Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54869
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳俊達(Chun-Ta Wu)
dc.contributor.authorYi-Lun Sunen
dc.contributor.author孫藝綸zh_TW
dc.date.accessioned2021-06-16T03:40:18Z-
dc.date.available2019-03-16
dc.date.copyright2015-03-16
dc.date.issued2015
dc.date.submitted2015-02-13
dc.identifier.citation王武彰.1978. 經濟果樹(上)楊桃. p. 125-132. 豐年社.臺北.
陳國恩. 2009. 不同後熟特性番石榴品種 ACC 合成酶 cDNA 選殖與分析. 國立臺灣大學園藝學研究所碩士論文.
陳雪姿. 1991. 楊桃採收後呼吸作用即乙烯生合成之研究. 國立臺灣大學園藝學研究所碩士論文.
游若萩、王武彰. 1989. 楊桃之品質成分與加工利用之研究. 中華農業研究. 36:196-205.
黃碧海. 1995. 楊桃栽培現況與未來展望. 農藥世界. 144:8-12.
黃維泯. 1992. 酸味種楊桃果實生長調查及其果汁去澀方法之硏究. 國立臺灣大學食品科學研究所碩士論文.
黃耀正. 1986. 香蕉在成熟及後熟過程中成分及生理化學變化之硏究, 國立臺灣大學農業化學研究所碩士論文.
楊淑惠、王武彰. 1993. 秤錘種楊桃的貯藏品質. 中華農業研究. 42: 387-395.
劉育昌.2013‘珍珠拔’番石榴後熟特性與系統二ACC合成酶PgACS1基因表現之研究. 國立臺灣大學生物資源暨農學院園藝暨景觀學系碩士論文. 臺北.
劉德駿. 2010. 不同後熟特性番石榴品種ACC氧化酶cDNA之選殖與分析, 國立臺灣大學生物資源暨農學院園藝學系碩士論文. 臺北.
劉碧鵑. 2009. 秤錘楊桃果實發育之研究. 國立中興大學園藝研究所碩士論文.
劉碧鵑. 2000. 楊桃綜合管理. 栽培品種與性狀. 行政院農委會農業藥物毒物試驗所. 臺中.
劉碧娟. 2005. 楊桃. p. 149-154. 臺灣農家要覽農作篇(二).行政院農業委會出版. 臺北.
劉碧鵑、王德男、劉政道. 2003. 楊桃台農二號之育成.中華農業研究. 52:207-217.
劉碧鵑、溫宏治. 2005. 優質楊桃供果園標準作業規範手冊. 行政院農業委員會農業.
劉碧鵑, 謝慶昌、黃慶文. 2012. 主要外銷果樹採後處理專刊. 行政院農業委員會農業試驗所鳳山熱帶園藝試驗分所.臺北.
劉碧鵑, 謝慶昌、黃慶文. 2013. 主要外銷果樹採後處理專刊. 行政院農業委員會農業試驗所鳳山熱帶園藝試驗分所.臺北.
諶克終. 1962. 園藝學總論. 國立編譯館.臺北.
謝慶昌. 1985. 楊桃果實生長調查及採收後處理之研究. 國立臺灣大學園藝學研究所碩士論文.
謝慶昌. 2000. 楊桃綜合管理. 果實採收後技術. 行政院農委會農業藥物毒物試驗所. 臺中.
Abdi, N., Holford, P., McGlasson, W., and Mizrahi, Y. 1997. Ripening behaviour and responses to propylene in four cultivars of Japanese type plums. Postharvest Biology and Technology 12:21-34.
Adams-Phillips, L., C. Barry, and J. Giovannoni. 2004. Signal transduction systems regulating fruit ripening. Plant Sci. 9: 331-338.
Adams, D. and Yang, S., 1979. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences,USA.76:170-174.
Ahmed, J., M.G. Lobo, and F. Ozadali. 2012. Tropical and Subtropical Fruits: Postharvest Physiology.
