana, A., Cruz-Adalia, A., Ramirez-Huesca, M., Ursa, M. A., Yanez-Mo, M., and Sanchez-Madrid, F. (2010) CD69 association with Jak3/Stat5 proteins regulates Th17 cell differentiation. Molecular and cellular biology 30, 4877-4889
55. Passerini, L., Allan, S. E., Battaglia, M., Di Nunzio, S., Alstad, A. N., Levings, M. K., Roncarolo, M. G., and Bacchetta, R. (2008) STAT5-signaling cytokines regulate the expression of FOXP3 in CD4+CD25+ regulatory T cells and CD4+CD25- effector T cells. International immunology 20, 421-431
56. Arpaia, N., and Barton, G. M. (2011) Toll-like receptors: key players in antiviral immunity. Current opinion in virology 1, 447-454
57. Figueiredo, R. T., Bittencourt, V. C., Lopes, L. C., Sassaki, G., and Barreto-Bergter, E. (2012) Toll-like receptors (TLR2 and TLR4) recognize polysaccharides of Pseudallescheria boydii cell wall. Carbohydrate research 356, 260-264
58. Pietrocola, G., Arciola, C. R., Rindi, S., Di Poto, A., Missineo, A., Montanaro, L., and Speziale, P. (2011) Toll-like receptors (TLRs) in innate immune defense against Staphylococcus aureus. The International journal of artificial organs 34, 799-810
59. Abdelsadik, A., and Trad, A. (2011) Toll-like receptors on the fork roads between innate and adaptive immunity. Hum Immunol 72, 1188-1193
60. Kirschning, C. J., and Schumann, R. R. (2002) TLR2: cellular sensor for microbial and endogenous molecular patterns. Current topics in microbiology and immunology 270, 121-144
61. Bezouska, K., Nepovim, A., Horvath, O., Pospisil, M., Hamann, J., and Feizi, T. (1995) CD 69 antigen of human lymphocytes is a calcium-dependent carbohydrate-binding protein. Biochemical and biophysical research communications 208, 68-74
62. Kovalova, A., Ledvina, M., Saman, D., Zyka, D., Kubickova, M., Zidek, L., Sklenar, V., Pompach, P., Kavan, D., Bily, J., Vanek, O., Kubinkova, Z., Libigerova, M., Ivanova, L., Antolikova, M., Mrazek, H., Rozbesky, D., Hofbauerova, K., Kren, V., and Bezouska, K. (2010) Synthetic N-acetyl-D-glucosamine based fully branched tetrasaccharide, a mimetic of the endogenous ligand for CD69, activates CD69+ killer lymphocytes upon dimerization via a hydrophilic flexible linker. Journal of medicinal chemistry 53, 4050-4065
63. Krenek, K., Kuldova, M., Hulikova, K., Stibor, I., Lhotak, P., Dudic, M., Budka, J., Pelantova, H., Bezouska, K., Fiserova, A., and Kren, V. (2007) N-acetyl-D-glucosamine substituted calix[4]arenes as stimulators of NK cell-mediated antitumor immune response. Carbohydrate research 342, 1781-1792
64. Kavan, D., Kubickova, M., Bily, J., Vanek, O., Hofbauerova, K., Mrazek, H., Rozbesky, D., Bojarova, P., Kren, V., Zidek, L., Sklenar, V., and Bezouska, K. (2010) Cooperation between subunits is essential for high-affinity binding of N-acetyl-D-hexosamines to dimeric soluble and dimeric cellular forms of human CD69. Biochemistry 49, 4060-4067
65. Zelensky, A. N., and Gready, J. E. (2005) The C-type lectin-like domain superfamily. The FEBS journal 272, 6179-6217
66. Drickamer, K. (1999) C-type lectin-like domains. Current opinion in structural biology 9, 585-590
67. Llera, A. S., Viedma, F., Sanchez-Madrid, F., and Tormo, J. (2001) Crystal structure of the C-type lectin-like domain from the human hematopoietic cell receptor CD69. The Journal of biological chemistry 276, 7312-7319
68. Cummings, R. D., and McEver, R. P. (2009) C-type Lectins. in Essentials of Glycobiology (Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., Hart, G. W., and Etzler, M. E. eds.), 2nd Ed., Cold Spring Harbor (NY). pp
69. Iizuka, K., Naidenko, O. V., Plougastel, B. F., Fremont, D. H., and Yokoyama, W. M. (2003) Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nature immunology 4, 801-807
70. Carlyle, J. R., Jamieson, A. M., Gasser, S., Clingan, C. S., Arase, H., and Raulet, D. H. (2004) Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proceedings of the National Academy of Sciences of the United States of America 101, 3527-3532
71. Aldemir, H., Prod'homme, V., Dumaurier, M. J., Retiere, C., Poupon, G., Cazareth, J., Bihl, F., and Braud, V. M. (2005) Cutting edge: lectin-like transcript 1 is a ligand for the CD161 receptor. Journal of immunology 175, 7791-7795
72. Welte, S., Kuttruff, S., Waldhauer, I., and Steinle, A. (2006) Mutual activation of natural killer cells and monocytes mediated by NKp80-AICL interaction. Nature immunology 7, 1334-1342
73. Barondes, S. H., Castronovo, V., Cooper, D. N., Cummings, R. D., Drickamer, K., Feizi, T., Gitt, M. A., Hirabayashi, J., Hughes, C., Kasai, K., and et al. (1994) Galectins: a family of animal beta-galactoside-binding lectins. Cell 76, 597-598
74. Srikrishna, G., Turovskaya, O., Shaikh, R., Newlin, R., Foell, D., Murch, S., Kronenberg, M., and Freeze, H. H. (2005) Carboxylated glycans mediate colitis through activation of NF-kappa B. Journal of immunology 175, 5412-5422
75. Harris, T. J., Grosso, J. F., Yen, H. R., Xin, H., Kortylewski, M., Albesiano, E., Hipkiss, E. L., Getnet, D., Goldberg, M. V., Maris, C. H., Housseau, F., Yu, H., Pardoll, D. M., and Drake, C. G. (2007) Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. Journal of immunology 179, 4313-4317
76. Hsu, K., Chung, Y. M., Endoh, Y., and Geczy, C. L. (2014) TLR9 ligands induce S100A8 in macrophages via a STAT3-dependent pathway which requires IL-10 and PGE2. PloS one 9, e103629
77. Lee, M. J., Lee, J. K., Choi, J. W., Lee, C. S., Sim, J. H., Cho, C. H., Lee, K. H., Cho, I. H., Chung, M. H., Kim, H. R., and Ye, S. K. (2012) Interleukin-6 induces S100A9 expression in colonic epithelial cells through STAT3 activation in experimental ulcerative colitis. PloS one 7, e38801
