請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54742
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳復國 | |
dc.contributor.author | Jui-Hao Lin | en |
dc.contributor.author | 林瑞豪 | zh_TW |
dc.date.accessioned | 2021-06-16T03:37:39Z | - |
dc.date.available | 2015-08-11 | |
dc.date.copyright | 2015-08-11 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2015-04-24 | |
dc.identifier.citation | [1]http://www.schulergroup.com/en/30products/60hydroforming/10With_Pressure_from_within/index.php
[2]http://www.schulergroup.com/en/30products/60hydroforming/index.php [3]T. Yoshida and Y. Kuriyama, “Effects of Material Properties and Process Parameters on Deformation Behavior of Tube Hydroforming”, Innovations In Tube Hydroforming Technology,pp.13 (2000) [4]S. Kim and Y. Kim, ”Analytical study for tube hydroforming”, Journal of Materials Processing Technology,Vol.128,pp.232-239 (2002) [5]Y. Hashimoto, O. Sonobe , H. Abe and A. Yorifuji, “Effects of tube mechanical properties and axial feeding condition on tube forming limit in hydroforming”, The Proceeding of the 2001 Japanese Spring Conference for the Technology of Plasticity,pp.135-136 (2002) [6]B. Carleer, G. van der Kevie, L. de Winter, ”Analysis of the effect of material properties on the hydroforming process of tubes”, Journal of Materials Processing Technonlogy,104,pp.158-166 (2000) [7]H. Mizukoshi, H. Okada and H. Wakabayashi, “Tee fitting hydraulic formability of aluminum alloy tubes,” The Proceedings of the 49th Japanese Joint Conference for the Technology of Plasticity,pp.323-324 (1998) [8]T. Uchikawa, S. Fuchizawa, A. Shirayori and M. Narazaki, “Bulge forming of copper tubes under internal pressure and axial compression using closed die,” The Proceedings of the 48th Japanese Joint Conference for the Technology of Plasticity,pp.365-366 (1997) [9] M. Koc, T,Allen, S. Jiratheranat, “The use of FEA and design guidelines for simple hydroformed parts”, International Journal of Machine Tools & Manufacture, 40,pp.2249-2266 (2000) [10]Hwang, Y.M., Lin, Y.K., Wu, H.C. and H.C. Chen, “FE-Simulation on T-shape Tube Hydroforming,” The 18th National Conference on Mechanical Engineering,Taipei (2001) [11]L. P. Lei, D. H. Kim and S. J. Kang, ”Analysis and design of hydroforming processes by the rigid-plastic finite element method”, Journal of Materials Processing Technology,Vol.114,pp.201-206 (2001) [12]M. Ahmed and M. S. J. Hashmi, “Three-dimensional finite-element simulation of bulge forming”, J. Materials Processing Technology ,Vol.119,pp.387-392 (2001) [13]K. Manabe, S. Miyamoto and H. Koyama, “Process control of tube hydroforming with fuzzy inference”, The Proceeding of the 2002 Japanese Spring Conference for the Technology of Plasticity,pp.259-260 (2002) [14]蕭棓元, ”管液壓成形負載條件之最佳化研究”, 國立中興大學機械工程研究所碩士論文 (2002) [15]吳宏振, ”T形管件液壓成形之自適性模擬”, 國立中山大學機械與機電工程研究所碩士論文 (2003) [16]Kuang-Jau Fann, Pou-Yuan Hsiao “Optimization of loading conditions for tube hydroforming”, Journal of Materials Processing Technology,Vol.140,pp.520–524 (2003) [17]蘇嵐, “T型管液壓成形過程有限元分析”, 北京科技大學學報(2002) [18]K. Siegert (Ed.), “Hydroforming of Tubes, Extrusions and Sheet Metals“, Werkstoff-Informationsgesellschaft, Frankfurt (1999) [19]H. Singh, “Fundamental of Hydroforming“, Society of Manufacturing Engineers (2003) [20]M. Koc, T. Altan, ”Application of two dimensional (2D) FEA for the tube hydroforming process”, International Journal of Machine Tools & Manufacture,Vol.42, pp.1285–1295 (2002) [21]P. Ray, B.J. Mac Donald “Determination of the optimal load path for tube hydroforming processes using a fuzzy load control algorithm and finite element analysis“, Finite Elements in Analysis and Design,pp.173–192 (2004) [22]Muammer Koc, “Investing of the effect of loading path variation in material properties of robustness of the tube hydroforming process“, Journal of Material Processing Technology,pp.276-281 (2003) [23]Kuang-Jau Fann, Pou-Yuan Hsiao, “Optimization of loading conditions for tube hydroforming“, Journal of Materials Processing Technology,pp.520–524 (2003) [24]詹惟嶸, ”管件液壓成形製程之有限元素法分析”, 國立台灣大學機械工程研究所碩士論文 (2004) [25]F. K. Chen, “Formability analysis of tube hydroforming process”, Applied Mechanics and Engineering,Vol.4 No.1, pp.149-169 (1999) [26]Koc, M., and Altan, T., “Development of Guidelines for Part , Process and Tooling Design in the Tube Hydroforming (THF) Process: Classification of the Parts and Analytical Models for Prediction of Process Parameters”, Report No. THF/ERC/NSM-98-R-34, The Ohio State University (1998) [27]王之佑, ”管件液壓成形試驗機之設計與製作”, 國立中山大學機械與機電工程研究所碩士論文 (2003) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54742 | - |
dc.description.abstract | 管件液壓成形技術應用在輕量化且高強度的零組件方面有越來越多的趨勢,然而對於三通管件(T形管件)而言,在成形過程中所施予的負載路徑(Loading Path)常是決定管件成形優劣的關鍵。而為了降低實際試模所需花費的時間與成本,有限元素法(Finite Element Method)常被用來模擬分析液壓成形製程以得到最佳之成形條件。然而對於實際生產廠商而言,最有助益的莫過於提供一參考指南,使其能快速判斷產品之成形可行性與設計出合適之製程參數。
因此本論文針對負載路徑提出新的設計,該負載路徑設計準則簡單容易計算,且在此負載路徑下所得到之管件成形結果均較一般線性負載路徑優越。同時亦針對三通管件液壓成形製程之影響參數進行探討分析,利用統計學迴歸分析之方法以比較模具幾何外型與製程參數對於成形結果之影響性大小,利用該分析方法亦可建立一預測模型,以快速預測不同參數條件下所能得到之凸柱高度大小,作為判斷產品是否能順利成形之參考。 由上述分析結果得知管件長度是影響凸柱成形高度很重要之因素,故本論文亦針對不同凸柱高度要求下所需之管件長度進行分析探討,將可行之管件長度定義於某一範圍,以供設計人員作參考。另一重點則是針對管件成形圓角半徑與所需之液體壓力之間的關係做一探討分析,並找到一合適且可供設計人員參考之公式。 本論文針對三通管件液壓成形製程之設計,包含管件之選擇、負載路徑之設計、不同圓角半徑下之最大壓力決定等參數做了完整之分析,透過本論文可清楚的了解到三通管件液壓成形製程參數之計算與選擇,利用該參數而設計出之負載路徑,不僅可以利用最小之管件長度順利成形所欲之凸柱高度,亦可達成近淨型(Nearly Net Shape)產品之要求。而該設計方法可作為液壓成形業者進行製程規劃以及設計時的參考。 | zh_TW |
dc.description.abstract | The application of tube hydroforming technology to improve the structure property in lightweight and high strength has drawn much attention from industry. For a part with complex shape, such as T-shaped part, axial feed is usually required to provide sufficient material to the position where the expansion ratio is much higher. In the hydroforming with axial feed, an appropriate loading path of hydraulic pressure is fundamental to the process design. In the present study, an optimum loading path for hydroforming a T-shaped part is proposed based on the finite element analysis. Compared with other loading paths published in literature, which are mainly linear paths, the proposed loading path provides better performance in the hydroforming process. The effects of process parameters, such as die shape and friction condition, on the formability in hydroforming were also studied in the present study. The major process parameters that affect the formability most were identified using a regressive analysis with the help of the finite element simulations.
The hydraulic pressure required to form a minimum part corner radius was investigated in the present study, and an appropriate formula that gives the relations between hydraulic pressure and corner radius was found. The effect of tube length on the formation of protrusion was examined as well using the finite element analysis. In conjunction with the studies of loading path and process parameters, a design guideline was developed. With the use of the developed design guideline, not only the protrusion in the T-shaped part can be successfully formed with an initial tube of a minimum length, but also a nearly net shaped part can be obtained. The design guideline developed in the present study provides a relevant reference for the related research and a useful tool for the hydroforming process design. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:37:39Z (GMT). No. of bitstreams: 1 ntu-96-R93522729-1.pdf: 2120628 bytes, checksum: 1fbb3046bac2f27ad6a8e9a94cd6c345 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 目 錄
目錄------------------------------------------------------V 圖目錄-------------------------------------------------VIII 表目錄---------------------------------------------------XI 第一章 緒論-----------------------------------------------1 1.1 前言----------------------------------------------1 1.2 研究動機與目的------------------------------------3 1.3 文獻回顧------------------------------------------4 第二章 有限元素法模擬分析簡介-----------------------------6 2.1 有限元素模擬軟體PAM-STAMP簡介--------------------6 2.2 CAD Model圖檔的建立--------------------------------8 2.2.1 CAD軟體之介紹-------------------------------8 2.2.2模具與管件之幾何外型建立---------------------9 2.3 網格資料的建立-----------------------------------10 2.4 模擬分析參數設定---------------------------------12 2.4.1 管件材料性質--------------------------------12 2.4.2 模擬分析假設--------------------------------13 第三章 負載路徑之研究------------------------------------15 3.1 負載路徑之簡介-----------------------------------15 3.2 負載路徑之設計-----------------------------------17 3.3 負載路徑正確性之驗證-----------------------------21 3.4 與文獻負載路徑之比較結果-------------------------29 3.4.1 文獻常用之負載路徑--------------------------29 3.4.2 模擬分析結果比較----------------------------30 第四章 近淨型管件之研究----------------------------------33 4.1 管件長度之選擇-----------------------------------34 4.2 管件所需之最小長度-------------------------------35 4.3 管件所容許之最大長度-----------------------------38 第五章 製程影響參數探討----------------------------------43 5.1 欲探討之參數-------------------------------------43 5.2迴歸分析研究動機與目的----------------------------49 5.3 迴歸分析-----------------------------------------50 5.3.1 迴歸分析法簡介------------------------------50 5.3.2 迴歸分析數據資料----------------------------51 5.3.3 迴歸分析結果--------------------------------54 5.4 結果與討論---------------------------------------58 第六章 液體壓力與圓角關係之研究--------------------------60 6.1 相關文獻簡介-------------------------------------60 6.2 三維模擬模型之建立-------------------------------68 6.3 結果比較-----------------------------------------69 6.3.1 二維與三維之模擬分析比較--------------------70 6.3.2 文獻公式與模擬結果之比較--------------------72 第七章 實驗驗證------------------------------------------80 7.1 文獻製程參數與條件說明---------------------------80 7.2 文獻之實驗結果-----------------------------------83 7.3 本論文與文獻實驗結果之比較-----------------------87 7.3.1 與文獻實驗結果之比較------------------------87 7.3.1 與文獻負載路徑之比較------------------------89 7.4 實例說明-----------------------------------------90 7.4.1 產品外型------------------------------------90 7.4.2 參數選定------------------------------------91 7.4.3 模擬分析結果--------------------------------97 第八章 結果與討論---------------------------------------101 參考文獻------------------------------------------------103 | |
dc.language.iso | zh-TW | |
dc.title | 三通管件液壓成形製程之有限元素分析 | zh_TW |
dc.title | A Finite Element Analysis of T-shaped Tube Hydroforming Process | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳錫侃,黃佑民,陳煌? | |
dc.subject.keyword | 件液壓成形,三通管,負載路徑,成形性,迴歸分析,有限元素法, | zh_TW |
dc.subject.keyword | tube hydroforming,T-shaped part,loading path,formability,regressive analysis,finite element method, | en |
dc.relation.page | 104 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-04-27 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 2.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。