Ali, S.H.and M.Y. Jaafar. 1992. Effect of harvest maturity on physical and chemical characteristics of carambola (Averrhoa carambola L.). New Zealand J Crop. Hort. Sci. 20: 133-136
Alexander, L.and D. Grierson. 2002. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot. 53: 2039-2055.
Alonso, J.M., T. Hirayama, G. Roman, S. Nourizadeh, and J.R. Ecker. 1999. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science. 284: 2148-2152.
Arabidopsis, G.I. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 408: 796-815.
Argueso, C.T., M. Hansen, and J.J. Kieber. 2007. Regulation of ethylene biosynthesis. J. Plant. Growth. Regul. 26: 92-105.
Barry, C.S., Blume, B., Bouzayen, M., Cooper, W., Hamilton, A.J. and Grierson, D. 1996. Differential expression of the 1‐aminocyclopropane‐1‐carboxylate oxidase gene family of tomato. The Plant Journal 9:525-535.
Barry, C.S. and Giovannoni, J.J. 2007. Ethylene and fruit ripening. Journal of Plant Growth Regulation 26:143-159.
Barry, C.S., Llop-Tous, M.I., and Grierson, D. 2000. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiology 123:979-986.
Biale, J.B. 1964. Growth maturation and senescence in fruits. Science 146:880-888.
Binder, B.M. 2008. The ethylene receptors: Complex perception for a simple gas. Plant Science 175:8-17.
Binder, B.M. and Bleecker, A. 2002. A model for ethylene receptor function and 1-methylcyclopropene action.International horticultural congress:Issues and advances in Postharvest Horticulture 628. p117-187
Bleecker, A.B. and Kende, H. 2000. Ethylene: a gaseous signal molecule in plants. Annual Review of Cell and Developmental Biology 16:1-18.
Burg, S.P. and Burg, E.A. 1965. Relationship between ethylene production and ripening in bananas. Botanical Gazette 126:200-204.
Cancel, J.D. and P.B. Larsen, 2002. Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis. Plant Physiol 129:1557-1567.
Capitani, G., M. Tschopp, A.C. Eliot, J.F. Kirsch, and M.G. Grutter. 2005. Structure of ACC synthase inactivated by the mechanism-based inhibitor L-vinylglycine. FEBS . 579: 2458-2462
Campbell, C., D. Huber, and K. Koch. 1989. Postharvest changes in sugars, acids, and color of carambola fruit at various temperatures. HortSci.. 24: 472-475.
Campbell, C.and Koch K. 1987. Postharvest responsition of carambolas to storage at low temperatures, Proc. Fla. State. Hort. Soc. 100 :272-275.
Chang, C., S.F. Kwok, A.B. Bleecker, and E. Meyerowitz. 1993a. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 262: 539-544.
Chang, C.and J.A. Shockey. 1999. The ethylene-response pathway: signal perception to gene regulation. Current opinion in plant biology. 2: 352-358.
Chang, S., J. Puryear, and J. Cairney. 1993b. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Report. 11: 113-116.
Choudhury, S.R., S. Roy, and D.N. Sengupta. 2012. A Ser/Thr protein kinase phosphorylates MA-ACS1 (Musa acuminata 1-aminocyclopropane-1-carboxylic acid synthase 1) during banana fruit ripening. Planta: 1-21.
Diaz‐Mula, H.M., P.J. Zapata, F. Guillen, S. Castillo, D. Martinez‐Romero, D. Valero, and M. Serrano. 2008. Changes in physicochemical and nutritive parameters and bioactive compounds during development and on‐tree ripening of eight plum cultivars: a comparative study. J Sci. Food Agric. 88: 2499-2507.
Do, Y.Y., T.S. Thay, T.W. Chang, and P.L. Huang. 2005. Molecular cloning and characterization of a novel 1-aminocyclopropane-1-carboxylate oxidase gene involved in ripening of banana fruits. J. Agr. Food. Chem. 53: 8239-8247.
Dong, J.G., W.T. Kim, W.K. Yip, G.A. Thompson, L. Li, A.B. Bennett, and S.F. Yang. 1991. Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit. Planta. 185: 38-45.