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54871-
dc.description.abstract免疫系統是人體內相當嚴密調控的防禦機制,經由先天免疫與後天免疫調節而保護我們不受外來抗原入侵,此論文著述兩種免疫調控方式,一為外源性分子Maltoheptaose對後天免疫的訓練與強化;第二部分為內源性的免疫受體CD69於配體結合後之免疫反應的平衡與調控機制。小麥草為一常見的天然營養輔助品,被認為具有許多功效與療效,包括免疫調節,因此長期被作為預防以及治療疾病。我們先前發現小麥草中的寡醣成分具有活化人類周邊血單核細胞的活性,並且鑑定其活性物質為Maltoheptaose,利用細胞體篩選技術證明其直接活化單核細胞,增加CD69、CD80、CD86、IL-12以及TNF-α表現,而進一步影響自然殺手細胞和T細胞的活化。在此研究中,我們使用一合成的Maltoheptaose-probe來執行其目標結合分子的鑑定,Maltoheptaose-probe的結構包括Diazirine和Alkyne,利用其光致交聯特性而與目標分子產生共價鍵結,並經由點擊化學反應標定生物素以利純化。應用此Maltoheptaose-probe和質譜儀分析,以及利用外加不同受體的阻斷性抗體於細胞表面進行篩選,我們於單核細胞株模式中鑑定Toll-like receptor 2 (TLR-2)為Maltoheptaose的目標結合受體,並藉由NF-κB螢光素酶報告基因的活性證明Maltoheptaose活化TLR-2的下游分子NF-κB進入細胞核內調節基因表現,達到免疫調控的作用。
CD69為一免疫細胞表面受體蛋白,大多於免疫活化時大量表現,多數研究認為其具備調節免疫平衡的能力,與調節性T細胞的分化和功能有重要關聯性,但關於CD69如何調控調節性T細胞以及生物體內的CD69配體之了解仍然不足。利用免疫沉澱法以及質譜儀分析,我們從人類周邊血單核細胞中鑑定到兩個結合蛋白質,分別是S100A8和S100A9,此兩個結合蛋白彼此會以單體、二聚體和四聚體存在,我們透過結合分析及阻斷性試驗證明CD69分別與S100A8和S100A9有結合性及專一性,而核糖核酸干擾實驗結果說明了S100A8與S100A9同時存在能夠與CD69達到最佳的結合。我們運用奈米級液相層析串聯質譜儀分析CD69胜肽上的 N聯聚醣之準確修飾位置和結構組成,並發現此N聯聚醣決定了與S100A9的結合性,且顯著地影響了人類初始T細胞分化成調節性T細胞的能力。在功能性分析中,我們觀察到CD69與S100A8/S100A9結合後調節人類周邊血單核細胞的細胞激素TGF-β與IL-4,也透過影響SOCS3-STAT3分子路徑而促進人類調節性T細胞的形成。本研究定義了一對新的受體-配體結合關係為CD69-S100A8/S100A9,並證實他們於調節性T細胞分化過程中的影響與調節機制。
zh_TW
dc.description.abstractThe immune system mounts robust immune response against invading microorganisms while retaining the capacity to keep natural autoimmunity under control. This thesis contains two parts to study the immune modulation through different manners including a novel herbal derived immunostimulator “maltoheptaose” and the identification of CD69 receptor-ligand mediated immune regulation. Wheatgrass is one of the most widely used health foods, but its functional components and mechanisms remain unexplored. The wheatgrass-derived oligosaccharides (WG-PS3) were previously isolated and found to induce CD69 and TH1 cytokine expression in human peripheral blood mononuclear cells (hPBMC). In particular, WG-PS3 directly activated the purified monocytes by inducing the expression of CD69, CD80, CD86, IL-12, and TNF-α but affected NK and T cells only in the presence of monocytes. After further purification and structural analysis, maltoheptaose was identified from WG-PS3 as an immunomodulator. Herein, maltoheptaose was demonstrated to activate monocytes via Toll-like receptor 2 (TLR-2) signaling, which was discovered by pretreatment of blocking antibodies against Toll-like receptors (TLRs) and by use of alkyl diazirine-based photo-affinity probes and click chemistry. The TLR-2 downstream signaling NF-κB activation was also observed in maltoheptaose-treated THP-1 cells, as determined by NF-κB-driven luciferase activity. This study is the first to reveal the immunostimulatory component of wheatgrass with well defined molecular structures and mechanisms.
The second part describes the identification of endogenous ligands for the CD69 receptor and its biological function. CD69 is a leukocyte activation receptor that functions as the regulatory factor in the maintenance of immune homeostasis and is positively selected on the surface of activated regulatory T cell (Treg) lineage. However, whether and how CD69 is involved in the generation of Treg cells has yet to be elucidated. Here we show that CD69 per se is not sufficient to support the switch of the CD4+ naive T cells into Tregs in the absence of antigen-presenting cells, suggesting that additional ligand-receptor interaction is likely required for the stimulation. Using immunoprecipitation and mass spectrometry, we identified the S100A8/S100A9 complex as the natural ligand of CD69 receptor in hPBMC. The in vitro binding assay and competition assay further confirmed a specific interaction existing between CD69 and S100A8/S100A9 complex. Mechanistically, as peptide N-glycosidase treatment of CD69 abolished its interaction with S100A8/S100A9, the ligand-receptor binding of CD69 most likely requires N-linked glycans of CD69. To be more precise, we also determined the glycosylation site and the N-glycan compositions of CD69 through the nanoflow liquid chromatography coupled with tandem mass spectrometry. Functionally speaking, we showed that interaction between CD69 and S100A8/S100A9 is required for the up-regulation of SOCS3 expression leading to inhibited STAT3 signaling during conversion into Treg cells. In addition, CD69-S100A8/S100A9 association increases the secretion of functional cytokines of Treg cells TGF-β leading to reduced IL-4 production in hPBMC. Overall, our results not only define a novel ligand-receptor binging between CD69 and S100A8/S100A9 but also provide their functional and mechanistic interplays involved in Treg cell differentiation.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:40:21Z (GMT). No. of bitstreams: 1
ntu-104-D99B46023-1.pdf: 5770235 bytes, checksum: 61824d70815334a386a6d4722c66e648 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
Table and Contents vii
Abbreviations x
List of Figures xi
List of Tables xiv
1. Introduction 1
1-1 Wheatgrass 1
1-2 Diazirine photocrosslinking and Click chemistry 2
1-3 Immune modulation 3
1-4 Regulatory T cell 5
1-5 Regulation of Treg cell differentiation 7
1-6 The leukocyte activation receptor CD69 9
1-7 Immunoregulatory role of CD69 10
1-8 S100A8/S100A9 proteins 11
2. Experimental procedures 13
2-1 Isolation of hPBMC and CD4+ naive T cells and cell culture 13
2-2 Diazirine photocrosslinking and click chemistry 13
2-3 NF-κB luciferase reporter assay 14
2-4 Immunoprecipitation and immunoblot analysis 14
2-5 Mass spectrometry 15
2-6 Preparation of siRNA and shRNA 16
2-7 Enzymatic deglycosylation 16
2-8 Binding assay 17
2-9 Cellular adhesion assay 18
2-10 Enzyme-linked immunosorbent assay (ELISA) 18
2-11 Flow cytometric analysis 19
2-12 Statistical analysis 19
3. Results 20
Part I
3-1 Maltoheptaose modulates immune activation 20
3-2 TLR-2 is the target receptor of maltoheptaose in monocytes 20
Part II
3-3 CD69 per se is not sufficient to support the inducible Treg cell differentiation 22
3-4 Identification of the functional ligands for the CD69 receptor 22
3-5 The specific association between CD69 and S100A8/S100A9 complex 23
3-6 N-linked glycosylation involves in the interaction between CD69 and S100A8/S100A9 complex 24
3-7 The CD69-S100A8/S100A9 association regulates signaling toward Treg cell differentiation 26
3-8 The CD69-S100A8/S100A9 association regulates TGF-β secretion in hPBMC 28
4. Discussion 29
References 34
Research publications 70
dc.language.isoen
dc.title免疫相關蛋白與目標分子結合之鑑定及功能探討zh_TW
dc.titleIdentification of Target Molecules for Immune Proteins and its Biological Functionen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee吳世雄,阮雪芬,謝榮?,趙國評
dc.subject.keyword小麥草,免疫調控,人類周邊血單核細胞,CD69,配體,調節性T細胞,zh_TW
dc.subject.keywordWheatgrass,Immunomodulation,Human peripheral blood mononuclear cells,CD69,Ligand,Regulatory T cell,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2015-02-13
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
5.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved