請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54748完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周綠蘋(Lu-Ping Chow) | |
| dc.contributor.author | Yu-Lin Su | en |
| dc.contributor.author | 蘇郁鈴 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:37:45Z | - |
| dc.date.available | 2020-09-25 | |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-04-21 | |
| dc.identifier.citation | 1. 1994. Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994. IARC monographs on the evaluation of carcinogenic risks to humans / World Health Organization, International Agency for Research on Cancer 61: 1-241. 2. Tsai, H. F., and P. N. Hsu. 2010. Interplay between Helicobacter pylori and immune cells in immune pathogenesis of gastric inflammation and mucosal pathology. Cellular molecular immunology 7: 255-259. 3. Yamaoka, Y. 2010. Mechanisms of disease: Helicobacter pylori virulence factors. Nature reviews. Gastroenterology hepatology 7: 629-641. 4. Peter, S., and C. Beglinger. 2007. Helicobacter pylori and gastric cancer: the causal relationship. Digestion 75: 25-35. 5. Polk, D. B., and R. M. Peek, Jr. 2010. Helicobacter pylori: gastric cancer and beyond. Nature reviews. Cancer 10: 403-414. 6. Crabtree, J. E. 1996. Immune and inflammatory responses to Helicobacter pylori infection. Scandinavian journal of gastroenterology. Supplement 215: 3-10. 7. Covacci, A., J. L. Telford, G. Del Giudice, J. Parsonnet, and R. Rappuoli. 1999. Helicobacter pylori virulence and genetic geography. Science (New York, N.Y.) 284: 1328-1333. 8. Tanahashi, T., M. Kita, T. Kodama, Y. Yamaoka, N. Sawai, T. Ohno, S. Mitsufuji, Y. P. Wei, K. Kashima, and J. Imanishi. 2000. Cytokine expression and production by purified Helicobacter pylori urease in human gastric epithelial cells. Infection and immunity 68: 664-671. 9. Beswick, E. J., I. V. Pinchuk, K. Minch, G. Suarez, J. C. Sierra, Y. Yamaoka, and V. E. Reyes. 2006. The Helicobacter pylori urease B subunit binds to CD74 on gastric epithelial cells and induces NF-kappaB activation and interleukin-8 production. Infection and immunity 74: 1148-1155. 10. Chochi, K., T. Ichikura, M. Kinoshita, T. Majima, N. Shinomiya, H. Tsujimoto, T. Kawabata, H. Sugasawa, S. Ono, S. Seki, and H. Mochizuki. 2008. Helicobacter pylori augments growth of gastric cancers via the lipopolysaccharide-toll-like receptor 4 pathway whereas its lipopolysaccharide attenuates antitumor activities of human mononuclear cells. Clinical cancer research : an official journal of the American Association for Cancer Research 14: 2909-2917. 11. Arnold, I. C., I. Hitzler, D. Engler, M. Oertli, E. M. Agger, and A. Muller. 2011. The C-terminally encoded, MHC class II-restricted T cell antigenicity of the Helicobacter pylori virulence factor CagA promotes gastric preneoplasia. Journal of immunology (Baltimore, Md. : 1950) 186: 6165-6172. 12. Blaser, M. J., G. I. Perez-Perez, H. Kleanthous, T. L. Cover, R. M. Peek, P. H. Chyou, G. N. Stemmermann, and A. Nomura. 1995. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer research 55: 2111-2115. 13. Hisatsune, J., M. Nakayama, H. Isomoto, H. Kurazono, N. Mukaida, A. K. Mukhopadhyay, T. Azuma, Y. Yamaoka, J. Sap, E. Yamasaki, K. Yahiro, J. Moss, and T. Hirayama. 2008. Molecular characterization of Helicobacter pylori VacA induction of IL-8 in U937 cells reveals a prominent role for p38MAPK in activating transcription factor-2, cAMP response element binding protein, and NF-kappaB activation. Journal of immunology (Baltimore, Md. : 1950) 180: 5017-5027. 14. Peek, R. M., Jr., C. Fiske, and K. T. Wilson. 2010. Role of innate immunity in Helicobacter pylori-induced gastric malignancy. Physiological reviews 90: 831-858. 