Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54826
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭鐘金
dc.contributor.authorI-Chan Hsuen
dc.contributor.author徐翊展zh_TW
dc.date.accessioned2021-06-16T03:39:19Z-
dc.date.available2020-03-12
dc.date.copyright2015-03-12
dc.date.issued2015
dc.date.submitted2015-02-24
dc.identifier.citationAkemann W, Knopfel T (2006) Interaction of Kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of Purkinje neurons. J Neurosci 26:4602-4612.
Aman TK, Grieco-Calub TM, Chen C, Rusconi R, Slat EA, Isom LL, Raman IM (2009) Regulation of persistent Na current by interactions between beta subunits of voltage-gated Na channels. J Neurosci 29:2027-2042.
Aman TK, Raman IM (2010) Inwardly Permeating Na Ions Generate the Voltage Dependence of Resurgent Na Current in Cerebellar Purkinje Neurons. J Neurosci 30:5629-5634.
Aronica E, Yankaya B, Troost D, van Vliet EA, Lopes da Silva FH, Gorter JA (2001) Induction of neonatal sodium channel II and III alpha-isoform mRNAs in neurons and microglia after status epilepticus in the rat hippocampus. The European journal of neuroscience 13:1261-1266.
Bant JS, Raman IM (2010) Control of transient, resurgent, and persistent current by open-channel block by Na channel beta4 in cultured cerebellar granule neurons. Proceedings of the National Academy of Sciences of the United States of America 107:12357-12362.
Benton MD, Lewis AH, Bant JS, Raman IM (2013) Iberiotoxin-sensitive and -insensitive BK currents in Purkinje neuron somata. Journal of neurophysiology 109:2528-2541.
Blumenfeld H, Lampert A, Klein JP, Mission J, Chen MC, Rivera M, Dib-Hajj S, Brennan AR, Hains BC, Waxman SG (2009) Role of hippocampal sodium channel Nav1.6 in kindling epileptogenesis. Epilepsia 50:44-55.
Burgess DL, Kohrman DC, Galt J, Plummer NW, Jones JM, Spear B, Meisler MH (1995) Mutation of a new sodium channel gene, Scn8a, in the mouse mutant 'motor endplate disease'. Nature genetics 10:461-465.
Capes DL, Goldschen-Ohm MP, Arcisio-Miranda M, Bezanilla F, Chanda B (2013) Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels. The Journal of general physiology 142:101-112.
Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacological reviews 57:411-425.
Chen Y, Yu FH, Sharp EM, Beacham D, Scheuer T, Catterall WA (2008) Functional properties and differential neuromodulation of Na(v)1.6 channels. Molecular and cellular neurosciences 38:607-615.
Cruz L, Fattal E, Tasso L, Freitas GC, Carregaro AB, Guterres SS, Pohlmann AR, Tsapis N (2011) Formulation and in vivo evaluation of sodium alendronate spray-dried microparticles intended for lung delivery. Journal of controlled release : official journal of the Controlled Release Society 152:370-375.
Egri C, Vilin YY, Ruben PC (2012) A thermoprotective role of the sodium channel beta1 subunit is lost with the beta1 (C121W) mutation. Epilepsia 53:494-505.
Escayg A, Goldin AL (2010) Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia 51:1650-1658.
Favre I, Moczydlowski E, Schild L (1996) On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel. Biophysical journal 71:3110-3125.
Goldin AL (1999) Diversity of mammalian voltage-gated sodium channels. Annals of the New York Academy of Sciences 868:38-50.
Hargus NJ, Merrick EC, Nigam A, Kalmar CL, Baheti AR, Bertram EH, 3rd, Patel MK (2011) Temporal lobe epilepsy induces intrinsic alterations in Na channel gating in layer II medial entorhinal cortex neurons. Neurobiology of disease 41:361-376.
Hargus NJ, Nigam A, Bertram EH, 3rd, Patel MK (2013) Evidence for a role of Nav1.6 in facilitating increases in neuronal hyperexcitability during epileptogenesis. Journal of neurophysiology 110:1144-1157.
Huth T, Rittger A, Saftig P, Alzheimer C (2011) beta-Site APP-cleaving enzyme 1 (BACE1) cleaves cerebellar Na+ channel beta4-subunit and promotes Purkinje cell firing by slowing the decay of resurgent Na+ current. Pflugers Archiv : European journal of physiology 461:355-371.
Karoly R, Lenkey N, Juhasz AO, Vizi ES, Mike A (2010) Fast- or slow-inactivated state preference of Na+ channel inhibitors: a simulation and experimental study. PLoS computational biology 6:e1000818.
Kearney JA, Plummer NW, Smith MR, Kapur J, Cummins TR, Waxman SG, Goldin AL, Meisler MH (2001) A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities. Neuroscience 102:307-317.
Klein JP, Khera DS, Nersesyan H, Kimchi EY, Waxman SG, Blumenfeld H (2004) Dysregulation of sodium channel expression in cortical neurons in a rodent model of absence epilepsy. Brain research 1000:102-109.
Kuo CC, Lu L (1997) Characterization of lamotrigine inhibition of Na+ channels in rat hippocampal neurones. British journal of pharmacology 121:1231-1238.
Lipkind GM, Fozzard HA (2008) Voltage-gated Na channel selectivity: the role of the conserved domain III lysine residue. The Journal of general physiology 131:523-529.
Lipkind GM, Fozzard HA (2010) Molecular model of anticonvulsant drug binding to the voltage-gated sodium channel inner pore. Molecular pharmacology 78:631-638.
Mantegazza M, Curia G, Biagini G, Ragsdale DS, Avoli M (2010) Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. The Lancet Neurology 9:413-424.
McCormick DA, Contreras D (2001) On the cellular and network bases of epileptic seizures. Annual review of physiology 63:815-846.
McCusker EC, Bagneris C, Naylor CE, Cole AR, D'Avanzo N, Nichols CG, Wallace BA (2012) Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nature communications 3:1102.
Payandeh J, Gamal El-Din TM, Scheuer T, Zheng N, Catterall WA (2012) Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 486:135-139.
Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353-358.
Poolos NP, Migliore M, Johnston D (2002) Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nature neuroscience 5:767-774.
Ragsdale DS, Avoli M (1998) Sodium channels as molecular targets for antiepileptic drugs. Brain research Brain research reviews 26:16-28.
Raman IM, Bean BP (1997) Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J Neurosci 17:4517-4526.
Raman IM, Bean BP (2001) Inactivation and recovery of sodium currents in cerebellar Purkinje neurons: evidence for two mechanisms. Biophysical journal 80:729-737.
Rogawski MA, Loscher W (2004) The neurobiology of antiepileptic drugs. Nature reviews Neuroscience 5:553-564.
Singh JN, Jain G, Ramarao P, Sharma SS (2009) Inhibition of sodium current by carbamazepine in dorsal root ganglion neurons in vitro. Indian journal of physiology and pharmacology 53:147-154.
Stefani A, Calabresi P, Pisani A, Mercuri NB, Siniscalchi A, Bernardi G (1996) Felbamate inhibits dihydropyridine-sensitive calcium channels in central neurons. The Journal of pharmacology and experimental therapeutics 277:121-127.
Theile JW, Cummins TR (2011) Inhibition of Navbeta4 peptide-mediated resurgent sodium currents in Nav1.7 channels by carbamazepine, riluzole, and anandamide. Molecular pharmacology 80:724-734.
Theile JW, Jarecki BW, Piekarz AD, Cummins TR (2011) Nav1.7 mutations associated with paroxysmal extreme pain disorder, but not erythromelalgia, enhance Navbeta4 peptide-mediated resurgent sodium currents. The Journal of physiology 589:597-608.
Thompson CH, Kahlig KM, George AL, Jr. (2011) SCN1A splice variants exhibit divergent sensitivity to commonly used antiepileptic drugs. Epilepsia 52:1000-1009.
Vreugdenhil M, Hoogland G, van Veelen CW, Wadman WJ (2004) Persistent sodium current in subicular neurons isolated from patients with temporal lobe epilepsy. The European journal of neuroscience 19:2769-2778.
Whitaker WR, Faull RL, Dragunow M, Mee EW, Emson PC, Clare JJ (2001) Changes in the mRNAs encoding voltage-gated sodium channel types II and III in human epileptic hippocampus. Neuroscience 106:275-285.
Willow M, Gonoi T, Catterall WA (1985) Voltage clamp analysis of the inhibitory actions of diphenylhydantoin and carbamazepine on voltage-sensitive sodium channels in neuroblastoma cells. Molecular pharmacology 27:549-558.
Yu FH, Westenbroek RE, Silos-Santiago I, McCormick KA, Lawson D, Ge P, Ferriera H, Lilly J, DiStefano PS, Catterall WA, Scheuer T, Curtis R (2003) Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2. J Neurosci 23:7577-7585.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54826-
dc.description.abstract電壓依賴性鈉離子通道在動作電位的傳遞及神經的興奮性上扮演著很重要的角色,一旦興奮性發生異常便容易造成神經性疾病,例如癲癇(epilepsy)等等,癲癇是一種先天或後天因素所引起的慢性腦部疾病,其特徵是由於腦細胞過度放電所引起的反覆性發作,而鈉離子通道直接與細胞的興奮性有關,所以常成為抗癲癇藥物(antiepileptic drugs;AEDs)的治療標的。近來的研究發現當膜電位復極化時,不活化態鈉離子通道回復到休息態的過程中,可能發生回返性鈉離子電流,亦即該電流可於膜電位復極化時,提供一個額外的閾下電流,進而促使神經細胞去極化的產生,因此有利於高頻率快速地放電。常見的抗癲癇藥物如:carbamazepine、phenytoin及lamotrigine等,已被證實會緩慢地結合於鈉離子通道的快速不活化態,可以有效地抑制癲癇放電,而不會影響到正常的神經活性,因此,研究回返性鈉離子電流與這些抗癲癇藥物的關係,應該是一個很重要的課題。我們改變前置去極化的電位,由較低的電位(-50 mv)提升至較高的電位(+120 mV),其回返性鈉離子電流的峰值仍然會再逐漸成長,而後在40 mV以上,趨於飽合,由此可推論當回返性鈉離子電流產生時,與之相關的分子機制有相當大的電壓依賴性變動,此一依賴性最有可能來自鈉離子通道的結構本身之變化。此外,低濃度的抗癲癇藥物例如phenytoin,對於回返性鈉離子電流就已有抑制效果,而這樣的濃度對暫時性鈉離子電流卻沒有明顯的影響,足見得抗癲癇藥物此時對於鈉離子通道的結合速率、親和力等可能都已發生改變,而這可能是由於鈉離子通道本身結構改變,進而造成藥物受體亦隨之變化其構型所造成的結果。zh_TW
dc.description.abstractEpilepsy is a common neurological disorder characterized by paroxysmal and excessive neuronal discharges of the brain. Because voltage-gated Na+channels play a crucial role in cellularexcitability, the channel constituies a major therapeutic target of antiepilepticdrugs (AEDs). Recent studies indicate that resurgent Na+ currents could provide subthreshold currents during the repolarization of the membrane potential and therefore may contributetohigh-frequency neuronal discharge. Carbamazepine, phenytoin and lamotrigine are common antiepileptic medication in clinical practice, and all are potent inhibitors of Na+ currents by slow binding to the fast inactivated state of Na+channels. We have demonstrated that changes ofthe depolarizingprepulse from -50mV to +120mV would make larges and larges resurgent Na+ currents. The amplitude of the resurgent currents would then be saturarng with prepulse potentials ≧ 40 mV. Moreover, We found that low concentration of antiepileplic drugs, such as phenytoin, may show an evident inhibitory effect on the resurgent but not transient Na+ currents. It is likely that the Na+ channel undergoes significant conformational changes to generate the resurgent Na+ currents.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:39:19Z (GMT). No. of bitstreams: 1
ntu-104-R01441015-1.pdf: 7841121 bytes, checksum: 7c902dc09bbaf6cb35a6011f4a55d2ce (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書……………………………………i
誌謝……………………………………………………ii
中文摘要………………………………………………iii
英文摘要………………………………………………iv
第一章導論…………………………………………………1
1.1 電壓閘門鈉離子通道隻結構與功能…………………………1
1.2 鈉離子通道的運作機轉………………………………………2
1.3 回返性鈉離子電流的發現與功能……………………………3
1.4 回反應鈉離子電流的成因與β4……………………………4
1.5 β4可能只是回返性鈉離子電流的成因之一……………5
1.6 電壓閘門鈉離子通道與癲癇…………………………6
1.7 抗癲癇藥物……………………………………………7
1.8 回返性鈉離子電流與癲癇……………………………8
第二章材料與方法………………………………………………9
2.1 游離視丘下核神經細胞製備………………………… 9
2.2 實驗溶液配置…………………………………………10
2.3 玻璃微電極製備……………………………………… 11
2.4 加藥管製備…………………………………………… 11
2.5 全細胞電生理記錄…………………………………… 11
2.6 數據分析及處理……………………………………………… 12
第三章結果………………………………………………………… 13
3.1 去極化電壓對於回返性鈉離子電流之影響……………………… 13
3.2 去極化時間對於回返性鈉離子電流之影響…………………………14
3.3 抗癲癇藥物對於回返性鈉離子電流之濃度依賴性………………… 15
3.4 抗癲癇藥物對於回返性鈉離子電流之時間依賴性………………… 16
第四章討論…………………………………………………………18
4.1 回返性鈉離子電流之生物物理性質……………………18
4.2 抗癲癇藥物抑制回返性鈉離子電流之影響…………… 22
圖次…………………………………………………… 25
參考文獻……………………………………………… 39
dc.language.isozh-TW
dc.subject回返性鈉離子電流zh_TW
dc.subject抗癲癇藥物zh_TW
dc.subjectAntiepileptic drugsen
dc.subjectResurgent Na+ Currentsen
dc.title抗癲癇藥物對視丘下核神經元上回返性鈉通道電流之作用zh_TW
dc.titleEffect of Antiepileptic drugs on Resurgent Na+ Currents in Subthalamic Neuronsen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee劉天申,楊雅晴
dc.subject.keyword抗癲癇藥物,回返性鈉離子電流,zh_TW
dc.subject.keywordAntiepileptic drugs,Resurgent Na+ Currents,en
dc.relation.page44
dc.rights.note有償授權
dc.date.accepted2015-02-24
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
7.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved