Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54766
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 謝長富(Chang-Fu Hsieh) | |
dc.contributor.author | Chi-Tung Huang | en |
dc.contributor.author | 黃啟東 | zh_TW |
dc.date.accessioned | 2021-06-16T03:38:05Z | - |
dc.date.available | 2015-08-11 | |
dc.date.copyright | 2015-08-11 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-04-02 | |
dc.identifier.citation | Abraham-Juarez, M. J., A. Martinez-Hernandez, M. A. Leyva-Gonzalez, L. Herrera-Estrella and J. Simpson. 2010. Class i knox genes are associated with organogenesis during bulbil formation in Agave tequilana. J. Exp. Bot. 61: 4055-4067.
Addai, I. K. and P. Scott. 2011. Influence of bulb sizes at planting on growth and development of the common hyacinth and the lily. ABJNA 2: 298-314. Ahmad, I., T. Ahmad, M. Asif, M. Saleem and A. Akram. 2009. Effect of bulb size on growth, flowering and bulbils production of tuberose. Sarhad J. Agric. 25: 391-398. Al-Khassawneh, N. M., N. S. Karam and R. A. Shibli. 2006. Growth and flowering of black iris (Iris nigricans Dinsm.) following treatment with plant growth regulators. Sci Hortic-Amsterdam 107: 187-193. doi: http://dx.doi.org/10.1016/j.scienta.2005.10.003 Arizaga, S. and E. Ezcurra. 1995. Insurance against reproductive failure in a semelparous plant: Bulbil formation in Agave macroacantha flowering stalks. Oecologia 101: 329-334. doi: 10.1007/BF00328819 B.K., H. and W. G.J. 1979. Gibberellic acid (ga3) stimulates flowering in Caladium hortulanum birdsey. Hortscience 14: 72-73. Billings, W. D. and H. A. Mooney. 1968. The ecology of arctic and alpine plants. Biological Reviews 43: 393-529. doi: 10.1111/j.1469-185X.1968.tb00968.x Bogner, J. 1975. Flore de madagascar et des comores: Aracees / par j. Bogner. Firmin-Didot. Box, M. S. and P. J. Rudall. 2006. Floral structure and ontogeny in Globba (Zingiberaceae). Plant Syst Evol 258: 107-122. doi: 10.1007/s00606-005-0395-4 Brooking, I. R. and D. Cohen. 2002. Gibberellin-induced flowering in small tubers of Zantedeschia ‘black magic’. Sci Hortic-Amsterdam 95: 63-73. doi: http://dx.doi.org/10.1016/S0304-4238(02)00018-3 Brown, J. S. and C. G. Eckert. 2005. Evolutionary increase in sexual and clonal reproductive capacity during biological invasion in an aquatic plant Butomus umbellatus (Butomaceae). Am. J. Bot. 92: 495-502. Burton, W. G. 1966. The Potato. A survey of its history, and factors influenceing its yield, nutritive value, quality and storage. H. Veenman & Zonen N.V. Wageningen, The Netherlands. 382 pp. Cabrera, L. I., G. A. Salazar, M. W. Chase, S. J. Mayo, J. Bogner and P. Davila. 2008. Phylogenetic relationships of aroids and duckweeds (Araceae) inferred from coding and noncoding plastid DNA. Am. J. Bot. 95: 1153-1165. doi: 10.3732/ajb.0800073 Callaghan, T. V., B. A. Carlsson, I. S. Jonsdottir, B. M. Svensson and S. Jonasson. 1992. Clonal plants and environmental change: Introduction to the proceedings and summary. Oikos 63: 341-347. doi: 10.2307/3544959 Cardoso, J. C., E. O. Ono and J. D. Rodrigues. 2010. Gibberellic acid and water regime in the induction of Brassocattleya and Cattleya hybrid orchids. Hortic Bras 28: 395-398. Cardoso, J. C., E. O. Ono and J. D. Rodrigues. 2012. Gibberellic acid in vegetative and reproductive development of phalaenopsis orchid hybrid genus. Hortic. Bras. 30: 71-74. CBOLPlantWorkingGroup. 2009. A DNA barcode for land plants. P. Natl. Acad. Sci. USA 106: 12794-12797. doi: 10.1073/pnas. 0905845106 Ceplitis, A. and B. O. Bengtsson. 2004. Genetic variation, disequilibrium and natural selection on reproductive traits in allium vineale. J. Evolution Biol. 17: 302-311. doi: 10.1046/j.1420-9101.2003.00678.x Chase, M. W., R. S. Cowan, P. M. Hollingsworth, C. v. d. Berg, S. Madrinan, G. Petersen, . . . M. Wilkinson. 2007. A proposal for a standardised protocol to barcode all land plants. Taxon 56: 295-299. doi: 10.2307/25065788 Chen, J., R. J. Henny, D. B. McConnell and R. D. Caldwell. 2003. Gibberellic acid affects growth and flowering of Philodendron 'black cardinal'. Plant Growth Regul. 41: 1-6. Corr, B. E. and R. E. Widmer. 1990. Growth and flowering of Zantedeschia elliottiana and Z. rehmannii in response to environmental factors. Hortscience 25: 925-927. Cusimano, N., J. Bogner, S. J. Mayo, P. C. Boyce, S. Y. Wong, M. Hesse, . . . J. C. French. 2011. Relationships within the araceae: Comparison of morphological patterns with molecular phylogenies. Am. J. Bot. 98: 654-668. doi: Doi 10.3732/Ajb.1000158 Cusimano, N., A. Sousa and S. S. Renner. 2012. Maximum likelihood inference implies a high, not a low, ancestral haploid chromosome number in Araceae, with a critique of the bias introduced by 'x'. Ann. Bot-London 109: 681-692. doi: 10.1093/aob/mcr302 Dafni, A. 1993. Pollination Ecology; A Practical Approach, Oxford University Press, Oxford. pp. 68-69. De Munk, W. J. and J. Schipper. 1993. Iris: Bulbous and rhizomatous. P. 349-379. In De Hertogh, A.A., and M. Le Nard (eds.) The physiology of flower bulbs. Elsevier, Amsterdam, The Netherlands. Dennis, D. J., J. Doreen and T. Ohteki. 1994. Effect of a gibberellic acid ‘quick-dip’ and storage on the yield and quality of blooms from hybrid Zantedeschia tubers. Sci Hortic-Amsterdam 57: 133-142. doi: http://dx.doi.org/10.1016/0304-4238(94)90041-8 Diggle, P. K. 1997. Extreme preformation in alpine Polygonum viviparum: An architectural and developmental analysis. Am. J. Bot. 84: 154-169. Diggle, P. K., M. A. Meixner, A. B. Carroll and C. F. Aschwanden. 2002. Barriers to sexual reproduction in Polygonum viviparum: A comparative developmental analysis of P. viviparum and P. bistortoides. Ann. Bot. (Lond) 89: 145-156. Dormann, C. F., A. S. D. Albon and S. J. Woodin. 2002. No evidence for adaptation of two Polygonum viviparum morphotypes of different bulbil characteristics to length of growing season: Abundance, biomass and germination. Polar Biol. 25: 884–890 doi: 10.1007/s00300-002-0417-4884-890. doi: 10.1007/s00300-002-0417-4 Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin 19: 11-15. Engell, K. 1973. A preliminary morphological, cytological, and embryological investigation in Polygonum viviparum. Botanisk Tidsskrift 67: 305-316. Farrell, B. A. 2008. Histological documentation and ecological implications of bulbils in Aconitum noveboracense (ranunculaceae). Master thesis. The State University of New Jersey, pp. 1- 32. Fialova, M. and M. Duchoslav. 2014. Response to competition of bulbous geophyte Allium oleraceum differing in ploidy level. Plant Biology 16: 186-196. doi: Doi 10.1111/Plb.12042 Funnell, K. A., B. R. MacKay and C. R. O. Lawoko. 1992. Comparative effects of promalin and ga3 on flowering and development of Zantedeschia 'galaxy'. Acta Horticulturae 292: 173-180. Garces, H. M., C. E. Champagne, B. T. Townsley, S. Park, R. Malho, M. C. Pedroso, J. J. Harada and N. R. Sinha. 2007. Evolution of asexual reproduction in leaves of the genus Kalanchoe. Proc. Natl. Acad. Sci. USA 104: 15578-15583. Gibernau, M. and D. Macquart. 2003. Pollen viability and longevity in two species of arum. Aroideana 26: 58-62. Grayum, M. H. 1990. Evolution and phylogeny of the Araceae. Ann. Mo. Bot. Gard 77: 628-697. doi: 10.2307/2399668 Grimsby, J. L., D. Tsirelson, M. A. Gammon and R. Kesseli. 2007. Genetic diversity and clonal vs. Sexual reproduction in Fallopia spp. (Polygonaceae). Am. J. Bot. 94: 957-964. Guindon, S., J.-F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk and O. Gascuel. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of phyml 3.0. Systematic Biol. 59: 307-321. doi: 10.1093/sysbio/syq010 Gusman, G. 2005. Arisaema scortechinii hook. F. (Araceae), a puzzling malaysian evergreen. Aroideana 28: 43-48. Hall, T. A. 1999. Bioedit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/nt. Nucleic Acids Symp. Ser. 41: 95-98. Han, S. S., A. H. Halevy, R. M. Sachs and M. S. Reid. 1991. Flowering and corm yield of Brodiaea in response to temperature, photoperiod, corm size, and planting depth. J. Am. Soc. Hortic. Sci. 116: 19-22. Hassanpour Asil, M., Z. Roein and J. Abbasi. 2011. Response of tuberose (Polianthes tuberose L.) to gibberellic acid and benzyladenine. Hortic. Environ. Biotechnol. 52: 46-51. doi: 10.1007/s13580-011-0073-0 Henny, R. J. 1988. Ornamental aroids: culture and breeding. Horticultural Reviews 10: 1-33. Henny, R. J. and R. L. Hamilton. 1992. Flowering of Anthurium following treatment with gibberellic acid. Hortscience 27: 1328. Henny, R. J. 1995. Stimulating flowering of ornamental aroid genera with gibberellic acid: A review. Pro. Fla. State Hort. Soc. 108: 23-24. Heslop-Harrison, J. and Y. Heslop-Harrison. 1970. Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technol. 45: 115-120. Hollingsworth, P. M. 2011. Refining the DNA barcode for land plants. P. Natl. Acad. Sci. USA 108: 19451-19452. doi: 10.1073/pnas.1116812108 Honnay, O., E. Coart, J. Butaye, D. Adriaens, S. V. Glabeke and I. Roldan-Ruiz. 2006. Low impact of present and historical landscape configuration on the genetics of fragmented Anthyllis vulneraria populations. Biol. Conserv. 127: 363-516. Howell, D. J. and B. S. Roth. 1981. Sexual reproduction in agaves: The benefits of bats; the cost of semelparous advertising. Ecology 62: 1-7. Huang, C. T., C. F. Hsieh and C. N. Wang. 2013. Remusatia yunnanensis (araceae): A newly recorded species in taiwan. Taiwania 58: 76-79. Huang, C. T. and C. F. Hsieh. 2014. Asexual bulbil development and diversification of reproductive strategy between Remusatia vivipara and Remusatia pumila (Araceae). Taiwania 59: 220-230. Kingston, N. and S. Waldren. 2003. The plant communities and environmental gradients of Pitcairn Island: The significance of invasive species and the need for conservation management. Ann. Bot. (Lond) 92: 31-40. doi: 10.1093/aob/mcg10692/1/31 [pii] Li, H. and A. Hay. 1992a. Notes on the classification of genera Remusatia and Gonathanthus in Araceae. Act. Bot. Yunn. 5: 27-33. Li, H. and A. Hay. 1992b. Classification of the genus Gonatanthus. Act. Bot. Yunn. 14: 373-378. Li, H. and P. C. Boyce. 2010. Remusatia. In flora of china; wu, z.Y., raven, p.H., eds.; science press: Beijing, china; missouri botanical garden press: St. Louis, mo, USA, 2010; volume 23, pp. 71–72. Li, M.-W., D.-X. Gu and Y.-L. liu. 1997. Relationship between occurrence of bulbils and chromosome number and ploidy in Pinella (Araceae). Acta Phytotaxon. Sin. 35: 208-214. Li, R., T. S. Yi and H. Li. 2012. Is Remusatia (Araceae) monophyletic? Evidence from three plastid regions. Int. J. Mol. Sci. 13: 71-83. Long, C. L., H. Li, X. Liu and Z. Gu. 1989. A cytogeographic study on the genus Remusatia (Araceae). Act. Bot. Yunn. 11: 132-138. Low, S. L., S. Y. Wong, J. Jamliah and P. C. Boyce. 2011. Phylogenetic study of the Hottarum group (Araceae: Schismatoglottideae) utilising the nuclear its region. Gardens' Bulletin Singapore 63: 237-243. Macnish, A. J., C.-Z. Jiang and M. S. Reid. 2010. Treatment with thidiazuron improves opening and vase life of iris flowers. Postharvest Biol. Tec. 56: 77-84. doi: http://dx.doi.org/10.1016/j.postharvbio.2009.11.011 Marchant, C. J. 1971. Chromosome variation in Araceae: II: Richardieae to Colocasieae. Kew Bulletin 25: 47-56. doi: 10.2307/4103145 Mayo, S. J., J. Bogner and P. C. Boyce. 1993. The genera of Araceae. 280-282. Mayo, S. J., J. Bogner, P. Boyce, E. Catherine and Royal Botanic Gardens Kew. 1997. The genera of Araceae. Royal Botanic Gardens, Kew, London. Moody, A., P. K. Diggle and D. A. Steingraeber. 1999. Developmental analysis of the evolutionary origin of vegetative propagules in Mimulus gemmiparus (Scrophulariaceae). Am. J. Bot. 86: 1512-1522. Morales, P.; Schiappacasse, F.; Penalillo, P.; Yanez, P. 2009, Effect of bulb weight on the growth and flowering of Herbertia lahue subsp.lahue (Iridaceae). Cienc. Investig. Agrar. 36(2): 259-266 Nauheimer, L., P. C. Boyce and S. S. Renner. 2012. Giant taro and its relatives: A phylogeny of the large genus Alocasia (Araceae) sheds light on miocene floristic exchange in the Malesian region. Mol. Phylogenet. Evol. 63: 43-51. doi: http://dx.doi.org/10.1016/j.ympev.2011.12.011 Nepi, M., M. Guarnieri, S. Mugnaini, L. Cresti, E. Pacini and B. Piotto. 2005. A modified fcr test to evaluate pollen viability in Juniperus communis L. Grana 44: 148-151. doi: 10.1080/00173130510010576 Okada, H., H. Tsukaya and Y. Mori. 1999. A new species of Schismatoglottis (Schismatoglottidinae, Araceae) from west Kalimantan and observations of its peculiar bulbil development. Syst. Bot. 24: 62-68. doi: 10.2307/2419386 Palleiro, N., M. C. Mandujano and J. Golubov. 2006. Aborted fruits of Opuntia microdasys (Cactaceae): Insurance against reproductive failure. Am. J. Bot. 93: 505-511. Pandey, H., S. Nandi, B. Chandra, M. Nadeem and L. Palni. 2001. Ga3 induced flowering in Podophyllum hexandrum Royle: A rare alpine medicinal herb. Acta Physiol. Plant. 23: 467-474. doi: 10.1007/s11738-001-0057-2 Perry, M. C. 2011. Bulbil. In Encyclopadia Britannica. Retrieved from http://www.Britannica.Com/ebchecked/topic/84032/bulbil. Posada, D. 2008. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25: 1253-1256. doi: 10.1093/molbev/msn083 Prati, D. and B. Schmid. 2000. Genetic differentiation of life-history traits within populations of the clonal plant Ranunculus reptans. Oikos 90: 442-456. Raja, K. and V. Palanisamy. 1999. Effect of bulb size on growth, flowering and bulb yield in tuberose (Polianthes tuberosa l.) cv. 'Single' South Indian Hort. 47: 322-324. Ramachandran, K. 1978. Cytological studies on south Indian Araceae. Cytologia 43: 289-303. Rees, A. R. 1969. Effect of bulb size on the growth of tulips. Ann. Bot-London 33: 133-142. Renner, S. S. and L. B. Zhang. 2004. Biogeography of the Pistia clade (Araceae): Based on chloroplast and mitochondrial DNA sequences and bayesian divergence time inference. Syst. Biol. 53: 422-432. Ronquist, F. and J. P. Huelsenbeck. 2003. Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574. doi: 10.1093/bioinformatics/btg180 Ronsheim, M. L. and J. D. Bever. 2000. Genetic variation and evolutionary trade-offs for sexual and asexual reproductive modes in Allium vineale (Liliaceae). Am. J. Bot. 87: 1769-1777. Roy, S., A. Tyagi, V. Shukla, A. Kumar, U. M. Singh, L. B. Chaudhary, Datt B, Bag SK, Singh PK, Nair NK, Husain T and Tuli R. 2010. Universal plant DNA barcode loci may not work in complex groups: A case study with Indian Berberis species. PloS one 5: e13674-e13674. doi: 10.1371/journal.pone.0013674 Sathyanarayana, R. B., K. Singh and B. S. Reddy. 1994. Studies on effect of bulb size in tuberose. II. Influence of bulb size on flowering, flower yield and quality of flower spikes. Advances in Agricultural Research in India 2: 123-130. Silvertown, J. W. 1983. The distribution of plants in limestone pavement: Tests of species interaction and niche separation against null hypotheses. The Journal of Ecology 71: 819-828. Singh, K. P. 2000. Growth, flowering and corm production in Gladiolus as affected by different corm sizes. Journal of Ornamental Horticulture 3: 26-29. Stuntz, S., U. Simon and G. Zotz. 2002. Rainforest air-conditioning: The moderating influence of epiphytes on the microclimate in tropical tree crowns. Int. J. Biometeorol. 46: 53-59. Taberlet, P., L. Gielly, G. Pautou and J. Bouvet. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17: 1105-1109. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar. 2011. Mega5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. doi: 10.1093/molbev/msr121 Tate, J. A. and B. B. Simpson. 2003. Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Syst. Bot. 28: 723-737. doi: 10.1043/02-64.1 Treder, J. 2005. The influence of gibberellic acid on growth and flowering of some Zantedeschia cultivars grown outdoors. Acta Hort. 673: 679-683. Tripathi, A. M., A. Tyagi, A. Kumar, A. Singh, S. Singh, L. B. Chaudhary and S. Roy. 2013. The internal transcribed spacer (ITS) region and trnhH-psbA are suitable candidate loci for DNA barcoding of tropical tree species of India. PloS One 8: e57934. doi: 10.1371/journal.pone.0057934 Vallejo-Marin, M. 2012. Mimulus peregrinus (Phrymaceae): A new british allopolyploid species. PhytoKeys 14: 1-14. doi: 10.3897/phytokeys.14.3305 Vieira, M. R. d. S., G. P. P. Lima, A. V. d. Souza, P. N. Costa, C. M. G. Santos, L. d. S. Alves and N. G. d. Oliveira. 2011. Effect of gibberellic acid on the quality of chrysanthemum (Dendranthema grandiflora l.) cv. Faroe. Afr. J. Biotechnol. 10: 15933-15937. Vittoz, P. and R. Engler. 2007. Seed dispersal distances: A typology based on dispersal modes and plant traits. Bot. Helv. 117: 109-124. doi: 10.1007/s00035-007-0797-8 Walser, J. C. 2004. Molecular evidence for limited dispersal of vegetative propagules in the epiphytic lichen Lobaria pulmonaria. Am. J. Bot. 91: 1273-1276. Walser, J. C., F. Gugerli, R. Holderegger, D. Kuonen and C. Scheidegger. 2004. Recombination and clonal propagation in different populations of the lichen Lobaria pulmonaria. Heredity 93: 322-329. doi: 10.1038/sj.hdy.6800505 [pii] Walton, G. B. and L. Hufford. 1994. Shoot architecture and evolution of Dicentra cucullaria (Papaveraceae, Fumarioideae). Int. J. Plant Sci. 155: 553-568. doi: 10.1086/297194 Wang, C.-N., M. Moller and Q. C. B. Cronk. 2004a. Phylogenetic position of Titanotrichum oldhamii (Gesneriaceae) inferred from four different gene regions. Syst. Bot. 29: 407-418. doi: 10.1600/036364404774195593 Wang, C. N. and Q. C. B. Cronk. 2003. Meristem fate and bulbil formation in titanotrichum (gesneriaceae). Am. J. Bot. 90: 1696-1707. Wang, C. N., M. Moller and Q. C. B. Cronk. 2004b. Population genetic structure of Titanotrichum oldhamii (Gesneriaceae), a subtropical bulbiliferous plant with mixed sexual and asexual reproduction. Ann. Bot. (Lond) 93: 201-209. doi: 10.1093/aob/mch028mch028 [pii] Wang, J. C., W. L. Chiou and H. M. Chang. 2012. A preliminary red list of Taiwanese vascular plants. Endemic Species Research Institute & Taiwan Society of Plant Systematics, Nanto, Taiwan, 94 pp. White, T. J., T. D. Bruns, S. B. Lee and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Chapter 38. Pages 315-322. In: PCR Protocols: a Guide to Methods and Applications (M. Innis, D. Gelfand, J. Sninsky and T. White, eds.). Academic Press, Orlando, Florida. Wickham, L. D., L. A. Wilson and H. C. Passam. 1982. The origin, development and germination of bulbils in two Dioscorea species. Ann. Bot. (Lond) 50: 621-627. Will, H., S. Maussner and O. Tackenberg. 2007. Experimental studies of diaspore attachment to animal coats: Predicting epizoochorous dispersal potential. Oecologia 153: 331-339. doi: 10.1007/s00442-007-0731-1 Zalewska, M. and M. Antkowiak. 2013. Gibberellic acid effect on growth and flowering of Ajania pacifica (Nakai) K. Bremer et Humphries. Journal of Horticultural Research 21: 21-27. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54766 | - |
dc.description.abstract | 臺灣目賊芋(Remusatia vivipara (Lodd.) Shott)是臺灣列為稀有瀕危的天南星科植物,但其分佈範圍除了在東南亞外,更遠至非洲及澳洲。由於具有珠芽無性生殖構造,因此被歸為是一種兼具有性生殖及無性生殖的珠芽植物,但是在標本館存放的標本尚未見到附帶種子的植株標本。根據前人的形態觀察研究,多依據珠芽特徵將天南星科另外三種歸為目賊芋屬(Remusatia),包括:雲南岩芋(Remusatia yunnanensis)、早花岩芋(Remusatia hookeriana)及曲苞岩芋(Remusatia pumila)。但是早花岩芋及曲苞岩芋在花部形態,卻明顯不同於臺灣目賊芋及雲南岩芋。
本研究第一章除介紹目賊芋屬的生殖方式外,並詳述臺灣目賊芋的分類現況及研究取材的理由。其餘章節依據取自臺灣、中國雲南及泰國不同目賊芋屬的族群個體,探討臺灣目賊芋的側系群分類、珠芽發育、小孢子形成及花芽促進過程。 第二章在探討分子親緣關係,利用核基因:ITS、phyC及葉綠體trnL-trnF、trnH-psbA基因等四段標記進行目賊芋屬歸群。結果顯示目賊芋屬可區分為三群,臺灣目賊芋的葉綠體及核基因序列與雲南岩芋相同歸為一群,而曲苞岩芋及早花岩芋在基因序列分析結果,明顯不同於臺灣目賊芋與雲南岩芋,各自成為一群。 第三章發表生長於臺灣南投縣的新紀錄種植物雲南岩芋,該種原為中國特有種。雲南岩芋與臺灣目賊芋極為相似,兩者只有在佛焰苞檐部顏色的不同,雲南岩芋的佛焰苞檐部為紫紅色,而臺灣目賊芋的佛焰苞檐部為黃色,本文並提供雲南岩芋之特徵描述、圖片與目賊芋屬之檢索表(Published in Taiwania, 58(1): 76-79, 2013)。 第四章探討岩芋 (臺灣目賊芋) 和曲苞岩芋的生殖機制,包含有性花和無性繁殖珠芽的差異。岩芋很少產生種子,而曲苞岩芋卻是常形成種子與珠芽。本研究的目的是要了解無性繁殖的珠芽發育和岩芋有性生殖的問題。就這兩種珠芽植物的生殖策略而言,岩芋完全依賴無性生殖,而曲苞岩芋則兼具有性生殖及無性生殖。然而珠芽枝條的發育是天南星科一個獨特的演化現象,這群植物也就是依據此特徵而歸類成為岩芋屬(Published in Taiwania, 59(3): 220-230, 2014)。 第五章探討利用生長激素促進臺灣目賊芋開花的可能性,實驗是以0, 25, 50, 75, 100 ppm不同濃度的渤素來處理不同大小的塊莖(平均直徑2.67公分)。結果激渤素處理對直徑1.8 公分以上的塊莖有促成花芽生成的機會,但花序的大小則由塊莖的大小來決定(Published in Taiwania, 60(1): 1-7, 2015)。 第六章綜合前面的研究結果,臺灣目賊芋的生殖策略以無性珠芽為主,曲苞岩芋在親緣關係上則明顯異於其他目賊芋屬的物種。至於小孢子形成的過程及目賊芋屬的親緣關係,未來可以本研究的結果為基礎進一步加以探討釐清。 | zh_TW |
dc.description.abstract | Remusatia vivipara (Lodd.) Schott is listed as a Vulnerable (VU) species in the Red Lists of Taiwan. Remusatia species are among the few tropical aroids which can have both sexual flowers and asexual bulbils growing in their life cycle. Within Remusatia, R. vivipara is the most widespread in tropical Asia and Africa, while the other species restricted to S and SE Asia except R. yunnanensis which is endemic in Yunnan, China. However, this taxonomic grouping solely based on the existence of bulbil as the genus single diagnostic character has been widely argued, because the morphological characters of inflorescence (especially the spathe) are very different. This dissertation focuses on phylogenetic and taxonomic studies of Remusatia species.
There are six chapters in this study: In Chapter 1, the taxonomical status of Remusatia vivipara in Taiwan was introduced. Other chapters dealed with phylogenetic analysis, bulbil development, microsporogenesis and flowering induction of R. vivipara. In Chapter 2, we sequenced two plastid (trnL-trnF and psbA-trnH) and two nuclear (ITS and phyC) DNA regions in resolving the phylogenetic relationships. The genus Remusatia is not monophyletic and could be divided into three subgroups in which R. vivipara and R. yunnanensis formed a clade, R. pumila sistered with Studnera species in another group, while R. hookeriana was sistered to Colocasia species. Based on the phylogenetic trees and morphology of Remusatia species, R. pumila seems to belong to Remusatia and R. yunnanensis is genetically not different from R. vivipara. It is suggested that R. pumila is probably better restored to the genus Gonatanthus. In Chapter 3, we document the discovery of Remusatia yunnanensis (H. Li & A. Hay) A. Hay from Nantou County in central Taiwan. R. yunnanensis has before been considered endemic to Yunnan, China. Remusatia yunnanensis is similar to R. vivipara and only distinguishable by the difference in spathe limb color. The spathe limb of R. yunnanensis is distinctly purple red while that of R. vivipara is yellow. The description and illustration of R. yunnanensis, including a dichotomous key description for Remusatia in Taiwan were provided. In Chapter 4, the reproductive strategies between Remusatia vivipara and R. pumila were compared. Both species can produce sexual flowers and asexual bulbils. However, R. vivipara rarely sets seeds and appears largely on asexual reproduction by bulbils and tubers, whereas R. pumila has regular seed set. This chapter tried to understand the asexual mode of bulbil development and the reasons for sexual failure in R. vivipara. The developments of asexual bulbils from stolons were observed in R. vivipara by using scanning electron microscope and light microscope. Results showed that the bulbils of R. vivipara occurred on independent bulbiliferous shoots rather than on inforescences, and were different from other bulbiliferous plants. Each bulbil was covered with hooked scales which were actually an elongation of bulbil top cells. These hooked scales on bulbils appeared to be unique in Araceae. With the hooked scales, the bulbils might be easily dispersed by birds and mammals in long distance. This might be reflected by the widespread distribution of R. vivipara in Taiwan, SE Asia and Eastern Africa. In addition, chromosome counting was performed to confirm R. vivipara as triploid species. In Chapter 5, the effect of applying Gibberellic acid (GA3) to promote inflorescence initiation and elongation in R. vivipara was evaluated. Tubers of various sizes (average 2.67 cm in diameter) were treated with different concentrations of GA3 (0, 25, 50, 75 and 100 mg L-1). Our results showed the induction of flowering by GA3 at and above 25 mg L-1. However, no significant differences were observed among different GA3 concentrations in terms of inflorescence characteristics and vegetative growth. To produce R. vivipara as an ornamental plant, it is recommended to drench plants with 25 mg L-1 GA3. The present study also revealed that large tuber size made more significant contributions to the prediction of flowering, and the magnitude of inflorescence characteristics (inflorescence length, male zone length, female zone length, spathe length and sterile zone length) and vegetative growth (fresh and dry bulbil stolons) mostly increased with increasing tuber size. The final chapter draws an overall conclusion from the research findings, which could shed light on the reproductive biology of Remusatia vivipara, the unique bulbil developmental pattern and its phylogenetic affinity. Further examinations on pollen meiosis, stamen and ovule developments in R. vivipara are necessary. The application of nuclear DNA markers may also provide a remarkable contribution to the revision of the genus Colocasia and its relationship with R. hookeriana. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:38:05Z (GMT). No. of bitstreams: 1 ntu-104-D94b44003-1.pdf: 5046987 bytes, checksum: 9fe22c25801ed369391f45f7fefce42c (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF TABLES ix LIST OF FIGURES x Chapter 1 Introduction 1 1.1 Bulbiliferous plants 1 1.2 Bulbil development in Remusatia 1 Chapter 2 Paraphyly of Remusatia (Araceae) and multiple origins of bulbiliferous stolon 4 2.0 Abstract 4 2.1 Introduction 5 2.2 Materials and Methods 9 2.2.1 Species sampling 9 2.2.2 Molecular analysis 12 2.2.3 Alignment and phylogenetic analysis 13 2.2.4 Chromosome counting 14 2.2.5 Flow cytometry 15 2.3 Results 15 2.3.1 Sequence characteristics 15 2.3.2 Phylogeny of Remusatia 18 2.3.3 Ploidy levels in R. vivipara and R. yunnanensis 20 2.4 Discussion 20 2.4.1 Phylogenetic and monophyletic relationships 20 2.4.2 Parental relationship 21 2.5 Conclusion 22 Chapter 3 Remusatia yunnanensis (Araceae), a Newly Recorded Species in Taiwan 23 3.0 Abstract 23 3.1 Introduction 23 3.2 Taxomnmic treatment 27 3.3 Discussion 30 Chapter 4 Asexual bulbil development and diversification of reproductive strategy between Remusatia vivipara and Remusatia pumila (Araceae) 33 4.0 Abstract 33 4.1 Introduction 34 4.2 Materials and methods 38 4.2.1 Source of plant material and growth conditions 38 4.2.2 SEM observations 39 4.2.3 LM observations 39 4.2.4 Pollen viability and germination test 40 4.2.5 Chromosome counting 40 4.3 Results 41 4.3.1 The development of bulbiliferous stolons and bulbil clusters 41 4.3.2 Detailed bulbil development under SEM and light microscopy 43 4.3.3 Comparison of bulbiliferous shtolons and stoloniferous shoots 47 4.3.4 Pollen viability and pollen germination rates 48 4.3.5 Chromosome numbers 50 4.4 Discussion 51 4.4.1 Function and structure of the hooked scales 51 4.4.2 The ontogeny of Remusatia bulbils 51 4.4.3 Triploid population of R. vivipara seldom set seeds in Taiwan 52 4.4.4 Why R. vivipara needs conservation in Taiwan 53 Chapter 5 Gibberellin-induced flowering in sexually defective Remusatia vivipara (Araceae) 54 5.0 Abstract 54 5.1 Introduction 55 5.2 Materials and Methods 56 5.3 Results 58 5.3.1 The effects of GA3 concentrations and tuber sizes on flowering 58 5.3.2 Number of days to flower 60 5.3.3 The effects of GA3 concentrations on inflorescence characteristics 60 5.3.4 The effects of tuber sizes on inflorescence characteristics 64 5.3.5 Effects of GA3 concentrations and tuber sizes on vegetative growth 65 5.4 Discussion 67 5.5 Conclusion 69 Chapter 6 Overall conclusion 70 Literature cited 72 Supplemental Data 1 78 Supplemental Data 2 157 | |
dc.language.iso | en | |
dc.title | 以形態、分子與珠芽發育特徵研究臺灣目賊芋的側系群分類 | zh_TW |
dc.title | Paraphyly Study of Remusatia vivipara (Roxb.) Schott (Araceae) by Morphology, Molecular and Bulbil Development Traits | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 謝宗欣,吳明洲,楊宗愈,蘇夢淮 | |
dc.subject.keyword | 天南星科,目賊芋屬,小孢子母細胞,倒鉤鱗片,花粉活力,譜系,多倍體,激勃素,塊莖,花序特徵,珠芽枝條, | zh_TW |
dc.subject.keyword | Araceae,Remusatia,Pollen mother cell,Hooked scale,Pollen viability,Phylogeny,Polyploidy,Gibberellin acid,Tuber,Inflorescence characteristics,Bulbil stolon, | en |
dc.relation.page | 192 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-04-07 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
Appears in Collections: | 生態學與演化生物學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-104-1.pdf Restricted Access | 4.93 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.