15. Andres, S., H. M. Schmidt, H. Mitchell, M. Rhen, M. Maeurer, and L. Engstrand. 2011. Helicobacter pylori defines local immune response through interaction with dendritic cells. FEMS immunology and medical microbiology 61: 168-178. 16. Ibraghimov, A., and J. Pappo. 2000. The immune response against Helicobacter pylori--a direct linkage to the development of gastroduodenal disease. Microbes and infection / Institut Pasteur 2: 1073-1077. 17. Lee, J. Y., N. Kim, Y. J. Choi, R. H. Nam, Y. H. Kwon, K. Yoon, J. H. Suh, S. M. Lee, H. S. Lee, and D. H. Lee. 2014. Histologic Findings and Inflammatory Reactions After Long-term Colonization of Helicobacter felis in C57BL/6 Mice. Journal of cancer prevention 19: 224-230. 18. Russo, F., E. Jirillo, C. Clemente, C. Messa, M. Chiloiro, G. Riezzo, L. Amati, L. Caradonna, and A. Di Leo. 2001. Circulating cytokines and gastrin levels in asymptomatic subjects infected by Helicobacter pylori (H. pylori). Immunopharmacology and immunotoxicology 23: 13-24. 19. Lindholm, C., M. Quiding-Jarbrink, H. Lonroth, A. Hamlet, and A. M. Svennerholm. 1998. Local cytokine response in Helicobacter pylori-infected subjects. Infection and immunity 66: 5964-5971. 20. Yamaoka, Y., M. Kita, T. Kodama, N. Sawai, K. Kashima, and J. Imanishi. 1995. Expression of cytokine mRNA in gastric mucosa with Helicobacter pylori infection. Scandinavian journal of gastroenterology 30: 1153-1159. 21. Beales, I. L., and J. Calam. 1997. Stimulation of IL-8 production in human gastric epithelial cells by Helicobacter pylori, IL-1beta and TNF-alpha requires tyrosine kinase activity, but not protein kinase C. Cytokine 9: 514-520. 22. Gooz, M., M. Shaker, P. Gooz, and A. J. Smolka. 2003. Interleukin 1beta induces gastric epithelial cell matrix metalloproteinase secretion and activation during Helicobacter pylori infection. Gut 52: 1250-1256. 23. Wen, S., C. P. Felley, H. Bouzourene, M. Reimers, P. Michetti, and Q. Pan-Hammarstrom. 2004. Inflammatory gene profiles in gastric mucosa during Helicobacter pylori infection in humans. Journal of immunology (Baltimore, Md. : 1950) 172: 2595-2606. 24. Shigematsu, Y., T. Niwa, E. Rehnberg, T. Toyoda, S. Yoshida, A. Mori, M. Wakabayashi, Y. Iwakura, M. Ichinose, Y. J. Kim, and T. Ushijima. 2013. Interleukin-1beta induced by Helicobacter pylori infection enhances mouse gastric carcinogenesis. Cancer letters 340: 141-147. 25. Yamada, S., S. Kato, T. Matsuhisa, L. Makonkawkeyoon, M. Yoshida, T. Chakrabandhu, N. Lertprasertsuk, P. Suttharat, B. Chakrabandhu, S. Nishiumi, W. Chongraksut, and T. Azuma. 2013. Predominant mucosal IL-8 mRNA expression in non-cagA Thais is risk for gastric cancer. World journal of gastroenterology : WJG 19: 2941-2949. 26. Eftang, L. L., Y. Esbensen, T. M. Tannaes, I. R. Bukholm, and G. Bukholm. 2012. Interleukin-8 is the single most up-regulated gene in whole genome profiling of H. pylori exposed gastric epithelial cells. BMC microbiology 12: 9. 27. Lee, K. E., P. N. Khoi, Y. Xia, J. S. Park, Y. E. Joo, K. K. Kim, S. Y. Choi, and Y. D. Jung. 2013. Helicobacter pylori and interleukin-8 in gastric cancer. World journal of gastroenterology : WJG 19: 8192-8202. 28. Sharma, S. A., M. K. Tummuru, M. J. Blaser, and L. D. Kerr. 1998. Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-kappa B in gastric epithelial cells. Journal of immunology (Baltimore, Md. : 1950) 160: 2401-2407. 29. Naito, Y., M. Ito, T. Watanabe, and H. Suzuki. 2005. Biomarkers in patients with gastric inflammation: a systematic review. Digestion 72: 164-180. 30. Sharma, S. A., M. K. Tummuru, G. G. Miller, and M. J. Blaser. 1995. Interleukin-8 response of gastric epithelial cell lines to Helicobacter pylori stimulation in vitro. Infection and immunity 63: 1681-1687. 31. Crabtree, J. E., and I. J. Lindley. 1994. Mucosal interleukin-8 and Helicobacter pylori-associated gastroduodenal disease. European journal of gastroenterology hepatology 6 Suppl 1: S33-38. 32. Ritter, B., P. Kilian, M. R. Reboll, K. Resch, J. K. DiStefano, R. Frank, W. Beil, and M. Nourbakhsh. 2011. Differential effects of multiplicity of infection on Helicobacter pylori-induced signaling pathways and interleukin-8 gene transcription. Journal of clinical immunology 31: 60-68. 33. Yamaoka, Y., S. Kikuchi, H. M. el-Zimaity, O. Gutierrez, M. S. Osato, and D. Y. Graham. 2002. Importance of Helicobacter pylori oipA in clinical presentation, gastric inflammation, and mucosal interleukin 8 production. Gastroenterology 123: 414-424. 34. Harris, P. R., H. L. Mobley, G. I. Perez-Perez, M. J. Blaser, and P. D. Smith. 1996. Helicobacter pylori urease is a potent stimulus of mononuclear phagocyte activation and inflammatory cytokine production. Gastroenterology 111: 419-425. 35. Brandt, S., T. Kwok, R. Hartig, W. Konig, and S. Backert. 2005. NF-kappaB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proceedings of the National Academy of Sciences of the United States of America 102: 9300-9305. 36. Lin, Y. F., M. S. Wu, C. C. Chang, S. W. Lin, J. T. Lin, Y. J. Sun, D. S. Chen, and L. P. Chow. 2006. Comparative immunoproteomics of identification and characterization of virulence factors from Helicobacter pylori related to gastric cancer. Molecular cellular proteomics : MCP 5: 1484-1496. 37. Castano-Rodriguez, N., N. O. Kaakoush, and H. M. Mitchell. 2014. Pattern-recognition receptors and gastric cancer. Frontiers in immunology 5: 336. 38. Kawai, T., and S. Akira. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature immunology 11: 373-384. 39. Lu, Q., H. Ding, and W. Li. 2013. Role of Toll-like receptors in microbiota-associated gastrointestinal cancer metastasis. Journal of cancer research and therapeutics 9 Suppl: S142-149. 40. Trinchieri, G., and A. Sher. 2007. Cooperation of Toll-like receptor signals in innate immune defence. Nature reviews. Immunology 7: 179-190. 41. Schmausser, B., M. Andrulis, S. Endrich, S. K. Lee, C. Josenhans, H. K. Muller-Hermelink, and M. Eck. 2004. Expression and subcellular distribution of toll-like receptors TLR4, TLR5 and TLR9 on the gastric epithelium in Helicobacter pylori infection. Clinical and experimental immunology 136: 521-526. 42. Smith, S. M. 2014. Role of Toll-like receptors in Helicobacter pylori infection and immunity. World journal of gastrointestinal pathophysiology 5: 133-146. 43. Obonyo, M., M. Sabet, S. P. Cole, J. Ebmeyer, S. Uematsu, S. Akira, and D. G. Guiney. 2007. Deficiencies of myeloid differentiation factor 88, Toll-like receptor 2 (TLR2), or TLR4 produce specific defects in macrophage cytokine secretion induced by Helicobacter pylori. Infection and immunity 75: 2408-2414. 44. Su, B., P. J. Ceponis, S. Lebel, H. Huynh, and P. M. Sherman. 2003. Helicobacter pylori activates Toll-like receptor 4 expression in gastrointestinal epithelial cells. Infection and immunity 71: 3496-3502. 45. Uno, K., K. Kato, and T. Shimosegawa. 2014. Novel role of toll-like receptors in Helicobacter pylori - induced gastric malignancy. World journal of gastroenterology : WJG 20: 5244-5251. 46. Smith, M. F., Jr., A. Mitchell, G. Li, S. Ding, A. M. Fitzmaurice, K. Ryan, S. Crowe, and J. B. Goldberg. 2003. Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-kappa B activation and chemokine expression by epithelial cells. The Journal of biological chemistry 278: 32552-32560. 47. Smith, S. M., A. P. Moran, S. P. Duggan, S. E. Ahmed, A. S. Mohamed, H. J. Windle, L. A. O'Neill, and D. P. Kelleher. 2011. Tribbles 3: a novel regulator of TLR2-mediated signaling in response to Helicobacter pylori lipopolysaccharide. Journal of immunology (Baltimore, Md. : 1950) 186: 2462-2471. 48. Allison, C. C., T. A. Kufer, E. Kremmer, M. Kaparakis, and R. L. Ferrero. 2009. Helicobacter pylori induces MAPK phosphorylation and AP-1 activation via a NOD1-dependent mechanism. Journal of immunology (Baltimore, Md. : 1950) 183: 8099-8109. 49. Hamashima, C. 2014. Current issues and future perspectives of gastric cancer screening. World journal of gastroenterology : WJG 20: 13767-13774. 50. Lin, Y. F., C. Y. Chen, M. H. Tsai, M. S. Wu, Y. C. Wang, E. Y. Chuang, J. T. Lin, P. C. Yang, and L. P. Chow. 2007. Duodenal ulcer-related antigens from Helicobacter pylori: immunoproteome and protein microarray approaches. Molecular cellular proteomics : MCP 6: 1018-1026. 51. Posselt, G., S. Backert, and S. Wessler. 2013. The functional interplay of Helicobacter pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis. Cell communication and signaling : CCS 11: 77. 52. Kalali, B., R. Mejias-Luque, A. Javaheri, and M. Gerhard. 2014. H. pylori virulence factors: influence on immune system and pathology. Mediators of inflammation 2014: 426309. 53. Lin, L. L., H. C. Huang, and H. F. Juan. 2012. Discovery of biomarkers for gastric cancer: a proteomics approach. Journal of proteomics 75: 3081-3097. 54. Chen, P. C., G. D. Syu, K. H. Chung, Y. H. Ho, F. H. Chung, P. H. Chen, J. M. Lin, Y. W. Chen, S. Y. Tsai, and C. S. Chen. 2014. Antibody profiling of bipolar disorder using Escherichia coli proteome microarrays. Molecular cellular proteomics : MCP. 55. Ali, M., A. A. Khan, S. K. Tiwari, N. Ahmed, L. V. Rao, and C. M. Habibullah. 2005. Association between cag-pathogenicity island in Helicobacter pylori isolates from peptic ulcer, gastric carcinoma, and non-ulcer dyspepsia subjects with histological changes. World journal of gastroenterology : WJG 11: 6815-6822. 56. Wen, S., and S. F. Moss. 2009. Helicobacter pylori virulence factors in gastric carcinogenesis. Cancer letters 282: 1-8. 57. Zhang, J., J. Qian, X. Zhang, and Q. Zou. 2014. Outer membrane inflammatory protein A, a new virulence factor involved in the pathogenesis of Helicobacter pylori. Molecular biology reports. 58. Dossumbekova, A., C. Prinz, J. Mages, R. Lang, J. G. Kusters, A. H. Van Vliet, W. Reindl, S. Backert, D. Saur, R. M. Schmid, and R. Rad. 2006. Helicobacter pylori HopH (OipA) and bacterial pathogenicity: genetic and functional genomic analysis of hopH gene polymorphisms. The Journal of infectious diseases 194: 1346-1355. 59. Cun, S., H. Li, R. Ge, M. C. Lin, and H. Sun. 2008. A histidine-rich and cysteine-rich metal-binding domain at the C terminus of heat shock protein A from Helicobacter pylori: implication for nickel homeostasis and bismuth susceptibility. The Journal of biological chemistry 283: 15142-15151. 60. Tang, Y. C., H. C. Chang, A. Roeben, D. Wischnewski, N. Wischnewski, M. J. Kerner, F. U. Hartl, and M. Hayer-Hartl. 2006. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125: 903-914. 61. Suerbaum, S., J. M. Thiberge, I. Kansau, R. L. Ferrero, and A. Labigne. 1994. Helicobacter pylori hspA-hspB heat-shock gene cluster: nucleotide sequence, expression, putative function and immunogenicity. Molecular microbiology 14: 959-974. 62. Horwich, A. L., G. W. Farr, and W. A. Fenton. 2006. GroEL-GroES-mediated protein folding. Chemical reviews 106: 1917-1930. 63. Loguercio, S., C. Dian, A. Flagiello, A. Scannella, P. Pucci, L. Terradot, and A. Zagari. 2008. In HspA from Helicobacter pylori vicinal disulfide bridges are a key determinant of domain B structure. FEBS letters 582: 3537-3541. 64. Rowinska-Zyrek, M., D. Witkowska, D. Valensin, W. Kamysz, and H. Kozlowski. 2010. The C terminus of HspA--a potential target for native Ni(II) and Bi(III) anti-ulcer drugs. Dalton Trans 39: 5814-5826. 65. Kansau, I., F. Guillain, J. M. Thiberge, and A. Labigne. 1996. Nickel binding and immunological properties of the C-terminal domain of the Helicobacter pylori GroES homologue (HspA). Molecular microbiology 22: 1013-1023. 66. Vanet, A., and A. Labigne. 1998. Evidence for specific secretion rather than autolysis in the release of some Helicobacter pylori proteins. Infection and immunity 66: 1023-1027. 67. Perez-Perez, G. I., J. M. Thiberge, A. Labigne, and M. J. Blaser. 1996. Relationship of immune response to heat-shock protein A and characteristics of Helicobacter pylori-infected patients. The Journal of infectious diseases 174: 1046-1050. 68. Retzlaff, C., Y. Yamamoto, P. S. Hoffman, H. Friedman, and T. W. Klein. 1994. Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures. Infection and immunity 62: 5689-5693. 69. Todoroki, I., T. Joh, K. Watanabe, M. Miyashita, K. Seno, T. Nomura, H. Ohara, Y. Yokoyama, K. Tochikubo, and M. Itoh. 2000. Suppressive effects of DNA vaccines encoding heat shock protein on Helicobacter pylori-induced gastritis in mice. Biochemical and biophysical research communications 277: 159-163. 70. Wang, L., X. F. Liu, S. Yun, X. P. Yuan, X. H. Mao, C. Wu, W. J. Zhang, K. Y. Liu, G. Guo, D. S. Lu, W. D. Tong, A. D. Wen, and Q. M. Zou. 2010. Protection against Helicobacter pylori infection by a trivalent fusion vaccine based on a fragment of urease B-UreB414. J Microbiol 48: 223-228. 71. Moss, S. F., S. Legon, J. Davies, and J. Calam. 1994. Cytokine gene expression in Helicobacter pylori associated antral gastritis. Gut 35: 1567-1570. 72. Kuan, Y. C., W. T. Lee, C. L. Hung, C. Yang, and F. Sheu. 2012. Investigating the function of a novel protein from Anoectochilus formosanus which induced macrophage differentiation through TLR4-mediated NF-kappaB activation. International immunopharmacology 14: 114-120. 73. Wang, Y. C., C. L. Chen, B. S. Sheu, Y. J. Yang, P. C. Tseng, C. Y. Hsieh, and C. F. Lin. 2014. Helicobacter pylori infection activates Src homology-2 domain-containing phosphatase 2 to suppress IFN-gamma signaling. Journal of immunology (Baltimore, Md. : 1950) 193: 4149-4158. 74. Bernhardt, A., D. Kuester, A. Roessner, T. Reinheckel, and S. Krueger. 2010. Cathepsin X-deficient gastric epithelial cells in co-culture with macrophages: characterization of cytokine response and migration capability after Helicobacter pylori infection. The Journal of biological chemistry 285: 33691-33700. 75. Sreerama, N., and R. W. Woody. 2000. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Analytical biochemistry 287: 252-260. 76. Galdiero, M., G. C. de l'Ero, and A. Marcatili. 1997. Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins. Infection and immunity 65: 699-707. 77. Yamada, H., T. Aihara, and S. Okabe. 2001. Mechanism for Helicobacter pylori stimulation of interleukin-8 production in a gastric epithelial cell line (MKN 28): roles of mitogen-activated protein kinase and interleukin-1beta. Biochemical pharmacology 61: 1595-1604. 78. Bhattacharyya, A., S. Pathak, S. Datta, S. Chattopadhyay, J. Basu, and M. Kundu. 2002. Mitogen-activated protein kinases and nuclear factor-kappaB regulate Helicobacter pylori-mediated interleukin-8 release from macrophages. The Biochemical journal 368: 121-129. 79. Zhao, Y., K. Yokota, K. Ayada, Y. Yamamoto, T. Okada, L. Shen, and K. Oguma. 2007. Helicobacter pylori heat-shock protein 60 induces interleukin-8 via a Toll-like receptor (TLR)2 and mitogen-activated protein (MAP) kinase pathway in human monocytes. Journal of medical microbiology 56: 154-164. 80. Pathak, S. K., S. Basu, A. Bhattacharyya, S. Pathak, A. Banerjee, J. Basu, and M. Kundu. 2006. TLR4-dependent NF-kappaB activation and mitogen- and stress-activated protein kinase 1-triggered phosphorylation events are central to Helicobacter pylori peptidyl prolyl cis-, trans-isomerase (HP0175)-mediated induction of IL-6 release from macrophages. Journal of immunology (Baltimore, Md. : 1950) 177: 7950-7958. 81. Chang, Y. J., M. S. Wu, J. T. Lin, B. S. Sheu, T. Muta, H. Inoue, and C. C. Chen. 2004. Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori involves TLR2/TLR9 and c-Src-dependent nuclear factor-kappaB activation. Molecular pharmacology 66: 1465-1477. 82. Mandell, L., A. P. Moran, A. Cocchiarella, J. Houghton, N. Taylor, J. G. Fox, T. C. Wang, and E. A. Kurt-Jones. 2004. Intact gram-negative Helicobacter pylori, Helicobacter felis, and Helicobacter hepaticus bacteria activate innate immunity via toll-like receptor 2 but not toll-like receptor 4. Infection and immunity 72: 6446-6454. 83. Brown, J., H. Wang, G. N. Hajishengallis, and M. Martin. 2011. TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. Journal of dental research 90: 417-427. 84. Kawai, T., and S. Akira. 2007. Signaling to NF-kappaB by Toll-like receptors. Trends in molecular medicine 13: 460-469. 85. Yamaoka, Y., T. Kudo, H. Lu, A. Casola, A. R. Brasier, and D. Y. Graham. 2004. Role of interferon-stimulated responsive element-like element in interleukin-8 promoter in Helicobacter pylori infection. Gastroenterology 126: 1030-1043. 86. Nozawa, Y., K. Nishihara, R. M. Peek, M. Nakano, T. Uji, H. Ajioka, N. Matsuura, and H. Miyake. 2002. Identification of a signaling cascade for interleukin-8 production by Helicobacter pylori in human gastric epithelial cells. Biochemical pharmacology 64: 21-30. 87. Tabassam, F. H., D. Y. Graham, and Y. Yamaoka. 2011. Paxillin is a novel cellular target for converging Helicobacter pylori-induced cellular signaling. American journal of physiology. Gastrointestinal and liver physiology 301: G601-611. 88. Rizwan, M., A. Alvi, and N. Ahmed. 2008. Novel protein antigen (JHP940) from the genomic plasticity region of Helicobacter pylori induces tumor necrosis factor alpha and interleukin-8 secretion by human macrophages. Journal of bacteriology 190: 1146-1151. 89. Hussein, N. R., R. H. Argent, C. K. Marx, S. R. Patel, K. Robinson, and J. C. Atherton. 2010. Helicobacter pylori dupA is polymorphic, and its active form induces proinflammatory cytokine secretion by mononuclear cells. The Journal of infectious diseases 202: 261-269. 90. Ausiello, C. M., G. Fedele, R. Palazzo, F. Spensieri, A. Ciervo, and A. Cassone. 2006. 60-kDa heat shock protein of Chlamydia pneumoniae promotes a T helper type 1 immune response through IL-12/IL-23 production in monocyte-derived dendritic cells. Microbes and infection / Institut Pasteur 8: 714-720. 91. Zagari, A. 2009. The four cysteines ring motif in proteins. Biopolymers 91: 1048-1055. 92. Rigby, A. C., E. Lucas-Meunier, D. E. Kalume, E. Czerwiec, B. Hambe, I. Dahlqvist, P. Fossier, G. Baux, P. Roepstorff, J. D. Baleja, B. C. Furie, B. Furie, and J. Stenflo. 1999. A conotoxin from Conus textile with unusual posttranslational modifications reduces presynaptic Ca2+ influx. Proceedings of the National Academy of Sciences of the United States of America 96: 5758-5763. 93. Joseph, P. R., J. M. Sarmiento, A. K. Mishra, S. T. Das, R. P. Garofalo, J. Navarro, and K. Rajarathnam. 2010. Probing the role of CXC motif in chemokine CXCL8 for high affinity binding and activation of CXCR1 and CXCR2 receptors. The Journal of biological chemistry 285: 29262-29269. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54748 | - |
| dc.description.abstract | 幽門螺旋桿菌是一種寄生於人類消化道的革蘭氏陰性菌,並且與慢性胃炎、消化性潰瘍、胃癌等胃部疾病之發生高度相關。雖然已經有許多幽門螺旋桿菌的毒性因子被發表,但其對於胃癌篩檢及致病的關聯性仍不足。本篇論文的第一部分研究目的為以臨床上不同走向的十二指腸潰瘍與胃癌臨床幽門螺旋桿菌菌株為基礎,利用定量蛋白質體學之方法鑑定與胃癌相關之幽門螺旋桿菌生物標記。在鑑定到的107個於胃癌菌株表現量高於十二指腸潰瘍菌株的蛋白中(>1.5倍),43個可依分子間交互作用被KEGG pathway分類,其中AlpA、OipA、BabA、SabA被分屬於與人類疾病相關之分類,於是我們進一步檢視並比較這四個黏著因子在胃癌及十二指腸潰瘍病人血清辨認之差異。在臨床血清檢體篩檢下發現OipA、BabA、SabA的血清陽性率在胃癌檢體中相對高於十二指腸潰瘍檢體及胃炎檢體,且具有統計上之差異。另外,經統計分析發現同時辨認此三個抗原時,區分胃癌與其他胃部疾病之效果更為提升。為了將所找到的抗原發展成快速又便利的胃癌檢驗平台,我們利用蛋白質晶片技術建立出包含此三個抗原之胃癌相關蛋白質晶片。結果發現此胃癌相關蛋白質晶片能有效區分胃癌病人與十二指腸潰瘍病人或正常人血清,顯示幽門螺旋桿菌感染情形下OipA、BabA、SabA具有做為胃癌相關血清生物標記之潛力,且應用多個生物標記之蛋白質晶片可做為快速篩檢胃癌病人抗體種類組合之平台。 本篇論文的第二部分著重於先前探討過的胃癌相關抗原幽門螺旋桿菌GroES引發胃上皮細胞發炎反應之機制。幽門螺旋桿菌GroES為一個分泌性毒性因子,比其他物種之GroES多了一段羧基端稱為domain B。已知幽門螺旋桿菌GroES會造成宿主細胞釋放前發炎因子並可能參與胃部癌化過程。我們發現幽門螺旋桿菌GroES是透過活化MAPK及NF-κB pathways導致胃上皮細胞釋放前發炎因子IL-8,且不具domain B的幽門螺旋桿菌GroES則失去此能力。進一步發現TLR4抑制劑大幅的抑制了幽門螺旋桿菌GroES引發之IL-8的釋放及MAPK的活化,而幽門螺旋桿菌GroES引發小鼠胃上皮細胞釋放IL-8的現象在TLR4剔除小鼠之胃上皮細胞中則無法觀察到,顯示幽門螺旋桿菌GroES是透過TLR4引發發炎反應。我們同時也發現惟有domain B存在時幽門螺旋桿菌GroES才能與TLR4結合,於是我們針對domain B進行了截斷或針對domain B上會形成雙硫鍵之硫胺酸進行點突變。結果發現domain B被截斷或domain B上之兩對雙硫鍵同時被破壞時,幽門螺旋桿菌GroES會失去與TLR4結合及引發IL-8釋放之能力。總結我們的研究發現具有由雙硫鍵形成特殊羧基端套索結構之幽門螺旋桿菌GroES會透過TLR4引發前發炎因子IL-8之釋放。 | zh_TW |
| dc.description.abstract | Helicobacter pylori (H. pylori) is a Gram-negative, microaerophilic bacterium that selectively colonizes the human stomach. H. pylori infection is a major cause of chronic gastritis and peptic ulcer disease and is highly related to gastric adenocarcinoma and MALT lymphoma. Although many H. pylori-associated factors have been identified, the presence of these factors is not sufficient for gastric cancer (GC) screening. To identify GC-related H. pylori antigens with high seropositivity in GC patients, differences in protein expression levels of H. pylori from GC and its clinical divergent duodenal ulcer (DU) were analyzed by iTRAQ. In the quantified proteins, 107 showed increased expression in GC compared with DU (>1.5-fold) and 43 was categorized by KEGG pathway. Among them, AlpA, OipA, BabA, and SabA were related to human diseases and their seroreactivity were examined. OipA, BabA, and SabA were identified as GC-related antigens with higher seropositivity and the discrimination between GC and other gastric diseases was even improved with the three antigens combined together. A GC-related protein array was developed using multiple biomarkers for rapid diagnosis of GC and we found that OipA, BabA, and SabA were capable of screening GC from DU and normal individuals. We concluded that serologic markers of H. pylori infection including OipA, BabA, and SabA can serve as potential biomarkers for GC, and a GC-related protein array with the combination of these antigens could provide a rapid and convenient diagnosis of H. pylori-associated GC. In the second part of the studies, a previous identified GC-related antigen was investigated. Helicobacter pylori GroES (HpGroES), a potent immunogen, is a secreted virulence factor that stimulates production of proinflammatory cytokines and may contribute to gastric carcinogenesis. HpGroES is larger than other bacterial orthologs because of an additional C-terminal region, known as domain B. We found that the HpGroES-induced IL-8 release by human gastric epithelial cells was dependent on activation of the MAPK and NF-κB pathways. HpGroES lacking domain B was unable to induce IL-8 release. In addition, a TLR4 inhibitor significantly inhibited IL-8 secretion and reduced HpGroES-induced activation of MAPKs. Furthermore, HpGroES-induced IL-8 release by primary gastric epithelial cells from TLR4-/- mice was significantly lower than from wild-type mice. We also found that HpGroES bound to TLR4 in cell lysates and co-localized with TLR4 on the cell membrane only when domain B was present. We then constructed two deletion mutants lacking C-terminal regions and mutants with point mutations of two of the four cysteine residues, C111 and C112, in domain B and found that the deletion mutants and a double mutant lacking the C94-C111 and C95-C112 disulfide bonds were unable to interact with TLR4 or induce IL-8 release. We conclude that HpGroES, in which a unique conformational structure, domain B, is generated by these two disulfide bonds, induces IL-8 secretion via a TLR4-dependent mechanism. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:37:45Z (GMT). No. of bitstreams: 1 ntu-104-F96442022-1.pdf: 2706676 bytes, checksum: 8fd6e817aa1f2b770a3be1410600652e (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………………….i 誌謝…………………………………………………………………………………ii 摘要…………………………………………………………………………………iii Abstract……………………………………………………………………………v Table of contents……………………………………………………………………vii List of tables and figures…………………………………………………………ix Abbreviations………………………………………………………………………xii ChapterⅠ- Overview and Rationale….………………………………………… 1 1.1 Helicobacter pylori infection and gastric diseases…………………………1 1.2 Helicobacter pylori infection and gastric cancer progression………………1 1.3 Virulence factors of Helicobacter pylori……………………………………3 1.4 Helicobacter pylori-induced inflammatory responses………………………4 Chapter II – General Materials and Methods……………………………………7 2.1 List of instruments…………………………………………………………7 2.2 Bacterial strains and growth conditions………………………………………8 2.3 Cloning and purification of recombinant proteins……………………………8 2.4 Immunoblotting analysis……………………………………………………9 2.5 Statistical analysis…………………………………………………………10 Chapter III - iTRAQ Proteomic and Protein Array Analysis of Potential Biomarkers in Helicobacter pylori Related Gastric Cancer……11 3.1 Introduction…………………………………………………………………12 3.2 Materials and Methods……………………………………………………14 3.3 Results………………………………………………………………………19 3.4 Discussion………………………………………………………………24 Chapter IV - The C-terminal Disulfide Bonds of Helicobacter pylori GroES Are Critical for IL-8 Secretion via the TLR4-Dependent Pathway in Gastric Epithelial Cells……………………………………………27 4.1 Introduction…………………………………………………………………28 4.2 Materials and Methods……………………………………………………30 4.3 Results……………………………………………………………………36 4.4 Discussion…………………………………………………………………45 Chapter V – Conclusion and Perspectives………………………………………51 Chapter VI – Tables and Figures………………………………………………53 References…………………………………………………………………………79 Appendix………………………………………………………………………88 | |
| dc.language.iso | en | |
| dc.subject | GroES | zh_TW |
| dc.subject | 幽門螺旋桿菌 | zh_TW |
| dc.subject | 胃癌 | zh_TW |
| dc.subject | 生物標記 | zh_TW |
| dc.subject | 蛋白質晶片 | zh_TW |
| dc.subject | 前發炎因子IL-8 | zh_TW |
| dc.subject | 類toll受體TLR4 | zh_TW |
| dc.subject | Helicobacter pylori | en |
| dc.subject | GroES | en |
| dc.subject | TLR4 | en |
| dc.subject | IL-8 | en |
| dc.subject | protein array | en |
| dc.subject | biomarker | en |
| dc.subject | gastric cancer | en |
| dc.title | 以定量蛋白體學分析胃癌相關之幽門螺旋桿菌生物標記及研究其GroES引發發炎反應之機制 | zh_TW |
| dc.title | Quantitative Proteomic Analysis of Helicobacter pylori Biomarkers Associated with Gastric Cancer and Study of the Inflammatory Mechanism Induced by HpGroES | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 楊智欽(Jyh-Chin Yang),徐駿森(Chun-Hua Hsu),朱清良(Ching-Liang Chu),陳念榮(Nien-Jung Chen) | |
| dc.subject.keyword | 幽門螺旋桿菌,胃癌,生物標記,蛋白質晶片,前發炎因子IL-8,類toll受體TLR4,GroES, | zh_TW |
| dc.subject.keyword | Helicobacter pylori,gastric cancer,biomarker,protein array,IL-8,TLR4,GroES, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-04-21 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