El-Sharkawy, I., W. Kim, S. Jayasankar, A. Svircev, and D. Brown. 2008. Differential regulation of four members of the ACC synthase gene family in plum. J Exp Bot. 59: 2009-2027.
El‐Sharkawy, I., B. Jones, L. Gentzbittel, J.M. LELIEVRE, J.C. Pech, and A. Latche. 2004. Differential regulation of ACC synthase genes in cold‐dependent and‐independent ripening in pear fruit. Plant, Cell Environ. 27: 1197-1210.
Etheridge, N., B.P. Hall, and G.E. Schaller, 2006. Progress report: ethylene signaling and responses. Planta 223:387-391.
Giovannoni, J. 2001. Molecular biology of fruit maturation and ripening. Annu. Rev. Plant Physiol. Plat Mol. Biol. 52: 725-749.
Giovannoni, J. 2004. Genetic regulation of fruit development and ripening. Plant Cell. 16 : S170-S180.
Gong, Y., X. Fan, and J.P. Mattheis. 2002. Responses ofBing'andRainier'Sweet Cherries to Ethylene and 1-Methylcyclopropene. J Amer Soc. Hort. Sci. 127: 831-835.
Gortner, W.A. 1965. Chemical and Physical Development of the pineapple fruit. J Food Sci. 28: 191-192
Gowda, I.N.D.and A.G. Huddar. 2001. Studies on ripening changes in mango (Mangifera indica L.) fruits. J Food Sci. 38: 135-137.
Guo, H.W. and J.R. Ecker, 2003. Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115:667-677.
Guo, H.W. and J.R. Ecker, 2004. The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40-49.
Grierson D. 2013. The Molecular Biology and Biochemistry of Fruit Ripening :43-68
Haji, T., H. Yaegaki, and M. Yamaguchi. 2003. Softening of stony hard peach by ethylene and induction of endogenous ethylene by 1-aminocyclopropane-1-carboxylic acid (ACC). J Jpn Soc Hort Sci. 72: 212-217.
Harada, T., Sunako, T., Wakasa, Y., Soejima, J., Satoh, T., and Niizeki, M. 2000. An allele of the 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low level of ethylene production in climacteric fruits of some apple cultivars. Theoretical and Applied Genetics 101:742-746.
Hall, B.P., S.N. Shakeel, and G.E. Schaller, 2007. Ethylene receptors: ethylene perception and signal transduction. J Plant Growth Regul 26:118-130.
Hansen, M., H.S. Chae, and J.J. Kieber, 2009. Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J 57:606-614.
Hua, J., C. Chang, Q. Sun, and E.M. Meyerowitz. 1995. Ethylene Insensitivity Conferred by Arabidopsis Ers Gene. Science. 269: 1712-1714.
Hua, J., H. Sakai, S. Nourizadeh, Q.H.G. Chen, A.B. Bleecker, J.R. Ecker, and E.M. Meyerowitz. 1998. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell. 10: 1321-1332.
Huang, Y.F., H. Li, C.E. Hutchison, J. Laskey, and J.J. Kieber, 2003. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33:221-233.
Iannetta, P.P., L.J. laarhoven, H.V. Davies, and F. harren, 2000. Ethylene production by strawbarry flowers and the ripening fruit. In: Communication to the 9th International workshop on LASER based photoacoustic trace gas detection in life science. Nijmegen: The Netherlands.
Iannetta, P.P.M., L.J. Laarhoven, N. Medina-Escobar, E.K. James, M.T. McManus, H.V. Davies, and F.J.M. Harren, 2006. Ethylene and carbon dioxide production by developing strawberries show a correlative pattern that is indicative of ripening climacteric fruit. Physiol Plant. 127:247-259.
Inaba, A. 2007. Studies on the internal feedback regulation of ethylene biosynthesis and signal transduction during fruit ripening, and the improvement of fruit quality. J Jan Soc Hort Sci. 76: 1-12.
Jacob-Wilk, D., D. Holland, E.E. Goldschmidt, J. Riov, and Y. Eyal, 1999. Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase1 gene from ethylene-treated Citrus fruit and its regulation during development. Plant J 20:653-661.
Joo, S., Y. Liu, A. Lueth, and S.Q. Zhang. 2008. MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant J. 54: 129-140.
Kader, A.A. 2002. Postharvest technology of horticultural crops. 3rd. University of California, Agriculture and Natural Resources.533pp.
Kamiyoshihara, Y., M. Iwata, T. Fukaya, M. Tatsuki, and H. Mori. 2010. Turnover of LeACS2, a wound‐inducible 1‐aminocyclopropane‐1‐carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation. Plant Journal. 64: 140-150.
Katz, E., P.M. Lagunes, J. Riov, D. Weiss, and E.E. Goldschmidt, 2004. Molecular and physiological evidence suggests the existence of a system II-like pathway of ethylene production in non-climacteric Citrus fruit. Planta 219:243-252.
Kays, S.and R. Paull. 2004. Postharvest biology. 2nd. Exon Press, Athen, Georgia.568pp.
Kevany, B.M., D.M. Tieman, M.G. Taylor, V. Dal Cin, and H.J. Klee, 2007. Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J 51:458-467.
Kieber, J.J., M. Rothenberg, G. Roman, K.A. Feldmann, and J.R. Ecker. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell. 72: 427-441.
Klee, H.and D. Tieman. 2002. The tomato ethylene receptor gene family: form and function. Physiol Plant. 115: 336-341.
Klee, H.J. 2004. Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol. 135: 660-667.
Lam, P.and C. Wan. 1983. Climacteric Nature of the Carambola (Averrhoa carambola L.) Fruit. Pertanika. 6: 44-47.
Lelievre, J.M., A. Latche, B. Jones, M. Bouzayen, and J.C. Pech. 1997. Ethylene and fruit ripening. Physiol Plant. 101: 727-739.
Lieberman, M. 1979. Biosynthesis and action of ethylene. Annu Rev. Plant Physiol. 30: 533-591.
Lingam, S., J. Mohrbacher, T. Brumbarova, T. Potuschak, C. Fink-Straube, E. Blondet, P. Genschik, and P. Bauer. 2011. Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. Plant Cell. 23: 1815-1829.
Liu, T.C., Y.C. Liu, K.E. Chen, C.W. Chao, and C.T. Wu. 2012. The nonclimacteric guava cultivar ‘Jen-Ju Bar’is defective in system 2 1-aminocyclopropane-1-carboxylate synthase activity. Postharvest Biol. Technol. 67 :10-18
Liu, Y.D. and S.Q. Zhang. 2004. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell. 16: 3386-3399.
Lizada, C.C.M.and S.F. Yang. 1979. A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal Biochem. 100: 140-145.
Manning, K., M. Tor, M. Poole, Y. Hong, A.J. Thompson, G.J. King, J.J. Giovannoni, and G.B. Seymour. 2006. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 38: 948-952.
Martinez-Romero, D., E. Dupille, F. Guillen, J.M. Valverde, M. Serrano, and D. Valero. 2003. 1-Methylcyclopropene increases storability and shelf life in climacteric and nonclimacteric plums. J Agric. Food chem. 51: 4680-4686.
Martel, C., J. Vrebalov, P. Tafelmeyer, and J.J. Giovannoni. 2011. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol. 157: 1568-1579.
McKeon, T.A., N.E. Hoffman, and S.F. Yang. 1982. The effect of plant-hormone pretreatments on ethylene production and synthesis of 1-aminocyclopropane-1-carboxylic acid in water-stressed wheat leaves. Planta. 155: 437-443.
McMurchie, E.J., W.B. McGlasson, and I.L. Eaks. 1972. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature. 237: 235-236.
Mitcham, E.J.and R.E. Mcdonald. 1991. Characterization of the ripening of carambola (Averrhoa carambola L.). Fruit. p. 104-108.
Mworia, E.G., T. Yoshikawa, N. Yokotani, T. Fukuda, K. Suezawa, K. Ushijima, R. Nakano, and Y. Kubo. 2010. Characterization of ethylene biosynthesis and its regulation during fruit ripening in kiwifruit, Actinidia chinensis ‘Sanuki Gold’. Postharvest Biol. Technol. 55: 108-113.
Nakatsuka, A., Murachi, S., Okunishi, H., Shiomi, S., Nakano, R., Kubo, Y., and Inaba, A. 1998. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiology 118:1295-1305.
Ouaked, F., W. Rozhon, D. Lecourieux, and H. Hirt. 2003. A MAPK pathway mediates ethylene signaling in plants. EMBO J. 22: 1282-1288.
Oslund C. and Davenport T. 1983. Ethylene and carbon dioxide in ripening fruit of Averrhoa carambola, HortSci.. 18:229-230
Pech, J.C., M. Bouzayen, and A. Latche. 2008. Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci. 175: 114-120.
Perin, C., M.C. Gomez-Jimenez, L. Hagen, C. Dogimont, J.C. Pech, A. Latche, M. Pitrat, and J.M. Lelievre. 2002. Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol. 129: 300-309.
Pretel, M., M. Serrano, A. Amoros, F. Riquelme, and F. Romojaro. 1995. Non-involvement of ACC and ACC oxidase activity in pepper fruit ripening. Postharvest Biol. Technol. 5: 295-302
Qiao, H., K.N. Chang, J. Yazaki, and J.R. Ecker, 2009. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in arabidopsis. Gene Dev 23:512-521.
Rodrıguez, F.I., J.J. Esch, A.E. Hall, B.M. Binder, G.E. Schaller, and A.B. Bleecker. 1999. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science. 283: 996.
Rottmann, W.H., G.F. Peter, P.W. Oeller, J.A. Keller, N.F. Shen, B.P. Nagy, L.P. Taylor, A.D. Campbell, and A. Theologis. 1991. 1-Aminocyclopropane-1-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J Mol. Biol. 222: 937-961.
Sakai, H., J. Hua, Q. Chen, C. Chang, L. Medrano, A. Bleecker, and E. Meyerowitz. 1998a. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. P Natl. Acad. Sci. USA. 95: 5812-5817.
Sambrook, J.and D.W. Russell. 2001. Molecular cloning: a laboratory manual. 3rd. Cold Spring Harbor laboratry press, N.Y. Vol. 1,2,3.
Sato, T., P.W. Oeller, and A. Theologis. 1991. The 1-aminocyclopropane-1-carboxylate synthase of Cucurbita-Purification, properties, expression in Escherichia coli, and primary structure determination by DNA sequence analysis. J Biol Chem. 266: 3752-3759.
Sato, T.and A. Theologis. 1989. Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc. Natl. Acad. Sci. USA. 86: 6621.
Satoh, S., H. Mori, and H. Imaseki. 1993. Monomeric and dimeric forms and the mechanism-based inactivation of 1-aminocyclopropane-1-carboxylate synthase. Plant cell physiol. 34: 753-760.
Sebastia, C.H., S.C. Hardin, S.D. Clouse, J.J. Kieber, and S.C. Huber. 2004. Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch Biochem Biophys. 428: 81-91.
Tandon, D.and S. Kalra. 1983. Changes in sugars, starch and amylase activity during development of mango fruit cv Dashehari. J Hort. Sci. 58: 449-453.
Tarun, A.S., J.S. Lee, and A. Theologis. 1998. Random mutagenesis of 1-aminocyclopropane-1-carboxylate synthase: a key enzyme in ethylene biosynthesis. Proc. Natl. Acad. Sci. USA. 95: 9796-9801.
Tatsuki, M., T. Haji, and M. Yamaguchi. 2006. The involvement of 1-aminocyclopropane-1-carboxylic acid synthase isogene, Pp-ACS1, in peach fruit softening. J Exp Bot. 57: 1281-1289.
Tatsuki, M.and H. Mori. 2001. Phosphorylation of tomato 1-aminocyclopropane-1-carboxylic acid synthase, LE-ACS2, at the C-terminal region. J Biol Chem. 276: 28051-28057.
Teixeira, G.H.A., J.F. Durigan, R.E. Alves, and T.J. O'Hare. 2008. Response of minimally processed carambola to chemical treatments and low-oxygen atmospheres. Postharvest Biol. Technol. 48: 415-421.
T.J.O'Hare. 1993. Postharvest physiology and storage of carambola (starfruit) : a review. Postharvest Biol. Technol. 2: 257-267
Tonutti, P., C. Bonghi, B. Ruperti, G.B. Tornielli, and A. Ramina. 1997. Ethylene evolution and 1-aminocyclopropane-1-carboxylate oxidase gene expression during early development and ripening of peach fruit. J Am. Soc. Hort. Sci. 122: 642-647.
Tucker, G.and D. Grierson. 1987. Fruit ripening. In : Davies D.d., ed Biochemistry of plants :a comprehesive tratise. Academic Press, London
Van der Hoeven, R., C. Ronning, J. Giovannoni, G. Martin, and S. Tanksley, 2002. Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14:1441-1456.
Vandenbussche, F., W.H. Vriezen, J. Smalle, L.J.J. Laarhoven, F.J.M. Harren, and D. Van Der Straeten, 2003. Ethylene and auxin control the Arabidopsis response to decreased light intensity. Plant Physiol 133:517-527.
Valero, D.and M. Serrano. 2010. Postharvest Biology and Technology for preserving fruit quality.1th . CRC Press. UK.
Vines, H.and W. Grierson. 1966. Handling and physiological studies with the carambola. Proc. Fla. Stat. Hort. Soc. 79: 350-355.
Vrebalov, J., D. Ruezinsky, V. Padmanabhan, R. White, D. Medrano, R. Drake, W. Schuch, and J. Giovannoni. 2002. A MADS-box gene necessary for fruit ripening at the tomato Ripening-inhibitor (Rin) locus. Science. 296: 343-346.
Wang, K.L.C., H. Li, and J.R. Ecker. 2002. Ethylene biosynthesis and signaling networks. Plant Cell. 14: S131-S151.
Watada, A. E., R. Herner, A. A. Kader, R. J. Romani, and G. Staby. 1984. Terminology for the description of developmental stages of horticultural crops. HortSci. 19: 20-21.
Watson, B., A. George, R. Nissen, and B. Brown. 1988. Carambola a star on the horizon. Queensland Agric. J. 114: 45-51.
Yang, S.F.and N.E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35: 155-189
Yamagami, T., A. Tsuchisaka, K. Yamada, W.F. Haddon, L.A. Harden, and A. Theologis. 2003. Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem. 278: 49102-49112.
Yip, W.K., J.G. Dong, J.W. Kenny, G.A. Thompson, and S.F. Yang. 1990. Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase. Proc. Natl. Acad. Sci. USA. 87: 7930.
Yokotani, N., R. Nakano, S. Imanishi, M. Nagata, A. Inaba, and Y. Kubo. 2009. Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated. J Exp Bot. 60: 3433-3442.
Yoo, S.D., Y.H. Cho, G. Tena, Y. Xiong, and J. Sheen. 2008. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature. 451: 789-795.
Zhang, Z., J.S. Ren, I.J. Clifton, and C.J. Schofield. 2004. Crystal structure and mechanistic implications of 1-aminocyclopropane-1-carboxylic acid oxidase--the ethylene-forming enzyme. Chem. Biol. 11: 1383-1394.
Zhang, Z.and R. Huang. 2009. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol. Biol. 73: 241-249.
Zheng, Q.L., A. Nakatsuka, and H. Itamura. 2005. Extraction and characterization of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase from wounded persimmon fruit.J Jpn. Soc. Hort. Sci. 74: 159-166.
Zhu, H., B. Zhu, D. Fu, Y. Xie, Y. Hao, and Y. Luo. 2005. Role of ethylene in the biosynthetic pathways of aroma volatiles in ripening fruit. Russian Journal of Plant Physiol. 52: 691-695.
Zhu, Z., F. An, Y. Feng, P. Li, L. Xue, Z. Jiang, J.M. Kim, T.K. To, W. Li, and X. Zhang. 2011. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc. Natl. Acad. Sci. USA. 108: 12539.
Zuzunaga, M., M. Serrano, D. Martinez-Romero, D. Valero, and F. Riquelme. 2001. Comparative study of two plum (Prunus salicina Lindl.) cultivars during growth and ripening. Food Sci. Tech. Int. 7: 123-130.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54869-
dc.description.abstract楊桃(Averrhoa carambola L.)後熟特性屬於更年或非更年型仍有爭議。本試驗選擇採後乙烯釋放量差異明顯的‘紅龍’與‘金龍’楊桃為材料,觀測兩參試品種於20℃後熟生理變化。楊桃後熟期果實果皮逐漸轉色,但硬度、可滴定酸、總可溶性固型物含量僅些微變化;‘紅龍’ 果實完全轉色時出現乙烯高峰(10.38 μL C2H4•kg-1•h-1),緊隨著果實老化(褐變)與病斑發生;而‘金龍’ 整個採後期間乙烯產生量平穩且低(1.43 μL C2H4•kg-1•h-1)。丙烯1000 µL•L-1處理48小時促進兩參試品種後熟生理變化、乙烯高峰提前、乙烯生合成關鍵酵素ACC合成酶(ACS)及ACC氧化酶(ACO)活性增高;反之,1 μL•L-1乙烯作用抑制劑1-甲基環丙烯(1-MCP)燻蒸24小時則會延緩兩品種後熟。因此根據前述後熟生理特徵並不易判斷其後熟類型。利用RT-PCR策略自楊桃果實組織分離ACS與ACO cDNA選殖系各2個。即時定量PCR分析顯示,AcACS2和AcACO1在兩品種果實發育初期基因穩定表現,進入後熟轉色期逐漸下降;丙烯處理壓抑其mRNA累積,1-MCP處理則促進基因表現,屬於系統1乙烯生合成基因。而AcACS1和AcACO2於後熟期大量表現,受丙烯處理正向誘導、1-MCP負向抑制,研判為系統2乙烯生合成基因。由於‘紅龍’和‘金龍’果實皆具有系統2乙烯生合成系統,本試驗結果支持楊桃為更年型果實。zh_TW
dc.description.abstractThe ripening behavior, i.e. climacteric or nonclimacteric, of carambola (Averrhoa carambola L.) is still a controversial issue. ‘Hong-Long’ and ‘Jing-Long’, two carambola varieties with discriminating ethylene production after harvest, were used to investigate their physiological changes during ripening at 20℃ in this research. The flesh firmness, titratable acidity, and total soluble solids of these fruits barely changed during ripening. ‘Hong-Long’ showed a surge of ethylene production (10.38 μL C2H4•kg-1•h-1) when fruit was fully ripe, which was tightly followed with flesh senescence (browning) and appearance of pathological lesions. On the other hand, ‘Jing-Long’ displayed a low and stable production of ethylene (1.43 μL C2H4•kg-1•h-1) in postharvest life. However, the physiological changes of ripening, time of ethylene peaks, as well as the enzymatic activities of ACC synthase (ACS) and ACC oxidase (ACO), the two key enzymes in ethylene biosynthetic pathway, were accelerated in these two fruits by exposure of 1000 µL•L-1 for 48 hours. In contrast, fumigation of 1 µL•L-1 1-methylcyclopropene (1-MCP), an ethylene action inhibitor, for 24 hours delayed ripening of the fruits tested. Therefore, it was unable to clearly characterize the ripening pattern(s) based only on the physiological parameters mentioned above. By utilizing RT-PCR strategy, two ACS and two ACO cDNA clones were obtained from fruit tissues of carambola. Real-time quantitative PCR analysis showed that low and stable expressions of AcACS2 and AcACO1 in these two varieties were found in early stage of fruit development; then decreased gradually after onset of ripening. Based on the facts that treatment of propylene suppressed these mRNA accumulations and that 1-MCP treatment up-regulated the expressions, AcACS2 and AcACO1 were considered as System 1 ethylene biosynthesis genes. Conversely, AcACS1 and AcACO2, mainly expressed in ripening stage, were induced by propylene and down-regulated by 1-MCP, which were classified as System 2 ethylene biosynthesis genes. Since System 2 ethylene biosynthesis genes existed in ‘Hong Long’ and ‘Jing Long’, these results suggested that carambola is a climacteric fruit.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:40:18Z (GMT). No. of bitstreams: 1
ntu-104-R01628128-1.pdf: 4635627 bytes, checksum: 229a9d6b30c808c3942ff279c018748d (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
口試委員審定書………………………………………………………………….i
誌謝…………………………………………………………………………….ii
中文摘要…………………………………………………………………………... iii
Abstract...…………………………………………………………………….......iv
第一章 前言………………………………………………………………………..1
第二章 前人研究……………………………………………………………….…3
一、臺灣楊桃產業發展與品種..………………………………………………3
二、楊桃後熟特性之探討..……………………………………………………5
三、乙烯與果實後熟..………………………………………………………....6
四、乙烯在高等植物之生理作用、生合成與訊息傳導……………………13
第三章 材料方法………………………………………………………………...19
第四章 結果………………………………………………………………………30
一、‘紅龍’及‘金龍’楊桃果實生長發育及澱粉含量變化…………………...30
二、‘金龍’及‘紅龍’楊桃果實採後顏色外觀、生理及品質變化……...……30
三、丙烯處理後‘紅龍’及‘金龍’楊桃呼吸乙烯釋放率及外觀變化…31
四、楊桃果實採收後及丙烯處理之品質變化…………………………….…33
五、1-MCP處理後‘紅龍’及‘金龍’楊桃果實呼吸乙烯釋放率及外觀變化..34
六、‘紅龍’及‘金龍’楊桃處理丙烯、1-MCP對ACS與ACO活性之影響..35
七、楊桃ACC合成酶cDNA演繹胺基酸序列基本性質………...………...37
八、楊桃ACC氧化酶cDNA演繹胺基酸序列基本性質………...………...38
九、AcACS1-2、AcACO1-2於‘紅龍’與‘金龍’果實生長發育表現量變化...39
十、丙烯及1-MCP處理對AcACS1-2、AcACO1-2基因表現的影響…..40

第五章 討論………………………………………………………………………43
一、‘紅龍’與‘金龍’楊桃果實之生長發育與澱粉含量變化………………...43
二、‘紅龍’呈典型更年型果實,‘金龍’類似壓抑更年型果實………….......44
三、1-MCP延緩楊桃果實後熟,抑制 ‘紅龍’和‘金龍’楊桃內生乙烯……46
四、‘紅龍’、‘金龍’ACS、ACO酵素活性受丙烯誘導,1-MCP抑制…….48
五、楊桃ACC合成酶AcACS1及AcACS2屬Type I ACS……….….........50
六、楊桃AcACS1屬於系統2,AcACS2屬系統1………….........................51
七、楊桃ACC氧化酶cDNA 選殖系AcACO1、AcACO2具高度相似性..53
八、楊桃AcACO1屬於系統1,AcACO2屬系統2…...................................54
第六章 結論………………………………………………………………………57
參考文獻…………………………………………………………………………...82
dc.language.isozh-TW
dc.subject更年型果實zh_TW
dc.subject楊桃zh_TW
dc.subject後熟zh_TW
dc.subject乙烯zh_TW
dc.subjectACC合成?zh_TW
dc.subjectACC氧化?zh_TW
dc.subjectACC synthaseen
dc.subjectclimacteric fruiten
dc.subjectACC oxidaseen
dc.subjectcarambolaen
dc.subjectethyleneen
dc.subjectripeningen
dc.title楊桃品種間後熟生理特性之探討zh_TW
dc.titleThe Comparative Study of Postharvest Physiology on Cultivars of Averrhoa carambola L.en
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王隆祺(Long-Chi Wang),陳仁治(jen-chih Chen)
dc.subject.keyword楊桃,後熟,乙烯,ACC合成?,ACC氧化?,更年型果實,zh_TW
dc.subject.keywordcarambola,ripening,ethylene,ACC synthase,ACC oxidase,climacteric fruit,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2015-02-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
4.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved