請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54691
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許金川(Jin-Chuan Sheu) | |
dc.contributor.author | Meng-Tzu Weng | en |
dc.contributor.author | 翁孟慈 | zh_TW |
dc.date.accessioned | 2021-06-16T03:36:47Z | - |
dc.date.available | 2015-09-25 | |
dc.date.copyright | 2015-09-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-06-04 | |
dc.identifier.citation | Reference
Ahn, E.Y., DeKelver, R.C., Lo, M.C., Nguyen, T.A., Matsuura, S., Boyapati, A., Pandit, S., Fu, X.D., and Zhang, D.E. (2011). SON controls cell-cycle progression by coordinated regulation of RNA splicing. Molecular cell 42, 185-198. Amente, S., Napolitano, G., Licciardo, P., Monti, M., Pucci, P., Lania, L., and Majello, B. (2005). Identification of proteins interacting with the RNAPII FCP1 phosphatase: FCP1 forms a complex with arginine methyltransferase PRMT5 and it is a substrate for PRMT5-mediated methylation. FEBS letters 579, 683-689. Arai, R., Kukimoto-Niino, M., Uda-Tochio, H., Morita, S., Uchikubo-Kamo, T., Akasaka, R., Etou, Y., Hayashizaki, Y., Kigawa, T., Terada, T., et al. (2005). Crystal structure of an enhancer of rudimentary homolog (ERH) at 2.1 Angstroms resolution. Protein Sci 14, 1888-1893. Balaji, S., and Aravind, L. (2007). The RAGNYA fold: a novel fold with multiple topological variants found in functionally diverse nucleic acid, nucleotide and peptide-binding proteins. Nucleic acids research 35, 5658-5671. Bandyopadhyay, A., Wang, L., Agyin, J., Tang, Y., Lin, S., Yeh, I.T., De, K., and Sun, L.Z. (2010). Doxorubicin in combination with a small TGFbeta inhibitor: a potential novel therapy for metastatic breast cancer in mouse models. PLoS One 5, e10365. Barbie, D.A., Tamayo, P., Boehm, J.S., Kim, S.Y., Moody, S.E., Dunn, I.F., Schinzel, A.C., Sandy, P., Meylan, E., Scholl, C., et al. (2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108-112. Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim, S., Wilson, C.J., Lehar, J., Kryukov, G.V., Sonkin, D., et al. (2012). The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603-607. Becker, S.A., Lee, T.H., Butel, J.S., and Slagle, B.L. (1998). Hepatitis B virus X protein interferes with cellular DNA repair. Journal of virology 72, 266-272. Bhargava, A., Khan, S., Panwar, H., Pathak, N., Punde, R.P., Varshney, S., and Mishra, P.K. (2010). Occult hepatitis B virus infection with low viremia induces DNA damage, apoptosis and oxidative stress in peripheral blood lymphocytes. Virus research 153, 143-150. Bhargava, A., Raghuram, G.V., Pathak, N., Varshney, S., Jatawa, S.K., Jain, D., and Mishra, P.K. (2011). Occult hepatitis C virus elicits mitochondrial oxidative stress in lymphocytes and triggers PI3-kinase-mediated DNA damage response. Free radical biology & medicine 51, 1806-1814. Bittar, C., Shrivastava, S., Bhanja Chowdhury, J., Rahal, P., and Ray, R.B. (2013). Hepatitis C virus NS2 protein inhibits DNA damage pathway by sequestering p53 to the cytoplasm. PLoS One 8, e62581. Bunch, R.T., and Eastman, A. (1996). Enhancement of cisplatin-induced cytotoxicity by 7-hydroxystaurosporine (UCN-01), a new G2-checkpoint inhibitor. Clinical cancer research : an official journal of the American Association for Cancer Research 2, 791-797. Burroughs, A., Hochhauser, D., and Meyer, T. (2004). Systemic treatment and liver transplantation for hepatocellular carcinoma: two ends of the therapeutic spectrum. Lancet Oncol 5, 409-418. Cancer Genome Atlas, N. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330-337. Capovilla, A., Carmona, S., and Arbuthnot, P. (1997). Hepatitis B virus X-protein binds damaged DNA and sensitizes liver cells to ultraviolet irradiation. Biochem Biophys Res Commun 232, 255-260. Chitale, D., Gong, Y., Taylor, B.S., Broderick, S., Brennan, C., Somwar, R., Golas, B., Wang, L., Motoi, N., Szoke, J., et al. (2009). An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene 28, 2773-2783. Chou, T.C., and Talalay, P. (1984). Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22, 27-55. Cui, Y., and Guadagno, T.M. (2008). B-Raf(V600E) signaling deregulates the mitotic spindle checkpoint through stabilizing Mps1 levels in melanoma cells. Oncogene 27, 3122-3133. Denko, N.C., Giaccia, A.J., Stringer, J.R., and Stambrook, P.J. (1994). The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc Natl Acad Sci U S A 91, 5124-5128. Duong, F.H., Dill, M.T., Matter, M.S., Makowska, Z., Calabrese, D., Dietsche, T., Ketterer, S., Terracciano, L., and Heim, M.H. (2014). Protein phosphatase 2A promotes hepatocellular carcinogenesis in the diethylnitrosamine mouse model through inhibition of p53. Carcinogenesis 35, 114-122. Duthie, S.J., and Collins, A.R. (1997). The influence of cell growth, detoxifying enzymes and DNA repair on hydrogen peroxide-mediated DNA damage (measured using the comet assay) in human cells. Free radical biology & medicine 22, 717-724. Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C., and Parkin, D.M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International journal of cancer Journal international du cancer 127, 2893-2917. Forner, A., Llovet, J.M., and Bruix, J. (2012). Hepatocellular carcinoma. Lancet 379, 1245-1255. Fujita, N., Sugimoto, R., Ma, N., Tanaka, H., Iwasa, M., Kobayashi, Y., Kawanishi, S., Watanabe, S., Kaito, M., and Takei, Y. (2008). Comparison of hepatic oxidative DNA damage in patients with chronic hepatitis B and C. Journal of viral hepatitis 15, 498-507. Fuller, H.R., Man, N.T., Lam le, T., Thanh le, T., Keough, R.A., Asperger, A., Gonda, T.J., and Morris, G.E. (2010). The SMN interactome includes Myb-binding protein 1a. Journal of proteome research 9, 556-563. Garrett, M.D., and Collins, I. (2011). Anticancer therapy with checkpoint inhibitors: what, where and when? Trends Pharmacol Sci 32, 308-316. Gelsthorpe, M., Pulumati, M., McCallum, C., Dang-Vu, K., and Tsubota, S.I. (1997). The putative cell cycle gene, enhancer of rudimentary, encodes a highly conserved protein found in plants and animals. Gene 186, 189-195. Gelsthorpe, M.E., Tan, Z., Phillips, A., Eissenberg, J.C., Miller, A., Wallace, J., and Tsubota, S.I. (2006). Regulation of the Drosophila melanogaster protein, enhancer of rudimentary, by casein kinase II. Genetics 174, 265-270. Grishchuk, E.L., Spiridonov, I.S., and McIntosh, J.R. (2007). Mitotic chromosome biorientation in fission yeast is enhanced by dynein and a minus-end-directed, kinesin-like protein. Molecular biology of the cell 18, 2216-2225. Guerra, C., Mijimolle, N., Dhawahir, A., Dubus, P., Barradas, M., Serrano, M., Campuzano, V., and Barbacid, M. (2003). Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer cell 4, 111-120. Guo, G.S., Zhang, F.M., Gao, R.J., Delsite, R., Feng, Z.H., and Powell, S.N. (2011). DNA repair and synthetic lethality. International journal of oral science 3, 176-179. Guo, Z., Kumagai, A., Wang, S.X., and Dunphy, W.G. (2000). Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes & development 14, 2745-2756. Hassepass, I., Voit, R., and Hoffmann, I. (2003). Phosphorylation at serine 75 is required for UV-mediated degradation of human Cdc25A phosphatase at the S-phase checkpoint. J Biol Chem 278, 29824-29829. Higgs, M.R., Chouteau, P., and Lerat, H. (2014). 'Liver let die': oxidative DNA damage and hepatotropic viruses. J Gen Virol 95, 991-1004. Ho, C.C., Siu, W.Y., Chow, J.P., Lau, A., Arooz, T., Tong, H.Y., Ng, I.O., and Poon, R.Y. (2005). The relative contribution of CHK1 and CHK2 to Adriamycin-induced checkpoint. Experimental cell research 304, 1-15. Hofmann, J.C., Husedzinovic, A., and Gruss, O.J. (2010). The function of spliceosome components in open mitosis. Nucleus 1, 447-459. Hong, J., Hu, K., Yuan, Y., Sang, Y., Bu, Q., Chen, G., Yang, L., Li, B., Huang, P., Chen, D., et al. (2012). CHK1 targets spleen tyrosine kinase (L) for proteolysis in hepatocellular carcinoma. J Clin Invest 122, 2165-2175. Isken, O., and Maquat, L.E. (2008). The multiple lives of NMD factors: balancing roles in gene and genome regulation. Nature reviews Genetics 9, 699-712. Jin, T., Guo, F., Serebriiskii, I.G., Howard, A., and Zhang, Y.Z. (2007). A 1.55 A resolution X-ray crystal structure of HEF2/ERH and insights into its transcriptional and cell-cycle interaction networks. Proteins 68, 427-437. Johnson, V.L., Scott, M.I., Holt, S.V., Hussein, D., and Taylor, S.S. (2004). Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression. J Cell Sci 117, 1577-1589. Kan, Z., Zheng, H., Liu, X., Li, S., Barber, T.D., Gong, Z., Gao, H., Hao, K., Willard, M.D., Xu, J., et al. (2013). Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res 23, 1422-1433. Karnoub, A.E., and Weinberg, R.A. (2008). Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9, 517-531. Kaufer, N.F., and Potashkin, J. (2000). Analysis of the splicing machinery in fission yeast: a comparison with budding yeast and mammals. Nucleic acids research 28, 3003-3010. Kittler, R., Pelletier, L., Heninger, A.K., Slabicki, M., Theis, M., Miroslaw, L., Poser, I., Lawo, S., Grabner, H., Kozak, K., et al. (2007). Genome-scale RNAi profiling of cell division in human tissue culture cells. Nature cell biology 9, 1401-1412. Krzyzanowski, M.K., Kozlowska, E., and Kozlowski, P. (2012). Identification and functional analysis of the erh1(+) gene encoding enhancer of rudimentary homolog from the fission yeast Schizosaccharomyces pombe. PLoS One 7, e49059. Kumar, M.S., Hancock, D.C., Molina-Arcas, M., Steckel, M., East, P., Diefenbacher, M., Armenteros-Monterroso, E., Lassailly, F., Matthews, N., Nye, E., et al. (2012). The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer. Cell 149, 642-655. Kwak, Y.T., Guo, J., Prajapati, S., Park, K.J., Surabhi, R.M., Miller, B., Gehrig, P., and Gaynor, R.B. (2003). Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties. Molecular cell 11, 1055-1066. Landau, H.J., McNeely, S.C., Nair, J.S., Comenzo, R.L., Asai, T., Friedman, H., Jhanwar, S.C., Nimer, S.D., and Schwartz, G.K. (2012). The checkpoint kinase inhibitor AZD7762 potentiates chemotherapy-induced apoptosis of p53-mutated multiple myeloma cells. Mol Cancer Ther 11, 1781-1788. Lehmeier, T., Raker, V., Hermann, H., and Luhrmann, R. (1994). cDNA cloning of the Sm proteins D2 and D3 from human small nuclear ribonucleoproteins: evidence for a direct D1-D2 interaction. Proc Natl Acad Sci U S A 91, 12317-12321. Li, H., Inoue, M., Yabuki, T., Aoki, M., Seki, E., Matsuda, T., Nunokawa, E., Motoda, Y., Kobayashi, A., Terada, T., et al. (2005). Solution structure of the mouse enhancer of rudimentary protein reveals a novel fold. Journal of biomolecular NMR 32, 329-334. Liu, Q., Guntuku, S., Cui, X.S., Matsuoka, S., Cortez, D., Tamai, K., Luo, G., Carattini-Rivera, S., DeMayo, F., Bradley, A., et al. (2000). Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes & development 14, 1448-1459. Llovet, J.M., Ricci, S., Mazzaferro, V., Hilgard, P., Gane, E., Blanc, J.F., de Oliveira, A.C., Santoro, A., Raoul, J.L., Forner, A., et al. (2008). Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359, 378-390. Lukasik, A., Uniewicz, K.A., Kulis, M., and Kozlowski, P. (2008). Ciz1, a p21 cip1/Waf1-interacting zinc finger protein and DNA replication factor, is a novel molecular partner for human enhancer of rudimentary homolog. The FEBS journal 275, 332-340. Luo, J., Emanuele, M.J., Li, D., Creighton, C.J., Schlabach, M.R., Westbrook, T.F., Wong, K.K., and Elledge, S.J. (2009a). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137, 835-848. Luo, J., Solimini, N.L., and Elledge, S.J. (2009b). Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823-837. Marcotte, R., Brown, K.R., Suarez, F., Sayad, A., Karamboulas, K., Krzyzanowski, P.M., Sircoulomb, F., Medrano, M., Fedyshyn, Y., Koh, J.L., et al. (2012). Essential gene profiles in breast, pancreatic, and ovarian cancer cells. Cancer discovery 2, 172-189. Mathonnet, G., Lachance, S., Alaoui-Jamali, M., and Drobetsky, E.A. (2004). Expression of hepatitis B virus X oncoprotein inhibits transcription-coupled nucleotide excision repair in human cells. Mutation research 554, 305-318. McNeely, S., Conti, C., Sheikh, T., Patel, H., Zabludoff, S., Pommier, Y., Schwartz, G., and Tse, A. (2010). Chk1 inhibition after replicative stress activates a double strand break response mediated by ATM and DNA-dependent protein kinase. Cell cycle 9, 995-1004. Mendel, D.B., Khavari, P.A., Conley, P.B., Graves, M.K., Hansen, L.P., Admon, A., and Crabtree, G.R. (1991). Characterization of a cofactor that regulates dimerization of a mammalian homeodomain protein. Science 254, 1762-1767. Neumann, B., Walter, T., Heriche, J.K., Bulkescher, J., Erfle, H., Conrad, C., Rogers, P., Poser, I., Held, M., Liebel, U., et al. (2010). Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464, 721-727. Ohnishi, T., Yamashita, A., Kashima, I., Schell, T., Anders, K.R., Grimson, A., Hachiya, T., Hentze, M.W., Anderson, P., and Ohno, S. (2003). Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Molecular cell 12, 1187-1200. Okayama, H., Kohno, T., Ishii, Y., Shimada, Y., Shiraishi, K., Iwakawa, R., Furuta, K., Tsuta, K., Shibata, T., Yamamoto, S., et al. (2012). Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer research 72, 100-111. Olive, P.L., Banath, J.P., and Durand, R.E. (1990). Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the 'comet' assay. Radiation research 122, 86-94. Onyango, P., and Feinberg, A.P. (2011). A nucleolar protein, H19 opposite tumor suppressor (HOTS), is a tumor growth inhibitor encoded by a human imprinted H19 antisense transcript. Proc Natl Acad Sci U S A 108, 16759-16764. Parsels, L.A., Qian, Y., Tanska, D.M., Gross, M., Zhao, L., Hassan, M.C., Arumugarajah, S., Parsels, J.D., Hylander-Gans, L., Simeone, D.M., et al. (2011). Assessment of chk1 phosphorylation as a pharmacodynamic biomarker of chk1 inhibition. Clinical cancer research : an official journal of the American Association for Cancer Research 17, 3706-3715. Pogge von Strandmann, E., Senkel, S., and Ryffel, G.U. (2001). ERH (enhancer of rudimentary homologue), a conserved factor identical between frog and human, is a transcriptional repressor. Biological chemistry 382, 1379-1385. Putkey, F.R., Cramer, T., Morphew, M.K., Silk, A.D., Johnson, R.S., McIntosh, J.R., and Cleveland, D.W. (2002). Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Developmental cell 3, 351-365. Pylayeva-Gupta, Y., Grabocka, E., and Bar-Sagi, D. (2011). RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11, 761-774. Roessler, S., Jia, H.L., Budhu, A., Forgues, M., Ye, Q.H., Lee, J.S., Thorgeirsson, S.S., Sun, Z., Tang, Z.Y., Qin, L.X., et al. (2010). A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer research 70, 10202-10212. Roykhman, M., Ibach, S., Harding, D., Wolff, B., Vowels, M., Gelsthorpe, M.E., Wojcik, E.J., Rizzo, N.P., and Tsubota, S.I. (2007). The generation and analysis of deficiencies within a small genomic region on the X chromosome of Drosophila melanogaster containing two genes, enhancer of rudimentary and CG15352. Fly 1, 245-250. Saavedra, H.I., Knauf, J.A., Shirokawa, J.M., Wang, J., Ouyang, B., Elisei, R., Stambrook, P.J., and Fagin, J.A. (2000). The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway. Oncogene 19, 3948-3954. Samuels, Y., Diaz, L.A., Jr., Schmidt-Kittler, O., Cummins, J.M., Delong, L., Cheong, I., Rago, C., Huso, D.L., Lengauer, C., Kinzler, K.W., et al. (2005). Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer cell 7, 561-573. Sarthy, A.V., Morgan-Lappe, S.E., Zakula, D., Vernetti, L., Schurdak, M., Packer, J.C., Anderson, M.G., Shirasawa, S., Sasazuki, T., and Fesik, S.W. (2007). Survivin depletion preferentially reduces the survival of activated K-Ras-transformed cells. Mol Cancer Ther 6, 269-276. Sausville, E., Lorusso, P., Carducci, M., Carter, J., Quinn, M.F., Malburg, L., Azad, N., Cosgrove, D., Knight, R., Barker, P., et al. (2014). Phase I dose-escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors. Cancer Chemother Pharmacol 73, 539-549. Schaar, B.T., Chan, G.K., Maddox, P., Salmon, E.D., and Yen, T.J. (1997). CENP-E function at kinetochores is essential for chromosome alignment. The Journal of cell biology 139, 1373-1382. Scholl, C., Frohling, S., Dunn, I.F., Schinzel, A.C., Barbie, D.A., Kim, S.Y., Silver, S.J., Tamayo, P., Wadlow, R.C., Ramaswamy, S., et al. (2009). Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137, 821-834. Schwarz, K.B., Kew, M., Klein, A., Abrams, R.A., Sitzmann, J., Jones, L., Sharma, S., Britton, R.S., Di Bisceglie, A.M., and Groopman, J. (2001). Increased hepatic oxidative DNA damage in patients with hepatocellular carcinoma. Digestive diseases and sciences 46, 2173-2178. Sharp-Baker, H., and Chen, R.H. (2001). Spindle checkpoint protein Bub1 is required for kinetochore localization of Mad1, Mad2, Bub3, and CENP-E, independently of its kinase activity. The Journal of cell biology 153, 1239-1250. Shawki, S.M., Meshaal, S.S., El Dash, A.S., Zayed, N.A., and Hanna, M.O. (2014). Increased DNA damage in hepatitis C virus-related hepatocellular carcinoma. DNA and cell biology 33, 884-890. Shirasawa, S., Furuse, M., Yokoyama, N., and Sasazuki, T. (1993). Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science 260, 85-88. Singh, A., Greninger, P., Rhodes, D., Koopman, L., Violette, S., Bardeesy, N., and Settleman, J. (2009). A gene expression signature associated with 'K-Ras addiction' reveals regulators of EMT and tumor cell survival. Cancer cell 15, 489-500. Smyk, A., Szuminska, M., Uniewicz, K.A., Graves, L.M., and Kozlowski, P. (2006). Human enhancer of rudimentary is a molecular partner of PDIP46/SKAR, a protein interacting with DNA polymerase delta and S6K1 and regulating cell growth. The FEBS journal 273, 4728-4741. Song, E.J., Werner, S.L., Neubauer, J., Stegmeier, F., Aspden, J., Rio, D., Harper, J.W., Elledge, S.J., Kirschner, M.W., and Rape, M. (2010). The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome. Genes & development 24, 1434-1447. Straight, A.F., Marshall, W.F., Sedat, J.W., and Murray, A.W. (1997). Mitosis in living budding yeast: anaphase A but no metaphase plate. Science 277, 574-578. Tanaka, S., Miyanishi, K., Kobune, M., Kawano, Y., Hoki, T., Kubo, T., Hayashi, T., Sato, T., Sato, Y., Takimoto, R., et al. (2013). Increased hepatic oxidative DNA damage in patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. Journal of gastroenterology 48, 1249-1258. Tomida, S., Takeuchi, T., Shimada, Y., Arima, C., Matsuo, K., Mitsudomi, T., Yatabe, Y., and Takahashi, T. (2009). Relapse-related molecular signature in lung adenocarcinomas identifies patients with dismal prognosis. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 27, 2793-2799. Torrance, C.J., Agrawal, V., Vogelstein, B., and Kinzler, K.W. (2001). Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nature biotechnology 19, 940-945. Totoki, Y., Tatsuno, K., Yamamoto, S., Arai, Y., Hosoda, F., Ishikawa, S., Tsutsumi, S., Sonoda, K., Totsuka, H., Shirakihara, T., et al. (2011). High-resolution characterization of a hepatocellular carcinoma genome. Nat Genet 43, 464-469. Tse, A.N., Rendahl, K.G., Sheikh, T., Cheema, H., Aardalen, K., Embry, M., Ma, S., Moler, E.J., Ni, Z.J., Lopes de Menezes, D.E., et al. (2007). CHIR-124, a novel potent inhibitor of Chk1, potentiates the cytotoxicity of topoisomerase I poisons in vitro and in vivo. Clinical cancer research : an official journal of the American Association for Cancer Research 13, 591-602. Tuveson, D.A., Shaw, A.T., Willis, N.A., Silver, D.P., Jackson, E.L., Chang, S., Mercer, K.L., Grochow, R., Hock, H., Crowley, D., et al. (2004). Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer cell 5, 375-387. Venkatesha, V.A., Parsels, L.A., Parsels, J.D., Zhao, L., Zabludoff, S.D., Simeone, D.M., Maybaum, J., Lawrence, T.S., and Morgan, M.A. (2012). Sensitization of pancreatic cancer stem cells to gemcitabine by Chk1 inhibition. Neoplasia 14, 519-525. Vicent, S., Chen, R., Sayles, L.C., Lin, C., Walker, R.G., Gillespie, A.K., Subramanian, A., Hinkle, G., Yang, X., Saif, S., et al. (2010). Wilms tumor 1 (WT1) regulates KRAS-driven oncogenesis and senescence in mouse and human models. J Clin Invest 120, 3940-3952. Wan, C., Tempel, W., Liu, Z.J., Wang, B.C., and Rose, R.B. (2005). Structure of the conserved transcriptional repressor enhancer of rudimentary homolog. Biochemistry 44, 5017-5023. Wang, H., Zuo, B., Ren, L., Yang, P., Zeng, M., Duan, D., Liu, C., and Li, M. (2012). CGK733 enhances multinucleated cell formation and cytotoxicity induced by taxol in Chk1-deficient HBV-positive hepatocellular carcinoma cells. Biochem Biophys Res Commun 422, 103-108. Wang, X., Zou, L., Lu, T., Bao, S., Hurov, K.E., Hittelman, W.N., Elledge, S.J., and Li, L. (2006). Rad17 phosphorylation is required for claspin recruitment and Chk1 activation in response to replication stress. Molecular cell 23, 331-341. Waters, D.J., Shen, S., Xu, H., Kengeri, S.S., Cooley, D.M., Chiang, E.C., Chen, Y., Schlittler, D., Oteham, C., Combs, G.F., Jr., et al. (2007). Noninvasive prediction of prostatic DNA damage by oxidative stress challenge of peripheral blood lymphocytes. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 16, 1906-1910. Weaver, B.A., Bonday, Z.Q., Putkey, F.R., Kops, G.J., Silk, A.D., and Cleveland, D.W. (2003). Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. The Journal of cell biology 162, 551-563. Wei, S.C., Tsao, P.N., Weng, M.T., Cao, Z., and Wong, J.M. (2013). Flt-1 in colorectal cancer cells is required for the tumor invasive effect of placental growth factor through a p38-MMP9 pathway. Journal of biomedical science 20, 39. Weinstein, I.B., and Joe, A. (2008). Oncogene addiction. Cancer research 68, 3077-3080; discussion 3080. Weng, M.T., Lee, J.H., Wei, S.C., Li, Q., Shahamatdar, S., Hsu, D., Schetter, A.J., Swatkoski, S., Mannan, P., Garfield, S., et al. (2012). Evolutionarily conserved protein ERH controls CENP-E mRNA splicing and is required for the survival of KRAS mutant cancer cells. Proc Natl Acad Sci U S A 109, E3659-3667. Wojcik, E., Murphy, A.M., Fares, H., Dang-Vu, K., and Tsubota, S.I. (1994). Enhancer of rudimentaryp1, e(r)p1, a highly conserved enhancer of the rudimentary gene. Genetics 138, 1163-1170. Yang, S.F., Chang, C.W., Wei, R.J., Shiue, Y.L., Wang, S.N., and Yeh, Y.T. (2014). Involvement of DNA Damage Response Pathways in Hepatocellular Carcinoma. Biomed Res Int 2014, 153867. Yen, T.J., Li, G., Schaar, B.T., Szilak, I., and Cleveland, D.W. (1992). CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 359, 536-539. Yildiz, G., Arslan-Ergul, A., Bagislar, S., Konu, O., Yuzugullu, H., Gursoy-Yuzugullu, O., Ozturk, N., Ozen, C., Ozdag, H., Erdal, E., et al. (2013). Genome-wide transcriptional reorganization associated with senescence-to-immortality switch during human hepatocellular carcinogenesis. PLoS One 8, e64016. Zabludoff, S.D., Deng, C., Grondine, M.R., Sheehy, A.M., Ashwell, S., Caleb, B.L., Green, S., Haye, H.R., Horn, C.L., Janetka, J.W., et al. (2008). AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther 7, 2955-2966. Zafrakas, M., Losen, I., Knuchel, R., and Dahl, E. (2008). Enhancer of the rudimentary gene homologue (ERH) expression pattern in sporadic human breast cancer and normal breast tissue. BMC Cancer 8, 145. Zheng, S., Tansey, W.P., Hiebert, S.W., and Zhao, Z. (2011). Integrative network analysis identifies key genes and pathways in the progression of hepatitis C virus induced hepatocellular carcinoma. BMC medical genomics 4, 62. Zou, L., and Elledge, S.J. (2003). Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542-1548. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54691 | - |
dc.description.abstract | 基本同源物增强子(ERH),最初是在果蠅中發現,是一個高度演化保留的基因,但它在細胞中的功能仍未明。RAS基因是一個常見的致癌基因,在人類的大腸癌、肺癌或胰臟癌都可以發現有很高比例的突變。經由我們的研究發現與Ras正常的細胞相比,剔除ERH蛋白在Ras突變的細胞中會產生較強的毒性。 此外,ERH會與重組人小核醣核蛋白肽D3 (SNRPD3) 互相作用。由於SNRPD3蛋白負責信使核糖核酸的剪接,進一步研究發現有絲分裂驅動蛋白CENP-E的信使核糖核酸在剪接過程必須依賴ERH的存在。若失去ERH將會降低CENP-E蛋白質的形成進而導致染色體排列異常。我們也經由基因表達譜研究發現許多細胞分裂或脫氧核醣核酸損傷修復機制(DDR)相關的基因需要依賴ERH才能正常表現。這些研究結果顯示ERH在信使核糖核酸的剪接及細胞分裂的過程扮演重要的角色。臨床上,我們也發現ERH降低表現後的基因表達標記與RAS基因表達標記成反比。在Ras突變的大腸癌患者若其腫瘤呈現較高的ERH表現量則患者存活率較差。經由種種證據顯示Ras突變的腫瘤一旦ERH表現量下降,腫瘤本身的存活也會下降。目前Ras突變的癌症仍面臨治療上的困境,近年來大規模 RNA干擾篩檢發現在Ras突變的細胞中仍須依賴許多非致癌基因的存在才能存活,ERH就是其中之一。我們的研究證明Ras突變的癌細胞需依賴ERH才能存活,這也提供了這類腫瘤的治療契機.
脫氧核醣核酸損傷修復機制(DDR)的調解失衡會促進肝癌的形成且增加肝癌對化療產生抗藥性。在第二部分的論文,我們觀察到ERH的表現量與共濟失調微血管擴張及Rad3-相關 (ATR) 的信使核糖核酸表現量在肝臟組織中呈現正相關。此外ERH、ATR及檢測點激-1 (Chk-1)蛋白這三個蛋白的信使核糖核酸在肝癌的表現量皆高於正常肝組織。在HepG2細胞中剔除ERH會降低去氧核醣核酸受損後的修復功能。而剔除ERH也會導致ATR信使核糖核酸的剪接異常進而降低ATR蛋白的表現量。由於ATR磷酸化會活化下游的Chk-1蛋白,在經由紫外線或hydroxyurea誘導去氧核醣核酸受損後,剔除ERH將會導致Chk-1無法有效被活化,並進一步降低細胞的修復功能。最後, 我們證明無論是或老鼠實驗,使用Chk1 抑制劑AZD7762皆可以促進 doxorubicin針對肝癌細胞的療效。本研究顯示ERH可以調節ATR信使核糖核酸的剪接,使用Chk-1抑制劑來降低去氧核醣核酸的修復機制有助於增加化療在肝癌的療效。 | zh_TW |
dc.description.abstract | Enhancer of rudimentary homolog (ERH), originally identified in Drosophila, is a highly conserved gene among metazoans, whereas its molecular function is poorly understood. The Ras family of small GTPases are mutated in a significant fraction of human cancers, with high frequencies of KRAS mutations found in colon, lung and pancreatic cancers. In our study, we identify that depletion of ERH causes greater toxicity in cancer cells with mutations in the small GTPase KRAS compared with KRAS WT cells. ERH interacts with the Sm protein SNRPD3 and is required for the mRNA splicing of the mitotic kinesin CENP-E. Loss of ERH leads to loss of CENP-E and consequently, chromosome congression defects. Gene expression profiling indicates that ERH is required for the expression of multiple cell cycle and DNA damage response (DDR) genes. These findings identify a new role of ERH in mRNA splicing and mitosis. Clinically, the gene expression signature resulting from ERH down-regulation inversely correlates with KRAS signatures. Tumor ERH expression is inversely associated with survival of colorectal cancer patients whose tumors harbor KRAS mutations. Cancers with Ras mutations represent a major therapeutic problem. Recent RNAi screens have uncovered multiple non-oncogene addiction pathways that are necessary for the survival of Ras mutant cells. Our study provided evidence that KRAS mutant cancer cells are dependent on ERH for their survival and could present one such potential avenue for therapeutic exploration.
Dysregulation of DNA damage response (DDR) is often involved in the carcinogenesis of HCC and may contribute to HCC’s resistance to chemotherapies. In the following study, we observed positive correlation between ERH and ataxia telangiectasia and Rad3 related (ATR) expression in liver tissues. Expression of ERH, ATR as well as checkpoint kinase 1 (CHK1) were higher in HCCs than in normal liver tissues. Knocking-down ERH augmented ultraviolet light induced DNA damage in HepG2 cells. ATR protein level is reduced upon ERH depletion as a result of defect in the splicing of ATR mRNA. Consequently, the ATR effector kinase Chk1 failed to be phosphorylated upon ultraviolet light or hydroxyurea treatment in ERH knocked-down HepG2 cells. Finally, we observed Chk1 inhibitor AZD7762 enhanced the effect of doxorubicin on inhibiting growth of HCC cells in vitro and in vivo. This study suggested that ERH regulates the splicing of the DNA damage response proteins ATR in HCC cells, and targeting DNA damage response by Chk1 inhibitor augments chemotherapy to treat HCC cells. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:36:47Z (GMT). No. of bitstreams: 1 ntu-104-D97421008-1.pdf: 5201835 bytes, checksum: 0f8ebb4e89e0601f4c8a797ed05e9bc3 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 目錄
口試委員審定書.............. i 誌謝........................ ii 中文摘要.................... iii 英文摘要.................... v 目錄 ....................... vii 圖目錄...................... ix 附錄圖目錄.................. xi 附錄表目錄.................. xii 縮寫 ........ xiii Chapter 1 Background.................................... 1 Chapter 2 General material and methods.................. 7 Chapter 3 Evolutionarily conserved protein ERH controls CENP-E mRNA splicing and is required for the survival of KRAS mutant cancer cells ............................... 15 1. Introduction ............................ 16 2. Specific material and methods............ 18 3. Results ................................. 28 4. Discussion............................... 39 Chapter 4 Enhancer of rudimentary homolog regulates DNA damage response in hepatocellular carcinoma......... 44 1. Introduction ............................. 45 2. Specific material and methods............. 47 3. Results .................................. 51 4. Discussion ............................... 58 Chapter 5 Perspectives................................. 62 Reference.................................... 65 Figures...................................... 80 Supplement Figures .......................... 111 Supplement Table ............................ 122 附錄......................................... 123 | |
dc.language.iso | en | |
dc.title | 基本同源物增强子在癌症的角色 | zh_TW |
dc.title | Enhancer of rudimentary homolog in cancer | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 翁昭旼(Jau-Min Wong) | |
dc.contributor.oralexamcommittee | 楊偉勛(Wei-Shiung Yang),周綠蘋(Lu-Ping Chow),施嘉和(Chia-Ho Shih),謝小燕(Sheau-Yann Shieh) | |
dc.subject.keyword | 基本同源物增?子,著絲點相關蛋白-E,重組人小核醣核蛋白?D3,合成致死,大腸癌,共濟失調微血管擴張及Rad3-相關 (ATR),肝癌, | zh_TW |
dc.subject.keyword | ERH,CENP-E,SNRPD3,Synthetic lethality,Colorectal cancer,ATR,Hepatocellular carcinoma, | en |
dc.relation.page | 125 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-06-04 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 5.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。