請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54855
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 簡正鼎(Cheng-Ting Chien) | |
dc.contributor.author | Jun-Yan Ye | en |
dc.contributor.author | 葉俊言 | zh_TW |
dc.date.accessioned | 2021-06-16T03:39:58Z | - |
dc.date.available | 2017-03-12 | |
dc.date.copyright | 2015-03-12 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-02-16 | |
dc.identifier.citation | Abraham, W.C. (2008). Metaplasticity: tuning synapses and networks for plasticity. Nature reviews Neuroscience 9, 387.
Ataman, B., Ashley, J., Gorczyca, M., Ramachandran, P., Fouquet, W., Sigrist, S.J., and Budnik, V. (2008). Rapid activity-dependent modifications in synaptic structure and function require bidirectional Wnt signaling. Neuron 57, 705-718. Bailey, C.H., and Kandel, E.R. (1993). Structural changes accompanying memory storage. Annual review of physiology 55, 397-426. Berendsen, A.D., Fisher, L.W., Kilts, T.M., Owens, R.T., Robey, P.G., Gutkind, J.S., and Young, M.F. (2011). Modulation of canonical Wnt signaling by the extracellular matrix component biglycan. Proceedings of the National Academy of Sciences of the United States of America 108, 17022-17027. Beumer, K.J., Rohrbough, J., Prokop, A., and Broadie, K. (1999). A role for PS integrins in morphological growth and synaptic function at the postembryonic neuromuscular junction of Drosophila. Development 126, 5833-5846. Bortolotto, Z.A., Bashir, Z.I., Davies, C.H., and Collingridge, G.L. (1994). A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. Nature 368, 740-743. Botos, I., Scapozza, L., Zhang, D.C., Liotta, L.A., and Meyer, E.F. (1996). Batimastat, a potent matrix metalloproteinase inhibitor, exhibits an unexpected mode of binding. Proceedings of the National Academy of Sciences of the United States of America 93, 2749-2754. Budnik, V., Zhong, Y., and Wu, C.F. (1990). Morphological plasticity of motor axons in Drosophila mutants with altered excitability. The Journal of neuroscience : the official journal of the Society for Neuroscience 10, 3754-3768. Chan, C.S., Weeber, E.J., Zong, L., Fuchs, E., Sweatt, J.D., and Davis, R.L. (2006). Beta 1-integrins are required for hippocampal AMPA receptor-dependent synaptic transmission, synaptic plasticity, and working memory. The Journal of neuroscience : the official journal of the Society for Neuroscience 26, 223-232. Cohen, A.S., Coussens, C.M., Raymond, C.R., and Abraham, W.C. (1999). Long-lasting increase in cellular excitability associated with the priming of LTP induction in rat hippocampus. Journal of neurophysiology 82, 3139-3148. Depetris-Chauvin, A., Fernandez-Gamba, A., Gorostiza, E.A., Herrero, A., Castano, E.M., and Ceriani, M.F. (2014). Mmp1 processing of the PDF neuropeptide regulates circadian structural plasticity of pacemaker neurons. PLoS genetics 10, e1004700. Devenport, D., and Brown, N.H. (2004). Morphogenesis in the absence of integrins: mutation of both Drosophila beta subunits prevents midgut migration. Development 131, 5405-5415. Dziembowska, M., Pretto, D.I., Janusz, A., Kaczmarek, L., Leigh, M.J., Gabriel, N., Durbin-Johnson, B., Hagerman, R.J., and Tassone, F. (2013). High MMP-9 activity levels in fragile X syndrome are lowered by minocycline. American journal of medical genetics Part A 161A, 1897-1903. Frey, U., Schollmeier, K., Reymann, K.G., and Seidenbecher, T. (1995). Asymptotic hippocampal long-term potentiation in rats does not preclude additional potentiation at later phases. Neuroscience 67, 799-807. Friedrich, M.V., Schneider, M., Timpl, R., and Baumgartner, S. (2000). Perlecan domain V of Drosophila melanogaster. Sequence, recombinant analysis and tissue expression. European journal of biochemistry / FEBS 267, 3149-3159. Gibbs, S.M., and Truman, J.W. (1998). Nitric oxide and cyclic GMP regulate retinal patterning in the optic lobe of Drosophila. Neuron 20, 83-93. Gu, Z., Kaul, M., Yan, B., Kridel, S.J., Cui, J., Strongin, A., Smith, J.W., Liddington, R.C., and Lipton, S.A. (2002). S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297, 1186-1190. Hebb, D.O. (1949). The organization of behavior; a neuropsychological theory (New York,: Wiley). Holtmaat, A., and Svoboda, K. (2009). Experience-dependent structural synaptic plasticity in the mammalian brain. Nature reviews Neuroscience 10, 647-658. Huang, Y.Y., Colino, A., Selig, D.K., and Malenka, R.C. (1992). The influence of prior synaptic activity on the induction of long-term potentiation. Science 255, 730-733. Huntley, G.W. (2012). Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nature reviews Neuroscience 13, 743-757. Kramar, E.A., Lin, B., Rex, C.S., Gall, C.M., and Lynch, G. (2006). Integrin-driven actin polymerization consolidates long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America 103, 5579-5584. Kusche-Gullberg, M., Garrison, K., MacKrell, A.J., Fessler, L.I., and Fessler, J.H. (1992). Laminin A chain: expression during Drosophila development and genomic sequence. The EMBO journal 11, 4519-4527. Lee, H.K., Barbarosie, M., Kameyama, K., Bear, M.F., and Huganir, R.L. (2000). Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955-959. Llano, E., Adam, G., Pendas, A.M., Quesada, V., Sanchez, L.M., Santamaria, I., Noselli, S., and Lopez-Otin, C. (2002). Structural and enzymatic characterization of Drosophila Dm2-MMP, a membrane-bound matrix metalloproteinase with tissue-specific expression. The Journal of biological chemistry 277, 23321-23329. Llano, E., Pendas, A.M., Aza-Blanc, P., Kornberg, T.B., and Lopez-Otin, C. (2000). Dm1-MMP, a matrix metalloproteinase from Drosophila with a potential role in extracellular matrix remodeling during neural development. The Journal of biological chemistry 275, 35978-35985. Lynch, M.A. (2004). Long-term potentiation and memory. Physiological reviews 84, 87-136. Menon, K.P., Carrillo, R.A., and Zinn, K. (2013). Development and plasticity of the Drosophila larval neuromuscular junction. Wiley interdisciplinary reviews Developmental biology 2, 647-670. Mockett, B., Coussens, C., and Abraham, W.C. (2002). NMDA receptor-mediated metaplasticity during the induction of long-term depression by low-frequency stimulation. The European journal of neuroscience 15, 1819-1826. Nagy, V., Bozdagi, O., Matynia, A., Balcerzyk, M., Okulski, P., Dzwonek, J., Costa, R.M., Silva, A.J., Kaczmarek, L., and Huntley, G.W. (2006). Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. The Journal of neuroscience : the official journal of the Society for Neuroscience 26, 1923-1934. Page-McCaw, A., Serano, J., Sante, J.M., and Rubin, G.M. (2003). Drosophila matrix metalloproteinases are required for tissue remodeling, but not embryonic development. Developmental cell 4, 95-106. Piccioli, Z.D., and Littleton, J.T. (2014). Retrograde BMP signaling modulates rapid activity-dependent synaptic growth via presynaptic LIM kinase regulation of cofilin. The Journal of neuroscience : the official journal of the Society for Neuroscience 34, 4371-4381. Pulver, S.R., Pashkovski, S.L., Hornstein, N.J., Garrity, P.A., and Griffith, L.C. (2009). Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. Journal of neurophysiology 101, 3075-3088. Schuman, E.M., and Madison, D.V. (1991). A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254, 1503-1506. Schuster, C.M., Davis, G.W., Fetter, R.D., and Goodman, C.S. (1996). Genetic dissection of structural and functional components of synaptic plasticity. I. Fasciclin II controls synaptic stabilization and growth. Neuron 17, 641-654. Sigrist, S.J., Reiff, D.F., Thiel, P.R., Steinert, J.R., and Schuster, C.M. (2003). Experience-dependent strengthening of Drosophila neuromuscular junctions. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 6546-6556. Siller, S.S., and Broadie, K. (2011). Neural circuit architecture defects in a Drosophila model of Fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase. Disease models & mechanisms 4, 673-685. Siller, S.S., and Broadie, K. (2012). Matrix metalloproteinases and minocycline: therapeutic avenues for fragile X syndrome. Neural plasticity 2012, 124548. Tsai, P.I., Kao, H.H., Grabbe, C., Lee, Y.T., Ghose, A., Lai, T.T., Peng, K.P., Van Vactor, D., Palmer, R.H., Chen, R.H., et al. (2008). Fak56 functions downstream of integrin alphaPS3betanu and suppresses MAPK activation in neuromuscular junction growth. Neural development 3, 26. Tsai, P.I., Wang, M., Kao, H.H., Cheng, Y.J., Lin, Y.J., Chen, R.H., and Chien, C.T. (2012). Activity-dependent retrograde laminin A signaling regulates synapse growth at Drosophila neuromuscular junctions. Proceedings of the National Academy of Sciences of the United States of America 109, 17699-17704. Van Wart, H.E., and Birkedal-Hansen, H. (1990). The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proceedings of the National Academy of Sciences of the United States of America 87, 5578-5582. Vasin, A., Zueva, L., Torrez, C., Volfson, D., Littleton, J.T., and Bykhovskaia, M. (2014). Synapsin regulates activity-dependent outgrowth of synaptic boutons at the Drosophila neuromuscular junction. The Journal of neuroscience : the official journal of the Society for Neuroscience 34, 10554-10563. Vitureira, N., and Goda, Y. (2013). Cell biology in neuroscience: the interplay between Hebbian and homeostatic synaptic plasticity. The Journal of cell biology 203, 175-186. Wildemann, B., and Bicker, G. (1999). Nitric oxide and cyclic GMP induce vesicle release at Drosophila neuromuscular junction. Journal of neurobiology 39, 337-346. Yasunaga, K., Kanamori, T., Morikawa, R., Suzuki, E., and Emoto, K. (2010). Dendrite reshaping of adult Drosophila sensory neurons requires matrix metalloproteinase-mediated modification of the basement membranes. Developmental cell 18, 621-632. Yee, G.H., and Hynes, R.O. (1993). A novel, tissue-specific integrin subunit, beta nu, expressed in the midgut of Drosophila melanogaster. Development 118, 845-858. Zito, K., Parnas, D., Fetter, R.D., Isacoff, E.Y., and Goodman, C.S. (1999). Watching a synapse grow: noninvasive confocal imaging of synaptic growth in Drosophila. Neuron 22, 719-729. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54855 | - |
dc.description.abstract | 神經細胞具有可塑性,可以藉由刺激經驗來調整其突觸功能及結構,這個特性通常被認為是動物學習與記憶行為上的細胞基礎。然而刺激經驗是經由那些下游途徑去達成突觸功能及結構上的改變,還尚未完全明瞭。LanA為果蠅連黏層蛋白中的α長鏈,已被證實會影響果蠅幼蟲動作神經元突觸在肌肉神經接合上的發育。果蠅幼蟲的動作神經元突觸表現高度的結構可塑性,當給予超過一定閾值的神經活化後,會刺激動作神經元在肌肉上長出更多的新生突觸結構造。我們在這發現,LanA會負向地調控引發新生突觸結形成所需的神經活化閾值。除此之外,高度的神經活化能在短時間內降低LanA在果蠅幼蟲神經元突觸上的表現量。Matrix metalloproteases (MMPs)的抑制劑能防止LanA受到神經活化的調控,且在實驗中添加MMP抑制劑也足以阻止神經活化所引發的新生突觸結。因此我們認為高度地神經活化,可能會刺激MMP,藉由其蛋白酶活性來分解及清除位於神經突觸附近的LanA分子,使得該處的神經可塑性不再被LanA所抑制,導致新生突觸結的產生。 | zh_TW |
dc.description.abstract | Neurons have the ability to change their synaptic functions and structures in response to the experiences of hyperactivation or hypoactivation. This ability has been suggested as the cellular basis for learning and memory. Despite of its importance, the downstream mechanisms for synaptic activity to mediate the change remain elusive. LanA, an alpha subunit of laminins, has been shown to regulate the synaptic growth of Drosophila laral neuromuscular junctions (NMJs). Drosophila larval NMJs exhibit high degree of structural plasticity, forming new boutons in response to acute synaptic activation. I was able to assay the effect of LanA on the induction of new bouton by synaptic activation, and showed that LanA levels are negatively correlated with the activation threshold required for new bouton induction. Furthermore, synaptic activation acutely down-regulates the level of LanA at NMJs, and this down-regulation can be blocked by treatment of inhibitor of matrix metalloproteases (MMPs), which have also been shown to suppress the induction of new bouton during acute activation paradigm. Thus, I propose a model, in which activity-dependent MMP activation mediate the clearance of LanA at NMJs, thus releasing its inhibition on structural plasticity, promoting new boutons to form. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:39:58Z (GMT). No. of bitstreams: 1 ntu-104-R01448003-1.pdf: 1159828 bytes, checksum: 568e0760dd3f53993c4c0495e3b3353c (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 中文摘要-----------------------------------------------------------------------------2
Abstract------------------------------------------------------------------------------3 Introduction-------------------------------------------------------------------------4 Results--------------------------------------------------------------------------------8 Discussions-------------------------------------------------------------------------16 Material and Methods-----------------------------------------------------------22 References--------------------------------------------------------------------------25 Figures and Legends-------------------------------------------------------------29 | |
dc.language.iso | en | |
dc.title | 層粘連蛋白A調控果蠅動作神經元突觸之可塑性生長 | zh_TW |
dc.title | Laminin-A Regulates Synaptic Plasticity at Drosophila Neuromuscular Junctions | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 詹智強(Chih-Chiang Chan),吳君泰(June-Tai Wu) | |
dc.subject.keyword | 層黏連蛋白,神經可塑性,肌肉神經接合,突觸, | zh_TW |
dc.subject.keyword | Laminin,Synaptic plasticity,Neuromuscular junction,Synapse, | en |
dc.relation.page | 39 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-02-16 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 1.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。