Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54833
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor閔明源(Ming-Yuan Min)
dc.contributor.authorPin-Nan Hsiehen
dc.contributor.author謝秉男zh_TW
dc.date.accessioned2021-06-16T03:39:29Z-
dc.date.available2016-03-16
dc.date.copyright2015-03-16
dc.date.issued2015
dc.date.submitted2015-02-24
dc.identifier.citationAlvarez, P., Dieb, W., Hafidi, A., Voisin, D.L., and Dallel, R. (2009). Insular cortex representation of dynamic mechanical allodynia in trigeminal neuropathic rats. Neurobiology of disease 33, 89-95.
Bement, M.K., and Sluka, K.A. (2003). Phosphorylation of CREB and mechanical hyperalgesia is reversed by blockade of the cAMP pathway in a time-dependent manner after repeated intramuscular acid injections. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 5437-5445.
Bement, M.K., and Sluka, K.A. (2007). Co-localization of p-CREB and p-NR1 in spinothalamic neurons in a chronic muscle pain model. Neuroscience letters 418, 22-27.
Burkey, A.R., Carstens, E., and Jasmin, L. (1999). Dopamine reuptake inhibition in the rostral agranular insular cortex produces antinociception. The Journal of neuroscience : the official journal of the Society for Neuroscience 19, 4169-4179.
Burkey, A.R., Carstens, E., Wenniger, J.J., Tang, J., and Jasmin, L. (1996). An opioidergic cortical antinociception triggering site in the agranular insular cortex of the rat that contributes to morphine antinociception. The Journal of neuroscience : the official journal of the Society for Neuroscience 16, 6612-6623.
Chaudhry, F.A., Reimer, R.J., Bellocchio, E.E., Danbolt, N.C., Osen, K.K., Edwards, R.H., and Storm-Mathisen, J. (1998). The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 18, 9733-9750.
Chen, W.K., Liu, I.Y., Chang, Y.T., Chen, Y.C., Chen, C.C., Yen, C.T., Shin, H.S., and Chen, C.C. (2010). Ca(v)3.2 T-type Ca2+ channel-dependent activation of ERK in paraventricular thalamus modulates acid-induced chronic muscle pain. J Neurosci 30, 10360-10368.
Chen, W.N., Lee, C.H., Lin, S.H., Wong, C.W., Sun, W.H., Wood, J.N., and Chen, C.C. (2014). Roles of ASIC3, TRPV1, and NaV1.8 in the transition from acute to chronic pain in a mouse model of fibromyalgia. Molecular pain 10, 40.
Cheng, S.J., Chen, C.C., Yang, H.W., Chang, Y.T., Bai, S.W., Chen, C.C., Yen, C.T., and Min, M.Y. (2011). Role of extracellular signal-regulated kinase in synaptic transmission and plasticity of a nociceptive input on capsular central amygdaloid neurons in normal and acid-induced muscle pain mice. The Journal of neuroscience : the official journal of the Society for Neuroscience 31, 2258-2270.
Coffeen, U., Lopez-Avila, A., Ortega-Legaspi, J.M., del Angel, R., Lopez-Munoz, F.J., and Pellicer, F. (2008). Dopamine receptors in the anterior insular cortex modulate long-term nociception in the rat. European journal of pain 12, 535-543.
Coffeen, U., Manuel Ortega-Legaspi, J., Lopez-Munoz, F.J., Simon-Arceo, K., Jaimes, O., and Pellicer, F. (2011). Insular cortex lesion diminishes neuropathic and inflammatory pain-like behaviours. European journal of pain 15, 132-138.
Da Silva, L.F., Desantana, J.M., and Sluka, K.A. (2010a). Activation of NMDA receptors in the brainstem, rostral ventromedial medulla, and nucleus reticularis gigantocellularis mediates mechanical hyperalgesia produced by repeated intramuscular injections of acidic saline in rats. The journal of pain : official journal of the American Pain Society 11, 378-387.
Da Silva, L.F., Walder, R.Y., Davidson, B.L., Wilson, S.P., and Sluka, K.A. (2010b). Changes in expression of NMDA-NR1 receptor subunits in the rostral ventromedial medulla modulate pain behaviors. Pain 151, 155-161.
Ferrari, L.F., Bogen, O., and Levine, J.D. (2014). Second messengers mediating the expression of neuroplasticity in a model of chronic pain in the rat. The journal of pain : official journal of the American Pain Society 15, 312-320.
Gao, Y.J., and Ji, R.R. (2009). c-Fos and pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury? The open pain journal 2, 11-17.
Gregory, N.S., and Sluka, K.A. (2014). Anatomical and physiological factors contributing to chronic muscle pain. Current topics in behavioral neurosciences 20, 327-348.
Jasmin, L., Burkey, A.R., Granato, A., and Ohara, P.T. (2004). Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. The Journal of comparative neurology 468, 425-440.
Jasmin, L., Rabkin, S.D., Granato, A., Boudah, A., and Ohara, P.T. (2003). Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature 424, 316-320.
Ji, R.R., Baba, H., Brenner, G.J., and Woolf, C.J. (1999). Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nature neuroscience 2, 1114-1119.
Ji, R.R., Kohno, T., Moore, K.A., and Woolf, C.J. (2003). Central sensitization and LTP: do pain and memory share similar mechanisms? Trends in neurosciences 26, 696-705.
Ji, R.R., and Woolf, C.J. (2001). Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiology of disease 8, 1-10.
Jones, E.G., Huntley, G.W., and Benson, D.L. (1994). Alpha calcium/calmodulin-dependent protein kinase II selectively expressed in a subpopulation of excitatory neurons in monkey sensory-motor cortex: comparison with GAD-67 expression. The Journal of neuroscience : the official journal of the Society for Neuroscience 14, 611-629.
Jones, M.W., French, P.J., Bliss, T.V., and Rosenblum, K. (1999). Molecular mechanisms of long-term potentiation in the insular cortex in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience 19, RC36.
Kawakita, K., Dostrovsky, J.O., Tang, J.S., and Chiang, C.Y. (1993). Responses of neurons in the rat thalamic nucleus submedius to cutaneous, muscle and visceral nociceptive stimuli. Pain 55, 327-338.
Keay, K.A., Li, Q.F., and Bandler, R. (2000). Muscle pain activates a direct projection from ventrolateral periaqueductal gray to rostral ventrolateral medulla in rats. Neuroscience letters 290, 157-160.
Kiguchi, N., Maeda, T., Kobayashi, Y., Fukazawa, Y., and Kishioka, S. (2009). Activation of extracellular signal-regulated kinase in sciatic nerve contributes to neuropathic pain after partial sciatic nerve ligation in mice. Anesthesia and analgesia 109, 1305-1311.
Kniffki, K.D., and Mizumura, K. (1983). Responses of neurons in VPL and VPL-VL region of the cat to algesic stimulation of muscle and tendon. Journal of neurophysiology 49, 649-661.
Kobayashi, M., Fujita, S., Takei, H., Song, L., Chen, S., Suzuki, I., Yoshida, A., Iwata, K., and Koshikawa, N. (2010). Functional mapping of gustatory neurons in the insular cortex revealed by pERK-immunohistochemistry and in vivo optical imaging. Synapse 64, 323-334.
Kuchinad, A., Schweinhardt, P., Seminowicz, D.A., Wood, P.B., Chizh, B.A., and Bushnell, M.C. (2007). Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the brain? The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 4004-4007.
Ledeboer, A., Mahoney, J.H., Milligan, E.D., Martin, D., Maier, S.F., and Watkins, L.R. (2006). Spinal cord glia and interleukin-1 do not appear to mediate persistent allodynia induced by intramuscular acidic saline in rats. The journal of pain : official journal of the American Pain Society 7, 757-767.
Li, X.Y., Ko, H.G., Chen, T., Descalzi, G., Koga, K., Wang, H., Kim, S.S., Shang, Y., Kwak, C., Park, S.W., et al. (2010). Alleviating neuropathic pain hypersensitivity by inhibiting PKMzeta in the anterior cingulate cortex. Science 330, 1400-1404.
Lin, C.C., Chen, W.N., Chen, C.J., Lin, Y.W., Zimmer, A., and Chen, C.C. (2012). An antinociceptive role for substance P in acid-induced chronic muscle pain. Proceedings of the National Academy of Sciences of the United States of America 109, E76-83.
Liu, M.G., Kang, S.J., Shi, T.Y., Koga, K., Zhang, M.M., Collingridge, G.L., Kaang, B.K., and Zhuo, M. (2013). Long-term potentiation of synaptic transmission in the adult mouse insular cortex: multielectrode array recordings. Journal of neurophysiology 110, 505-521.
Min, M.Y., Yang, H.W., Yen, C.T., Chen, C.C., Chen, C.C., and Cheng, S.J. (2011). ERK, synaptic plasticity and acid-induced muscle pain. Communicative & integrative biology 4, 394-396.
Ohara, P.T., Granato, A., Moallem, T.M., Wang, B.R., Tillet, Y., and Jasmin, L. (2003). Dopaminergic input to GABAergic neurons in the rostral agranular insular cortex of the rat. Journal of neurocytology 32, 131-141.
Qiu, S., Chen, T., Koga, K., Guo, Y.Y., Xu, H., Song, Q., Wang, J.J., Descalzi, G., Kaang, B.K., Luo, J.H., et al. (2013). An increase in synaptic NMDA receptors in the insular cortex contributes to neuropathic pain. Science signaling 6, ra34.
Reichling, D.B., and Levine, J.D. (2009). Critical role of nociceptor plasticity in chronic pain. Trends in neurosciences 32, 611-618.
Rogan, S.C., and Roth, B.L. (2011). Remote control of neuronal signaling. Pharmacological reviews 63, 291-315.
Skyba, D.A., Lisi, T.L., and Sluka, K.A. (2005). Excitatory amino acid concentrations increase in the spinal cord dorsal horn after repeated intramuscular injection of acidic saline. Pain 119, 142-149.
Sluka, K.A., and Audette, K.M. (2006). Activation of protein kinase C in the spinal cord produces mechanical hyperalgesia by activating glutamate receptors, but does not mediate chronic muscle-induced hyperalgesia. Molecular pain 2, 13.
Sluka, K.A., Kalra, A., and Moore, S.A. (2001). Unilateral intramuscular injections of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle & nerve 24, 37-46.
Takahashi, K., Taguchi, T., Tanaka, S., Sadato, N., Qiu, Y., Kakigi, R., and Mizumura, K. (2011). Painful muscle stimulation preferentially activates emotion-related brain regions compared to painful skin stimulation. Neuroscience research 70, 285-293.
Tamamaki, N., Yanagawa, Y., Tomioka, R., Miyazaki, J., Obata, K., and Kaneko, T. (2003). Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. The Journal of comparative neurology 467, 60-79.
Tillu, D.V., Gebhart, G.F., and Sluka, K.A. (2008). Descending facilitatory pathways from the RVM initiate and maintain bilateral hyperalgesia after muscle insult. Pain 136, 331-339.
Watkins, L.R., Milligan, E.D., and Maier, S.F. (2001). Glial activation: a driving force for pathological pain. Trends in neurosciences 24, 450-455.
Woolf, C.J. (2010). What is this thing called pain? The Journal of clinical investigation 120, 3742-3744.
Zhuang, Z.Y., Gerner, P., Woolf, C.J., and Ji, R.R. (2005). ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain 114, 149-159.
Zhuo, M. (2008). Cortical excitation and chronic pain. Trends in neurosciences 31, 199-207.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54833-
dc.description.abstract為了瞭解慢性肌肉疼痛的相關機制,本研究援引Sluka等人在2001年所發表的酸誘發慢性肌肉疼痛模型 (AIMP 模型) 作為研究工具,此模型可藉由在左腿腓腸肌重複注射酸性食鹽水而在雙側腳掌都誘發出長期的痛覺敏感現象。一般相信中樞敏感現象與酸誘發之慢性肌肉疼痛的機制相關,先前研究亦已指出脊髓、視丘與杏仁核等區域的角色,但大腦皮質所扮演的角色仍然不清楚,包括了到底是興奮性神經元或是抑制性神經元會在慢性肌肉疼痛的建立機制中被活化?本研究主要分為兩大部分:第一部分是型態實驗,著手於辯明在大腦皮質中在酸痛模型下活化的細胞種類;第二部分是電生理實驗,聚焦於前端無顆粒狀島葉(RAIC)的興奮性突觸可塑性之探討。
第一部分使用磷酸化細胞外信號調節激酶 (pERK) 來標定被活化的細胞,並結合雙重標定或三重標定之免疫染色方法確定其細胞種類。其中,NeuN 被用來標記神經細胞;Calmodulin kinase II (CaMKII) 被用來標定興奮性細胞;GAD-GFP 與 VGAT-tdtomato 兩品系之基因轉殖鼠被用來標定抑制性細胞。結果顯示,在重複注射第二針酸之後,pERK的活性在前扣帶皮質與島葉都有增加,且表現pERK的細胞幾乎全都是神經元而非神經膠細胞,且重要的是,pERK表現於興奮性神經元,而幾乎不表現於抑制性神經元。
第二部分使用全細胞鑲嵌技術紀錄前端無顆粒狀島葉的第五層錐狀細胞,並電刺激其第二/三層的位置來誘發出興奮性突觸後膜電位(eEPSPs)。藉由高頻電刺激的方式,可以誘導出長期增益現象(LTP),此長期增益現象與高頻電刺激的重複次數相關,並與 NMDA 受器相關。除此之外,由於高頻電刺激的重複次數過少將不足以誘發長期增益現象,因此我們假定有誘發長期增益現象的閾值存在於前端無顆粒狀島葉。
結合以上結果,包括ERK在慢性疼痛模型當中活化於興奮性神經元,加上在正常小鼠中前端無顆粒狀島葉的興奮性神經元可以展現突觸可塑性,所以我們認為(前端無顆粒狀島葉的)興奮性神經元在慢性酸痛模型中扮演了重要角色,這也提供了關鍵點以供纖維肌痛症的相關研究。
zh_TW
dc.description.abstractIn order to understand the mechanism of chronic muscle pain, the acid-induced muscle pain animal model (AIMP model) established by Sluka et al. (2001) was introduced. Bilateral widespread long-term hyperalgesia was reproduced by repeated acidic saline intramuscular injection into left gastrocnemius muscle. It was believed that central sensitization contributed the acid-induced muscle chronic pain and previous studies had discussed on the spinal cord or subcortical areas; however, the role of cortical areas was still unclear, including whether the nociceptive neurons was excitatory or inhibitory in the developing of chronic muscle pain. The study was interested in the cell-type of nociceptive neurons and synaptic plasticity within cortical areas, especially the rostral agranular insular cortex (RAIC). This study consisted of two main experiments, one was investigating the cell-type of nociceptive neurons in the cortical areas within AIMP model; the other was to examine whether a synaptic plasticity could be elicited in rostral granular insular cortex.
 First, the phosphorylated extracellular signal-related kinase (pERK), a biological activity and nociceptive marker, had been examined after the second acid injection. The pERK-IR cells were elevated in the bilateral anterior cingulate cortex (ACC) and insular cortex (IC), and combined with double labeled pERK-NeuN immunostaining, showing that the pERK-IR cells were almost all (at least 96%) neurons. Next, calmodulin kinase II (CaMKII), a general marker for pyramidal cells, were used for labeling excitatory principle neurons; in the other way, GAD-GFP mice and VGAT-tdtomato mice were also used for labeling GABAergic neurons. Triple-labeled of pERK&CaMKII&GAD (or VGAT) showed that around 40% pERK-IR cells were CaMKII-IR principle neurons, and rarely pERK-IR cells were GABAergic interneurons in the ACC and IC.
 Second, whole-cell patch clamp was done on the RAIC layer V pyramidal cell and evoking EPSPs by a local stimulation on RAIC layer II/III. Under high frequency stimulus with 100Hz in one second and repeated five or seven times (repeated times defined as train number ), a long-term potentiation of EPSP was elicited. The LTP on RAIC is train number-dependent and NMDA receptor-dependent. Furthermore, it was suggested that a threshold as train number of three within the RAIC for establishing LTP. 
 In conclusion, the excitatory pyramidal cells played the critical roles in the ERK activation and the synaptic plasticity, which helped us much understand the mechanism of chronic muscle pain, and might provide a hint on the research of fibromyalgia.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:39:29Z (GMT). No. of bitstreams: 1
ntu-104-R01B41007-1.pdf: 127573837 bytes, checksum: 9013d1ac330b5dc3ad0c54c47521af21 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract iv
Chapter 1 Introduction 1
The reasons and the tool for studying chronic pain 1
Mechanisms of chronic muscle pain 2
The studies of chronic muscle pain by AIMP model 4
The role of cortical areas in chronic pain 6
The characteristics of rostral agranular insular cortex (RAIC) 8
The functional mapping by pERK 9
Chapter 2 Material and methods 13
Exp. 1. Morphology 13
1-1. Animals 13
1-2. Acid-induced muscle pain model and behavioral test 13
1-3. Immunohistochemistry 15
1-4. Images processing 17
1-5. Statistical analysis 18
1-6. Overview of experimental design 18
The physiological meaning of ERK phosphorylation 18
Usage of animals and three criteria for establishing AIMP mice 19
Exp. 2.Electrophysiology 21
2-1. Animals 21
2-2. Brain slice preparation and whole-cell recording 21
2-3. Drugs 22
2-4. Statistics and analysis 23
Chapter 3 Results 24
Experiment 1. Investigating the cell type of the nociceptive neurons in chronic muscle pain model 24
1.1. Induced bilateral long-term hyperalgesia by repeated acidic saline injection 24
1.2. The pERK-IR cells are neurons, and elevated in IC and ACC in AIMP mice 25
1.3. ERK is mainly activated on CaMKII-IR pyramidal cells, but rarely on GABAergic interneurons, in IC and ACC 27
1.4. ERK is mainly activated on non-inhibitory neurons in ACC and IC 29
1.5. ERK is activated on GABAegic neurons in central amygdala 29
Experiment 2. Synaptic plasticity of rostral agranular insular cortex 31
2.1. Identification of pyramidal cells in RAIC brain slice 31
2.2. The LTP on RAIC is train number-dependent 32
2.3. The LTP on RAIC is NMDA receptor-dependent 34
Chapter 4 Discussion 35
The reasons for pERK is a better marker than cFos in acid-induced muscle pain 35
The strategies for obtaining suitable noxious signals of pERK 36
Significance: ERK, cortical excitation, hyperalgesia, and chronic muscle pain 38
The implied physiological explanations of synaptic plasticity in insular cortex 39
Regarding the role of dopamine receptor engaged neurotransmission in RAIC 40
More stories could be extended 41
References 43
Table and Figures 51
Table 1. The summary information of antibody used in the study 51
Fig.1. The usage of brain slices and protocol of IHC in diagram 52
Fig. 2. The overview of experimental design and the usage of animals 53
Fig. 3. Mechanical hyperalgesia induction by repeated acid injection 54
Fig. 4. ERK was activated after second acid injection in central amygdala 55
Fig. 5. Double-labeled pERK & NeuN at 2 hours after second injection in IC 56
Fig. 6. The pERK-IR cells were neurons and elevated within insular cortex at 2 hours after second injection 58
Fig. 7. The pERK-IR cells were neurons and elevated within anterior cingulate cortex at 2 hours after second acid injection 59
Fig. 8. Double-labeled pERK & CaMKII on ACC and IC at 2 hours after second acid injection 60
Fig. 9. Triple-labeled pERK & CaMKII & GAD at 10 minutes after second acid injection in ACC 61
Fig. 10. Triple-labeled pERK & CaMKII & GAD at 10 minutes after second acid injection in IC 62
Fig. 11. Triple labeled pERK&NeuN&GAD at 10 minutes after second acid injection in ACC and IC 63
Fig. 12. Triple labeled pERK&NeuN&VGAT at 10 minutes after second acid injection in ACC and IC 64
Fig. 13. The pERK-IR cells were mainly co-localized with GABAergic neurons in central amygdala at 10 minutes after second acid injection 65
Fig. 14. Relative ratio of pERK-IR cell type after second acid injection 66
Fig. I. Identify pyramidal cells in RAIC brain slice 68
Fig. II The LTP on RAIC is train number- dependent 71
Fig. III. The LTP on RAIC is NMDA receptor-dependent 72
Fig. IV. The role of D2-like receptor in the synaptic transmission in RAIC 73
dc.language.isoen
dc.title酸誘發ERK活化於皮質興奮性神經元與前端無顆粒狀島葉之興奮性突觸可塑性研究zh_TW
dc.titleAcid-induced ERK phosphorylation in Cortical Principle Neurons & Excitatory Synaptic Plasticity in RAIC in Mice
en
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee嚴震東(Chen-Tung Yen),陳志成(Chih-Cheng Chen),楊琇雯(Hsiu-Wen Yang)
dc.subject.keyword酸誘發慢性肌肉疼痛模型,磷酸化細胞外訊號調節激?,突觸可塑性,島葉,zh_TW
dc.subject.keywordAcid-induced chronic Muscle Pain model,pERK,Synaptic plasticity,Insular cortex,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2015-02-24
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
124.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved