請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54757完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃敏銓,林凱信 | |
| dc.contributor.author | Wan-Ling Ho | en |
| dc.contributor.author | 何宛玲 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:37:55Z | - |
| dc.date.available | 2015-09-25 | |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-04-13 | |
| dc.identifier.citation | Ahlen, J., J. Wejde, O. Brosjo, A. von Rosen, W. H. Weng, L. Girnita, O. Larsson, and C. Larsson. Insulin-Like Growth Factor Type 1 Receptor Expression Correlates to Good Prognosis in Highly Malignant Soft Tissue Sarcoma. Clin Cancer Res. 2005 Jan 1;11(1): 206-16.
Brockhausen, I. Mucin-Type O-Glycans in Human Colon and Breast Cancer: Glycodynamics and Functions. EMBO Rep. 2006 Jun;7(6): 599-604. Brodeur, G. M. Neuroblastoma: Biological Insights into a Clinical Enigma. Nat Rev Cancer. 2003 Mar;3(3): 203-16. Brodeur, G. M., J. Pritchard, F. Berthold, N. L. Carlsen, V. Castel, R. P. Castelberry, B. De Bernardi, et al. Revisions of the International Criteria for Neuroblastoma Diagnosis, Staging, and Response to Treatment. J Clin Oncol. 1993 Aug;11(8): 1466-77. Cao, Y., P. Stosiek, G. F. Springer, and U. Karsten. Thomsen-Friedenreich-Related Carbohydrate Antigens in Normal Adult Human Tissues: A Systematic and Comparative Study. Histochem Cell Biol. 1996 Aug;106(2): 197-207. Castleberry, R. P. Neuroblastoma. Eur J Cancer. 1997 Aug;33(9): 1430-7; discussion 37-8. Chan, J. L., M. Lai, and L. H. Wang. Effect of Dimerization on Signal Transduction and Biological Function of Oncogenic Ros, Insulin, and Insulin-Like Growth Factor I Receptors. J Biol Chem. 1997 Jan 3;272(1): 146-53. Cheung, N. K., and M. A. Dyer. Neuroblastoma: Developmental Biology, Cancer Genomics and Immunotherapy. Nat Rev Cancer. 2013 Jun;13(6): 397-411. Clement, M., J. Rocher, G. Loirand, and J. Le Pendu. Expression of Sialyl-Tn Epitopes on Beta1 Integrin Alters Epithelial Cell Phenotype, Proliferation and Haptotaxis. J Cell Sci. 2004 Oct 1;117(Pt 21): 5059-69. Coulter, D. W., J. Blatt, A. J. D'Ercole, and B. M. Moats-Staats. Igf-I Receptor Inhibition Combined with Rapamycin or Temsirolimus Inhibits Neuroblastoma Cell Growth. Anticancer Res. 2008 May-Jun;28(3A): 1509-16. De Meyts, P., and J. Whittaker. Structural Biology of Insulin and Igf1 Receptors: Implications for Drug Design. Nat Rev Drug Discov. 2002 Oct;1(10): 769-83. Deakin, N. O., and C. E. Turner. Paxillin Comes of Age. J Cell Sci. 2008 Aug 1;121(Pt 15): 2435-44. Dennis, J. W., J. Pawling, P. Cheung, E. Partridge, and M. Demetriou. Udp-N-Acetylglucosamine:Alpha-6-D-Mannoside Beta1,6 N-Acetylglucosaminyltransferase V (Mgat5) Deficient Mice. Biochim Biophys Acta. 2002 Dec 19;1573(3): 414-22. Dosaka-Akita, H., I. Kinoshita, K. Yamazaki, H. Izumi, T. Itoh, H. Katoh, M. Nishimura, et al. N-Acetylgalactosaminyl Transferase-3 Is a Potential New Marker for Non-Small Cell Lung Cancers. Br J Cancer. 2002 Sep 23;87(7): 751-5. Dricu, A., L. Kanter, M. Wang, G. Nilsson, M. Hjertman, J. Wejde, and O. Larsson. Expression of the Insulin-Like Growth Factor 1 Receptor (Igf-1r) in Breast Cancer Cells: Evidence for a Regulatory Role of Dolichyl Phosphate in the Transition from an Intracellular to an Extracellular Igf-1 Pathway. Glycobiology. 1999 Jun;9(6): 571-9. Evangelopoulos, M. E., J. Weis, and A. Kruttgen. Signalling Pathways Leading to Neuroblastoma Differentiation after Serum Withdrawal: Hdl Blocks Neuroblastoma Differentiation by Inhibition of Egfr. Oncogene. 2005 May 5;24(20): 3309-18. Gaziel-Sovran, A., M. F. Segura, R. Di Micco, M. K. Collins, D. Hanniford, E. Vega-Saenz de Miera, J. F. Rakus, et al. Mir-30b/30d Regulation of Galnac Transferases Enhances Invasion and Immunosuppression During Metastasis. Cancer Cell. 2011 Jul 12;20(1): 104-18. Ghosh, P., N. M. Dahms, and S. Kornfeld. Mannose 6-Phosphate Receptors: New Twists in the Tale. Nat Rev Mol Cell Biol. 2003 Mar;4(3): 202-12. Grewal, P. K., P. J. Holzfeind, R. E. Bittner, and J. E. Hewitt. Mutant Glycosyltransferase and Altered Glycosylation of Alpha-Dystroglycan in the Myodystrophy Mouse. Nat Genet. 2001 Jun;28(2): 151-4. Gu, J., Y. Sato, Y. Kariya, T. Isaji, N. Taniguchi, and T. Fukuda. A Mutual Regulation between Cell-Cell Adhesion and N-Glycosylation: Implication of the Bisecting Glcnac for Biological Functions. J Proteome Res. 2009 Feb;8(2): 431-5. Guo, H. B., I. Lee, M. Kamar, S. K. Akiyama, and M. Pierce. Aberrant N-Glycosylation of Beta1 Integrin Causes Reduced Alpha5beta1 Integrin Clustering and Stimulates Cell Migration. Cancer Res. 2002 Dec 1;62(23): 6837-45. Hakomori, S. Glycosylation Defining Cancer Malignancy: New Wine in an Old Bottle. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16): 10231-3. Ho, R., J. E. Minturn, T. Hishiki, H. Zhao, Q. Wang, A. Cnaan, J. Maris, A. E. Evans, and G. M. Brodeur. Proliferation of Human Neuroblastomas Mediated by the Epidermal Growth Factor Receptor. Cancer Res. 2005 Nov 1;65(21): 9868-75. Ho, W. L., M. I. Che, C. H. Chou, H. H. Chang, Y. M. Jeng, W. M. Hsu, K. H. Lin, and M. C. Huang. B3gnt3 Expression Suppresses Cell Migration and Invasion and Predicts Favorable Outcomes in Neuroblastoma. Cancer Sci. 2013 Dec;104(12): 1600-8. Hu, B., M. J. Jarzynka, P. Guo, Y. Imanishi, D. D. Schlaepfer, and S. Y. Cheng. Angiopoietin 2 Induces Glioma Cell Invasion by Stimulating Matrix Metalloprotease 2 Expression through the Alphavbeta1 Integrin and Focal Adhesion Kinase Signaling Pathway. Cancer Res. 2006 Jan 15;66(2): 775-83. Isaji, T., J. Gu, R. Nishiuchi, Y. Zhao, M. Takahashi, E. Miyoshi, K. Honke, K. Sekiguchi, and N. Taniguchi. Introduction of Bisecting Glcnac into Integrin Alpha5beta1 Reduces Ligand Binding and Down-Regulates Cell Adhesion and Cell Migration. J Biol Chem. 2004 May 7;279(19): 19747-54. Ishibe, S., D. Joly, Z. X. Liu, and L. G. Cantley. Paxillin Serves as an Erk-Regulated Scaffold for Coordinating Fak and Rac Activation in Epithelial Morphogenesis. Mol Cell. 2004 Oct 22;16(2): 257-67. Ishida, H., A. Togayachi, T. Sakai, T. Iwai, T. Hiruma, T. Sato, R. Okubo, et al. A Novel Beta1,3-N-Acetylglucosaminyltransferase (Beta3gn-T8), Which Synthesizes Poly-N-Acetyllactosamine, Is Dramatically Upregulated in Colon Cancer. FEBS Lett. 2005 Jan 3;579(1): 71-8. Kamijo, T., and A. Nakagawara. Molecular and Genetic Bases of Neuroblastoma. Int J Clin Oncol. 2012 Jun;17(3): 190-5. Kataoka, K., and N. H. Huh. A Novel Beta1,3-N-Acetylglucosaminyltransferase Involved in Invasion of Cancer Cells as Assayed in Vitro. Biochem Biophys Res Commun. 2002 Jun 21;294(4): 843-8. Kim, J. G., M. J. Kang, Y. K. Yoon, H. P. Kim, J. Park, S. H. Song, S. W. Han, et al. Heterodimerization of Glycosylated Insulin-Like Growth Factor-1 Receptors and Insulin Receptors in Cancer Cells Sensitive to Anti-Igf1r Antibody. PLoS One. 2012;7(3): e33322. Kingsley, P. D., K. G. Hagen, K. M. Maltby, J. Zara, and L. A. Tabak. Diverse Spatial Expression Patterns of Udp-Galnac:Polypeptide N-Acetylgalactosaminyl-Transferase Family Member Mrnas During Mouse Development. Glycobiology. 2000 Dec;10(12): 1317-23. Kjeldsen, T., H. Clausen, S. Hirohashi, T. Ogawa, H. Iijima, and S. Hakomori. Preparation and Characterization of Monoclonal Antibodies Directed to the Tumor-Associated O-Linked Sialosyl-2----6 Alpha-N-Acetylgalactosaminyl (Sialosyl-Tn) Epitope. Cancer Res. 1988 Apr 15;48(8): 2214-20. LeRoith, D., and C. T. Roberts, Jr. The Insulin-Like Growth Factor System and Cancer. Cancer Lett. 2003 Jun 10;195(2): 127-37. Li, Z., J. Jaboin, P. A. Dennis, and C. J. Thiele. Genetic and Pharmacologic Identification of Akt as a Mediator of Brain-Derived Neurotrophic Factor/Trkb Rescue of Neuroblastoma Cells from Chemotherapy-Induced Cell Death. Cancer Res. 2005 Mar 15;65(6): 2070-5. Li, Z., and C. J. Thiele. Targeting Akt to Increase the Sensitivity of Neuroblastoma to Chemotherapy: Lessons Learned from the Brain-Derived Neurotrophic Factor/Trkb Signal Transduction Pathway. Expert Opin Ther Targets. 2007 Dec;11(12): 1611-21. Liao, W. C., C. H. Chen, C. H. Liu, M. J. Huang, C. W. Chen, J. S. Hung, C. H. Chou, et al. Expression of Galnt2 in Human Extravillous Trophoblasts and Its Suppressive Role in Trophoblast Invasion. Placenta. 2012 Dec;33(12): 1005-11. Lin, M. C., M. J. Huang, C. H. Liu, T. L. Yang, and M. C. Huang. Galnt2 Enhances Migration and Invasion of Oral Squamous Cell Carcinoma by Regulating Egfr Glycosylation and Activity. Oral Oncol. 2014 May;50(5): 478-84. Liu, J., L. Yang, M. Jin, L. Xu, and S. Wu. Regulation of the Invasion and Metastasis of Human Glioma Cells by Polypeptide N-Acetylgalactosaminyltransferase 2. Mol Med Rep. 2011 Nov-Dec;4(6): 1299-305. Malempati, S., B. Weigel, A. M. Ingle, C. H. Ahern, J. M. Carroll, C. T. Roberts, J. M. Reid, et al. Phase I/Ii Trial and Pharmacokinetic Study of Cixutumumab in Pediatric Patients with Refractory Solid Tumors and Ewing Sarcoma: A Report from the Children's Oncology Group. J Clin Oncol. 2012 Jan 20;30(3): 256-62. Maris, J. M., M. D. Hogarty, R. Bagatell, and S. L. Cohn. Neuroblastoma. Lancet. 2007 Jun 23;369(9579): 2106-20. Masnikosa, R., I. Baricevic, D. R. Jones, and O. Nedic. Characterisation of Insulin-Like Growth Factor Receptors and Insulin Receptors in the Human Placenta Using Lectin Affinity Methods. Growth Horm IGF Res. 2006 Jun;16(3): 174-84. Meyer, G. E., E. Shelden, B. Kim, and E. L. Feldman. Insulin-Like Growth Factor I Stimulates Motility in Human Neuroblastoma Cells. Oncogene. 2001 Nov 8;20(51): 7542-50. Mitoma, J., B. Petryniak, N. Hiraoka, J. C. Yeh, J. B. Lowe, and M. Fukuda. Extended Core 1 and Core 2 Branched O-Glycans Differentially Modulate Sialyl Lewis X-Type L-Selectin Ligand Activity. J Biol Chem. 2003 Mar 14;278(11): 9953-61. Mitra, S. K., and D. D. Schlaepfer. Integrin-Regulated Fak-Src Signaling in Normal and Cancer Cells. Curr Opin Cell Biol. 2006 Oct;18(5): 516-23. Opel, D., C. Poremba, T. Simon, K. M. Debatin, and S. Fulda. Activation of Akt Predicts Poor Outcome in Neuroblastoma. Cancer Res. 2007 Jan 15;67(2): 735-45. Palmer, M., J. Parker, S. Modi, C. Butts, M. Smylie, A. Meikle, M. Kehoe, G. MacLean, and M. Longenecker. Phase I Study of the Blp25 (Muc1 Peptide) Liposomal Vaccine for Active Specific Immunotherapy in Stage Iiib/Iv Non-Small-Cell Lung Cancer. Clin Lung Cancer. 2001 Aug;3(1): 49-57; discussion 58. Pappo, A. S., S. R. Patel, J. Crowley, D. K. Reinke, K. P. Kuenkele, S. P. Chawla, G. C. Toner, et al. R1507, a Monoclonal Antibody to the Insulin-Like Growth Factor 1 Receptor, in Patients with Recurrent or Refractory Ewing Sarcoma Family of Tumors: Results of a Phase Ii Sarcoma Alliance for Research through Collaboration Study. J Clin Oncol. 2011 Dec 1;29(34): 4541-7. Park, J. H., T. Katagiri, S. Chung, K. Kijima, and Y. Nakamura. Polypeptide N-Acetylgalactosaminyltransferase 6 Disrupts Mammary Acinar Morphogenesis through O-Glycosylation of Fibronectin. Neoplasia. 2011 Apr;13(4): 320-6. Park, J. H., T. Nishidate, K. Kijima, T. Ohashi, K. Takegawa, T. Fujikane, K. Hirata, Y. Nakamura, and T. Katagiri. Critical Roles of Mucin 1 Glycosylation by Transactivated Polypeptide N-Acetylgalactosaminyltransferase 6 in Mammary Carcinogenesis. Cancer Res. 2010 Apr 1;70(7): 2759-69. Park, J. R., A. Eggert, and H. Caron. Neuroblastoma: Biology, Prognosis, and Treatment. Pediatr Clin North Am. 2008 Feb;55(1): 97-120, x. Peyrard, M., E. Seroussi, A. C. Sandberg-Nordqvist, Y. G. Xie, F. Y. Han, I. Fransson, J. Collins, et al. The Human Large Gene from 22q12.3-Q13.1 Is a New, Distinct Member of the Glycosyltransferase Gene Family. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2): 598-603. Reis, C. A., H. Osorio, L. Silva, C. Gomes, and L. David. Alterations in Glycosylation as Biomarkers for Cancer Detection. J Clin Pathol. 2010 Apr;63(4): 322-9. Sartelet, H., L. L. Oligny, and G. Vassal. Akt Pathway in Neuroblastoma and Its Therapeutic Implication. Expert Rev Anticancer Ther. 2008 May;8(5): 757-69. Schlaepfer, D. D., S. K. Mitra, and D. Ilic. Control of Motile and Invasive Cell Phenotypes by Focal Adhesion Kinase. Biochim Biophys Acta. 2004 Jul 5;1692(2-3): 77-102. Seales, E. C., G. A. Jurado, B. A. Brunson, J. K. Wakefield, A. R. Frost, and S. L. Bellis. Hypersialylation of Beta1 Integrins, Observed in Colon Adenocarcinoma, May Contribute to Cancer Progression by up-Regulating Cell Motility. Cancer Res. 2005 Jun 1;65(11): 4645-52. Shimada, H., I. M. Ambros, L. P. Dehner, J. Hata, V. V. Joshi, and B. Roald. Terminology and Morphologic Criteria of Neuroblastic Tumors: Recommendations by the International Neuroblastoma Pathology Committee. Cancer. 1999 Jul 15;86(2): 349-63. Shimada, H., I. M. Ambros, L. P. Dehner, J. Hata, V. V. Joshi, B. Roald, D. O. Stram, et al. The International Neuroblastoma Pathology Classification (the Shimada System). Cancer. 1999 Jul 15;86(2): 364-72. Shiraishi, N., A. Natsume, A. Togayachi, T. Endo, T. Akashima, Y. Yamada, N. Imai, et al. Identification and Characterization of Three Novel Beta 1,3-N-Acetylglucosaminyltransferases Structurally Related to the Beta 1,3-Galactosyltransferase Family. J Biol Chem. 2001 Feb 2;276(5): 3498-507. Tanno, B., A. Negroni, R. Vitali, M. C. Pirozzoli, V. Cesi, C. Mancini, B. Calabretta, and G. Raschella. Expression of Insulin-Like Growth Factor-Binding Protein 5 in Neuroblastoma Cells Is Regulated at the Transcriptional Level by C-Myb and B-Myb Via Direct and Indirect Mechanisms. J Biol Chem. 2002 Jun 28;277(26): 23172-80. Tarp, M. A., and H. Clausen. Mucin-Type O-Glycosylation and Its Potential Use in Drug and Vaccine Development. Biochim Biophys Acta. 2008 Mar;1780(3): 546-63. Ten Hagen, K. G., T. A. Fritz, and L. A. Tabak. All in the Family: The Udp-Galnac:Polypeptide N-Acetylgalactosaminyltransferases. Glycobiology. 2003 Jan;13(1): 1R-16R. Tian, E., and K. G. Ten Hagen. Recent Insights into the Biological Roles of Mucin-Type O-Glycosylation. Glycoconj J. 2009 Apr;26(3): 325-34. Tong, A. W., and J. Nemunaitis. Modulation of Mirna Activity in Human Cancer: A New Paradigm for Cancer Gene Therapy? Cancer Gene Ther. 2008 Jun;15(6): 341-55. Tran, D. T., and K. G. Ten Hagen. Mucin-Type O-Glycosylation During Development. J Biol Chem. 2013 Mar 8;288(10): 6921-9. Tsai, H. Y., B. L. Hsi, I. J. Hung, C. P. Yang, J. N. Lin, J. C. Chen, S. F. Tsai, and S. F. Huang. Correlation of Mycn Amplification with Mcm7 Protein Expression in Neuroblastomas: A Chromogenic in Situ Hybridization Study in Paraffin Sections. Hum Pathol. 2004 Nov;35(11): 1397-403. Valastyan, S., and R. A. Weinberg. Assaying Microrna Loss-of-Function Phenotypes in Mammalian Cells: Emerging Tools and Their Potential Therapeutic Utility. RNA Biol. 2009 Nov-Dec;6(5): 541-5. van Golen, C. M., T. S. Schwab, B. Kim, M. E. Soules, S. Su Oh, K. Fung, K. L. van Golen, and E. L. Feldman. Insulin-Like Growth Factor-I Receptor Expression Regulates Neuroblastoma Metastasis to Bone. Cancer Res. 2006 Jul 1;66(13): 6570-8. van Golen, C. M., M. E. Soules, A. R. Grauman, and E. L. Feldman. N-Myc Overexpression Leads to Decreased Beta1 Integrin Expression and Increased Apoptosis in Human Neuroblastoma Cells. Oncogene. 2003 May 1;22(17): 2664-73. Wagner, K. W., E. A. Punnoose, T. Januario, D. A. Lawrence, R. M. Pitti, K. Lancaster, D. Lee, et al. Death-Receptor O-Glycosylation Controls Tumor-Cell Sensitivity to the Proapoptotic Ligand Apo2l/Trail. Nat Med. 2007 Sep;13(9): 1070-7. Wagner, M. J., and R. G. Maki. Type 1 Insulin-Like Growth Factor Receptor Targeted Therapies in Pediatric Cancer. Front Oncol. 2013;3:9. Wu, Q., H. O. Liu, Y. D. Liu, W. S. Liu, D. Pan, W. J. Zhang, L. Yang, et al. Decreased Expression of Hepatocyte Nuclear Factor 4alpha (Hnf4alpha)/Microrna-122 (Mir-122) Axis in Hepatitis B Virus-Associated Hepatocellular Carcinoma Enhances Potential Oncogenic Galnt10 Protein Activity. J Biol Chem. 2015 Jan 9;290(2): 1170-85. Wu, Y. M., C. H. Liu, R. H. Hu, M. J. Huang, J. J. Lee, C. H. Chen, J. Huang, et al. Mucin Glycosylating Enzyme Galnt2 Regulates the Malignant Character of Hepatocellular Carcinoma by Modifying the Egf Receptor. Cancer Res. 2011 Dec 1;71(23): 7270-9. Yamamoto, S., S. Nakamori, M. Tsujie, Y. Takahashi, H. Nagano, K. Dono, K. Umeshita, et al. Expression of Uridine Diphosphate N-Acetyl-Alpha-D-Galactosamine: Polypeptide N-Acetylgalactosaminyl Transferase 3 in Adenocarcinoma of the Pancreas. Pathobiology. 2004;71(1): 12-8. Yeh, J. C., N. Hiraoka, B. Petryniak, J. Nakayama, L. G. Ellies, D. Rabuka, O. Hindsgaul, et al. Novel Sulfated Lymphocyte Homing Receptors and Their Control by a Core1 Extension Beta 1,3-N-Acetylglucosaminyltransferase. Cell. 2001 Jun 29;105(7): 957-69. Zhang, Y., H. Iwasaki, H. Wang, T. Kudo, T. B. Kalka, T. Hennet, T. Kubota, et al. Cloning and Characterization of a New Human Udp-N-Acetyl-Alpha-D-Galactosamine:Polypeptide N-Acetylgalactosaminyltransferase, Designated Pp-Galnac-T13, That Is Specifically Expressed in Neurons and Synthesizes Galnac Alpha-Serine/Threonine Antigen. J Biol Chem. 2003 Jan 3;278(1): 573-84. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54757 | - |
| dc.description.abstract | 簡單黏蛋白型醣類抗原例如Tn、T、唾液酸-Tn (sTn)、和唾液酸-T (sT) 抗原的異常表現被認為與惡性轉化及癌症病程惡化有關聯性。黏蛋白型O型醣化起始於把N-acetylgalactosamine (即N-乙醯胺基半乳糖,簡稱GalNAc) 從UDP-Gal NAc轉移到目標蛋白的絲胺酸 (serine) 和蘇胺酸 (threonine) 上,進而形成 Tn抗原;這個反應是由N-乙醯胺基半乳糖轉移酶家族 (GalNAc transferases;簡稱GALNTs) 所催化,是一個重要的調控步驟。其中的一員GALNT2 在小鼠胚胎形成過程當中的神經組織有具差別性的表現形態。Tn抗原再接上Gal後,便形成了 core 1,也就是 T 抗原。β1,3-乙醯葡萄糖胺轉移酶家族 (β1,3-N-acetylglucosaminyltransferases;簡稱B3GNT) 參與了core 1 到 core 4 的形成或延長,其中B3GNT3,幾乎單獨地負責把GlcNAc以β1-3 linkage鍵結的方式加到core 1 (T抗原) 上,形成 extended core 1。因此我們研究的主題是探討這兩個醣基轉移酶 (B3GNT3 及 GALNT2) 在人類神經母細胞瘤所扮演的角色。在B3GNT3的研究中,我們利用免疫組織學的方法,發現在愈分化成熟的神經母細胞中,B3GNT3 的表現量及免疫染色強度愈強。另外,B3GNT3 的表現在臨床病理與生物學因子的統計方面,除了與組織分化的程度有相關性外,也與 Shimada 組織學分類屬較佳預後者及較可能存活者,有顯著關聯性。多變項存活分析則發現,與”較早的臨床分期”、”MYCN 無擴增現象” 並列為預後較佳 (五年存活率) 的獨立預後因子。在細胞惡性表現型的實驗中,我們發現 B3GNT3 會抑制神經母細胞的移行及侵犯行為,而且惡性表現型的改變是經由抑制 Akt 及 ERK 的活化所造成的,也解釋了B3GNT3 極有可能是經由細胞分化程度以外的機制,例如改變或修飾細胞表面的O型醣化,進而影響細胞移行及侵犯等惡性行為。在許多腫瘤細胞的行為中,Akt 及 ERK 是 integrins 和 receptor tyrosine kinases 的下游訊息傳遞分子,而之前也有研究顯示 integrins 和 receptor tyrosine kinases 帶有O型聚醣,因此我們認為 B3GNT3 也可能修飾神經母細胞上 integrins 或 receptor tyrosine kinases 的O型聚醣,形成了 extended core 1 的寡醣鏈,進而抑制了神經母細胞的惡性行為。在 GALNT2 的研究中,我們同樣先利用免疫組織學的方法發現,發現在愈分化成熟的神經母細胞中,GALNT2 的表現量及免疫染色強度愈強。另外,GALNT2 的表現在臨床病理與生物學因子的統計方面,與發病年紀較年輕、較早的臨床分期、原發部位為腎上腺以外的位置、國際神經母細胞瘤病理分類被歸類在預後較佳者、及 MYCN 無擴增現象等,有顯著的關聯性。多變項存活分析則顯示 GALNT2 的表現與其他變項 (較早的臨床分期、MYCN 無擴增現象者、國際神經母細胞瘤病理學分類被歸類在預後較佳者) 同為預後較佳 (五年存活率) 的獨立預後因子。神經母細胞瘤細胞經過 GALNT2 過度表現 (overexpression) 處理後會抑制類胰島素生長因子所誘導的細胞行為,包括細胞生長、移行、侵犯等惡性行為;然而,GALNT2減量 (knockdown) 則會促進這三種細胞惡性行為。此結果暗示著,GALNT2 (與B3GNT3 類似) 亦極有可能是經由細胞分化程度以外的機制,例如改變或修飾細胞表面受質的O型醣化,進而影響細胞移行及侵犯等惡性行為。進一步的機制探討則發現 GALNT2 過度表現會修飾類胰島素生長因子接受器上的O型醣化,進而抑制類胰島素生長因子接受器被類胰島素生長因子誘發的二聚體反應 (dimerization),再影響下游的訊息傳遞。因此我們認為 GALNT2 會經由調控神經母細胞的類胰島素生長因子接受器之訊息傳遞,進而影響神經母細胞的癌症行為,也說明了它在神經母細胞瘤致病機轉所扮演的重要角色。我們認為雖然仍有許多相關的醣基轉移酶可能同時或有前後順序的影響著神經母細胞的行為,但這兩個醣基轉移酶的研究將有助於對神經母細胞腫瘤形成原因的了解,同時也可能有助於對神經母細胞瘤醣化作用標靶治療的發展。 | zh_TW |
| dc.description.abstract | Aberrant expression of the simple mucin-type carbohydrate antigens such as Tn, sialyl-Tn, T, and sialyl-T antigens is associated with malignant transformation and cancer progression. N-acetylgalactosaminyltransferase 2 (GALNT2), one of the enzymes that mediate the initial step of mucin-type O-glycosylation, is responsible for forming Tn antigen. GALNT2 is expressed differentially in nervous tissues during mouse embryogenesis. T synthase galactosylates Tn to form the core 1 (Galβ1→3GalNAc, T antigen). β1,3-N-acetylglucosaminyltransferase-3 (B3GNT3), formerly called core 1 β3GlcNAcT, is responsible for adding GlcNAc to core 1 (T antigen) in a β1,3 linkage, forming extended core 1 oligosaccharides. However, the roles of these two glycosyltransferases in neuroblastoma (NB) remain unclear. Here we showed that increased B3GNT3 expression evaluated by immunohistochemistry in NB tumor tissues correlated well with the histological grade of differentiation as well as a favorable Shimada’s subset of pathology. Multivariate analyses revealed that positive B3GNT3 expression in tumor tissues predicted a favorable prognosis in NB patients independent of other prognostic markers. B3GNT3 overexpression suppresses T antigen formation and malignant phenotypes including migration and invasion of SK-N-SH cells, whereas B3GNT3 knockdown enhances these phenotypes of SK-N-SH cells. Moreover, B3GNT3 expression decreased phosphorylation of focal adhesion kinase (FAK), Src, paxillin, Akt, and ERK1/2. On the other hand, we showed that increased GALNT2 expression evaluated using immunohistochemistry in NB tumor tissues correlated well with the histological grade of differentiation as well as younger age at diagnosis, early clinical stage, primary tumor originated from the extra-adrenal site, favorable INPC histology, and MYCN non-amplification. Multivariate analysis showed that GALNT2 expression is an independent prognostic factor for better survival for NB patients. GALNT2 overexpression suppressed IGF-1-induced cell growth, migration, and invasion of NB cells, whereas GALNT2 knockdown enhanced these NB phenotypes. Mechanistic investigations demonstrated that GALNT2 overexpression modified O-glycans on IGF-1R, which suppressed IGF-1-triggered IGF-1R dimerization and subsequent downstream signaling events. Conversely, these properties were reversed by GALNT2 knockdown in NB cells. Our findings suggest that GALNT2 regulates malignant phenotypes of NB cells through the IGF-1R signaling pathway, suggesting a critical role for GALNT2 in the pathogenesis of NB. These results regarding B3GNT3 and GALNT2 may also provide an alternative approach for cancer therapy by means of modulating cancer-specific glycosylation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:37:55Z (GMT). No. of bitstreams: 1 ntu-104-Q96421011-1.pdf: 3450811 bytes, checksum: ad1e17abe55cec99428f30fcfacfe148 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 vi 博士論文內容 第一章 緒論 (Introduction) 1 1.1. 神經母細胞瘤 2 1.2. 蛋白質醣化 (Protein glycosylation) 4 1.3. N型醣化 4 1.4. O型醣化 5 1.5. 異常的O型醣化與癌症 7 1.6. 簡單黏蛋白型醣類抗原 7 1.7. B3GNT family及其與疾病的關係 8 1.8. GALNT family及其與疾病的關係 10 第二章 研究方法與材料 (Materials and Methods) 13 2.1. 病患資料及檢體收集 (Patients and tissue samples) 14 2.2. 免疫組織染色法 (Immunohistochemistry) 15 2.3. 細胞株及細胞培養 16 2.4. 細胞轉殖(Transfection) 17 2.5. B3GNT3及GALNT2 減量 (Knockdown of B3GNT3 and GALNT2) 18 2.6. 免疫螢光染色 (Immunofluorescent staining) 18 2.7. 細胞聚落形成試驗 (colony formation assay) 及噻唑藍比色法 (MTT assay) 19 2.8. 裸鼠的異種移植物模型 (Xenograft tumor growth in nude mice) 19 2.9. Transwell 移行以及Matrigel 侵犯試驗 20 2.10. 流式細胞儀 (Flow cytometry) 21 2.11. 西方印漬術及凝集素pull-down 試驗 22 2.12. 接受器二聚體試驗 (Receptor dimerization assay) 23 2.13. 統計分析 (Statistical analyses) 24 第三章 結果 (Results) 25 3.1. B3GNT3 及GALNT2在神經母細胞瘤的表現以及其與臨床病理和生物性因子的關聯性 26 3.2. B3GNT3 及GALNT2的表現與存活分析 28 3.3. B3GNT3 及 GALNT2 在神經母細胞的轉殖 29 3.4. B3GNT3 抑制神經母細胞的惡性表現型 (malignant phenotypes) 31 3.5. B3GNT3 是經由減少Akt及ERK的活性而抑制神經母細胞移行及侵犯能力 32 3.6. GALNT2 抑制神經母細胞的惡性表現型 (malignant phenotypes) 33 3.7. GALNT2 抑制小鼠神經母細胞瘤的生長 (GALNT2 inhibits tumor growth in vivo) 34 3.8. GALNT2 修飾神經母細胞 IGF-1R 的醣化作用及活性 34 3.9. GALNT2 調控神經母細胞上 IGF-1R 的磷酸化及下游的訊息傳遞 36 第四章 討論 (Discussion) 37 4.1. B3GNT3 38 4.2. GALNT2 43 第五章 展望 49 第六章 論文英文簡述 (Summary) 56 第七章 參考文獻 (References) 84 第八章 圖表 (Tables and Figures) 92 表 1. B3GNT3 在神經母細胞瘤的表現與臨床病理及生物學特徵的關聯性 93 表 2. GALNT2 在神經母細胞瘤的表現與臨床病理及生物學特徵的關聯性 94 表 3. 影響存活率的臨床病理和生物性因子之分析 (B3GNT3) 95 表 4. 影響存活率的臨床病理和生物性因子之分析 (GALNT2) 96 圖 1: 黏蛋白型O型聚醣的合成步驟 97 圖 2: 最常見的黏蛋白型O型聚醣合成途徑 98 圖 3: B3GNT3在神經母細胞瘤的表現 99 圖 4: GALNT2在神經母細胞瘤的表現 100 圖 5: B3GNT3的表現與病患的存活率有相關性 101 圖 6: GALNT2的表現與神經母細胞瘤的組織學分類及病患的存活率有相關性 102 圖 7: B3GNT3 對SK-N-SH細胞惡性表現型的影響 103 圖 8: B3GNT3 knockdown對SK-N-SH細胞惡性表現型的影響 104 圖 9: B3GNT3 所調控的訊息傳遞分子 105 圖 10: SH-SY5Y 和 SK-N-DZ 親代細胞表面Tn、T、sTn、及 sT 抗原的表現形態 106 圖 11: GALNT2 在神經母細胞的轉殖 107 圖 12: GALNT2 在神經母細胞的轉殖 108 圖 13: GALNT2 轉殖劑量與細胞表面 Tn 抗原表現量的相關性 109 圖 14: GALNT2 對神經母細胞惡性表現型的影響 110 圖 15: GALNT2 knockdown (使用GALNT2 siRNA 2號) 對SK-N-DZ細胞惡性表現型的影響 111 圖 16: GALNT2 會抑制小鼠腫瘤的生長 112 圖 17: GALNT2 對SK-N-AS細胞惡性表現型的影響 113 圖 18: 凝集素VVA 對 Tn 結構有特異性 114 圖 19: GALNT2 修飾神經母細胞的 IGF-1R 醣化作用 115 圖 20: GALNT2 修飾神經母細胞的IGF-1R活性,並調節IGF-1R 磷酸化及訊息傳遞 116 圖 21: IGF-1 抑制劑 (AG1024) 可抑制GALNT2-knockdown SK-N-DZ 細胞的惡性表現型 117 附錄 (碩博士班修業期間所發表之相關論文清冊) 118 | |
| dc.language.iso | zh-TW | |
| dc.subject | N-乙醯胺基半乳糖轉移? 2 | zh_TW |
| dc.subject | 3-乙醯葡萄糖胺轉移? 3 | zh_TW |
| dc.subject | β1 | zh_TW |
| dc.subject | 神經母細胞瘤 | zh_TW |
| dc.subject | O型醣基轉移? | zh_TW |
| dc.subject | 二聚體反應 | zh_TW |
| dc.subject | 類胰島素生長因子接受器 | zh_TW |
| dc.subject | 3-N-acetylglucosaminyltransferase-3 | en |
| dc.subject | O-glycosyltransferases | en |
| dc.subject | neuroblastoma | en |
| dc.subject | N-acetylgalactosaminyltransferase 2 | en |
| dc.subject | insulin-like growth factor-1 receptor | en |
| dc.subject | β1 | en |
| dc.subject | dimerization | en |
| dc.title | O 型醣基轉移酶在人類神經母細胞瘤所扮演的角色及其臨床重要性 | zh_TW |
| dc.title | The role of O-glycosyltransferases and their clinical significance in neuroblastoma | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 楊偉勛,許文明,李明學,廖永豐,蔡有光 | |
| dc.subject.keyword | 神經母細胞瘤,O型醣基轉移?,β1,3-乙醯葡萄糖胺轉移? 3,N-乙醯胺基半乳糖轉移? 2,類胰島素生長因子接受器,二聚體反應, | zh_TW |
| dc.subject.keyword | β1,3-N-acetylglucosaminyltransferase-3,dimerization,insulin-like growth factor-1 receptor,N-acetylgalactosaminyltransferase 2,neuroblastoma,O-glycosyltransferases, | en |
| dc.relation.page | 120 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-04-13 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
