請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54684
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖英志(Ying-Chih Liao) | |
dc.contributor.author | Tzu-Chieh Fang | en |
dc.contributor.author | 方子杰 | zh_TW |
dc.date.accessioned | 2021-06-16T03:36:40Z | - |
dc.date.available | 2025-08-03 | |
dc.date.copyright | 2020-08-06 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-04 | |
dc.identifier.citation | 1. Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries, in Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. 2011, World Scientific. p. 171-179. 2. Conway, B.E., Electrochemical supercapacitors: scientific fundamentals and technological applications. 2013: Springer Science Business Media. 3. Zhang, S. and N. Pan, Supercapacitors performance evaluation. Advanced Energy Materials, 2015. 5(6): p. 1401401. 4. Lu, X., et al., Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environmental Science, 2014. 7(7): p. 2160-2181. 5. Yang, P. and W. Mai, Flexible solid-state electrochemical supercapacitors. Nano Energy, 2014. 8: p. 274-290. 6. Dubal, D.P., et al., Towards flexible solid-state supercapacitors for smart and wearable electronics. Chemical Society Reviews, 2018. 47(6): p. 2065-2129. 7. Pandolfo, A.G. and A.F. Hollenkamp, Carbon properties and their role in supercapacitors. Journal of power sources, 2006. 157(1): p. 11-27. 8. Simon, P., Y. Gogotsi, and B. Dunn, Where do batteries end and supercapacitors begin? Science, 2014. 343(6176): p. 1210-1211. 9. Snook, G.A., P. Kao, and A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. Journal of power sources, 2011. 196(1): p. 1-12. 10. Bonaccorso, F., et al., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015. 347(6217). 11. Chen, H., et al., Progress in electrical energy storage system: A critical review. Progress in natural science, 2009. 19(3): p. 291-312. 12. Huang, Y., J. Liang, and Y. Chen, An overview of the applications of graphene‐based materials in supercapacitors. Small, 2012. 8(12): p. 1805-1834. 13. Winter, M. and R.J. Brodd, What are batteries, fuel cells, and supercapacitors? 2004, ACS Publications. 14. Zhang, L.L. and X. Zhao, Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 2009. 38(9): p. 2520-2531. 15. Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors, in Nanoscience and technology: a collection of reviews from Nature journals. 2010, World Scientific. p. 320-329. 16. Goodenough, J.B., H. Abruna, and M. Buchanan. Basic research needs for electrical energy storage. in Report of the basic energy sciences workshop for electrical energy storage. 2007. 17. Lima, N., et al., Carbon threads sweat-based supercapacitors for electronic textiles. Scientific reports, 2020. 10(1): p. 1-9. 18. Raj, C.J., et al., High-performance flexible and wearable planar supercapacitor of manganese dioxide nanoflowers on carbon fiber cloth. Ceramics International, 2020. 19. Wei, D., et al., Fabrication of poly (vinyl alcohol)–graphene oxide–polypyrrole composite hydrogel for elastic supercapacitors. JOURNAL OF MATERIALS SCIENCE, 2020. 20. Deng, Q., et al., Chemically modified self-doped biocarbon via novel sulfonation assisted sacrificial template method for high performance flexible all solid-state supercapacitor. Journal of Colloid and Interface Science, 2020. 21. Xie, B., et al., Shape-tailorable graphene-based ultra-high-rate supercapacitor for wearable electronics. ACS nano, 2015. 9(6): p. 5636-5645. 22. Sun, J., et al., A high performance fiber-shaped PEDOT@ MnO 2//C@ Fe 3 O 4 asymmetric supercapacitor for wearable electronics. Journal of materials chemistry A, 2016. 4(38): p. 14877-14883. 23. Jin, H., et al., High-performance fiber-shaped supercapacitors using carbon fiber thread (CFT)@ polyanilne and functionalized CFT electrodes for wearable/stretchable electronics. Nano Energy, 2015. 11: p. 662-670. 24. Wang, J., et al., A Flexible Fiber‐Based Supercapacitor–Triboelectric‐Nanogenerator Power System for Wearable Electronics. Advanced Materials, 2015. 27(33): p. 4830-4836. 25. Yeo, J., et al., Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application. Journal of Power Sources, 2014. 246: p. 562-568. 26. Liang, X., et al., High performance all-solid-state flexible supercapacitor for wearable storage device application. Chemical Engineering Journal, 2018. 345: p. 186-195. 27. Wen, Z., et al., Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Science advances, 2016. 2(10): p. e1600097. 28. In, H.J., et al., Origami fabrication of nanostructured, three-dimensional devices: Electrochemical capacitors with carbon electrodes. Applied Physics Letters, 2006. 88(8): p. 083104. 29. Nam, I., et al., All-solid-state, origami-type foldable supercapacitor chips with integrated series circuit analogues. Energy Environmental Science, 2014. 7(3): p. 1095-1102. 30. Zeng, F., et al., Almond-derived origami-like hierarchically porous and N/O co-functionalized carbon sheet for high-performance supercapacitor. Applied Surface Science, 2019. 467: p. 229-235. 31. Gao, C., et al., Versatile origami micro-supercapacitors array as a wind energy harvester. Journal of Materials Chemistry A, 2018. 6(40): p. 19750-19756. 32. Hunter, R.J., Zeta potential in colloid science: principles and applications. Vol. 2. 2013: Academic press. 33. Liu, J., et al., Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Advanced science, 2018. 5(1): p. 1700322. 34. Conway, B.E., Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. Journal of the Electrochemical Society, 1991. 138(6): p. 1539. 35. Hall, P.J., et al., Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environmental Science, 2010. 3(9): p. 1238-1251. 36. Augustyn, V., P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environmental Science, 2014. 7(5): p. 1597-1614. 37. Liu, J., Graphene-based composites for electrochemical energy storage. 2017: Springer. 38. Yang, X., et al., Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. science, 2013. 341(6145): p. 534-537. 39. Miller, J.R., R. Outlaw, and B. Holloway, Graphene electric double layer capacitor with ultra-high-power performance. Electrochimica Acta, 2011. 56(28): p. 10443-10449. 40. Cai, M., et al., A high density of vertically-oriented graphenes for use in electric double layer capacitors. Carbon, 2012. 50(15): p. 5481-5488. 41. Raymundo-Pinero, E., et al., Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon, 2006. 44(12): p. 2498-2507. 42. Fuertes, A.B. and M. Sevilla, Superior capacitive performance of hydrochar-based porous carbons in aqueous electrolytes. ChemSusChem, 2015. 8(6): p. 1049-1057. 43. Senokos, E., et al., Macroscopic fibres of CNTs as electrodes for multifunctional electric double layer capacitors: from quantum capacitance to device performance. Nanoscale, 2016. 8(6): p. 3620-3628. 44. Shayeh, J.S., et al., Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors. Applied Surface Science, 2015. 353: p. 594-599. 45. Li, P., et al., Stretchable all‐gel‐state fiber‐shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Advanced Materials, 2018. 30(18): p. 1800124. 46. Kang, J., et al., Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes. Electrochimica Acta, 2014. 115: p. 587-598. 47. Lei, C., et al., Reduction of porous carbon/Al contact resistance for an electric double-layer capacitor (EDLC). Electrochimica acta, 2013. 92: p. 183-187. 48. Chen, G.Z., Supercapacitor and supercapattery as emerging electrochemical energy stores. International Materials Reviews, 2017. 62(4): p. 173-202. 49. Hu, C.-C., et al., Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano letters, 2006. 6(12): p. 2690-2695. 50. Duay, J., et al., Self-limiting electrodeposition of hierarchical MnO2 and M (OH) 2/MnO2 nanofibril/nanowires: mechanism and supercapacitor properties. Acs Nano, 2013. 7(2): p. 1200-1214. 51. Hasan, M., M. Jamal, and K.M. Razeeb, Coaxial NiO/Ni nanowire arrays for high performance pseudocapacitor applications. Electrochimica Acta, 2012. 60: p. 193-200. 52. Bellani, S., et al., Scalable production of graphene inks via wet‐jet milling exfoliation for screen‐printed micro‐supercapacitors. Advanced Functional Materials, 2019. 29(14): p. 1807659. 53. Zhai, T., et al., Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Advanced Materials, 2017. 29(7): p. 1604167. 54. Xia, X.-H., et al., Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material. Chemical Communications, 2011. 47(20): p. 5786-5788. 55. Xiao, Y., et al., 3D hierarchical Co3O4 twin‐spheres with an urchin‐like structure: Large‐scale synthesis, multistep‐splitting growth, and electrochemical pseudocapacitors. Advanced Functional Materials, 2012. 22(19): p. 4052-4059. 56. Zheng, J. and T. Jow, High energy and high power density electrochemical capacitors. Journal of Power Sources, 1996. 62(2): p. 155-159. 57. Jiang, J. and A. Kucernak, Electrochemical supercapacitor material based on manganese oxide: preparation and characterization. Electrochimica Acta, 2002. 47(15): p. 2381-2386. 58. Ge, X., et al., A versatile protocol for the ionothermal synthesis of nanostructured nickel compounds as energy storage materials from a choline chloride-based ionic liquid. Journal of Materials Chemistry A, 2013. 1(43): p. 13454-13461. 59. Zhang, F., et al., Facile growth of mesoporous Co3O4 nanowire arrays on Ni foam for high performance electrochemical capacitors. Journal of Power Sources, 2012. 203: p. 250-256. 60. Shiri, H.M., A. Ehsani, and M.J. Khales, Electrochemical synthesis of Sm2O3 nanoparticles: Application in conductive polymer composite films for supercapacitors. Journal of colloid and interface science, 2017. 505: p. 940-946. 61. Qi, K., et al., Construction of metal–organic framework/conductive polymer hybrid for all-solid-state fabric supercapacitor. ACS applied materials interfaces, 2018. 10(21): p. 18021-18028. 62. Biswas, S. and L.T. Drzal, Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chemistry of Materials, 2010. 22(20): p. 5667-5671. 63. Conway, B., Electrochemical At Noble Metals Oxide Film Formation As a Surface-Chemical Process. Prog. Surf. Sci, 1995. 49(95): p. 331-452. 64. Conway, B.E., Electrochemical oxide film formation at noble metals as a surface-chemical process. Progress in surface science, 1995. 49(4): p. 331-452. 65. Meher, S.K. and G.R. Rao, Ultralayered Co3O4 for high-performance supercapacitor applications. The Journal of Physical Chemistry C, 2011. 115(31): p. 15646-15654. 66. Zeng, W., et al., Fiber‐based wearable electronics: a review of materials, fabrication, devices, and applications. Advanced materials, 2014. 26(31): p. 5310-5336. 67. Wang, X., et al., Flexible energy‐storage devices: design consideration and recent progress. Advanced materials, 2014. 26(28): p. 4763-4782. 68. Liu, W., et al., Flexible and stretchable energy storage: recent advances and future perspectives. Advanced materials, 2017. 29(1): p. 1603436. 69. Li, L., et al., Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environmental Science, 2014. 7(7): p. 2101-2122. 70. Lai, X., J.E. Halpert, and D. Wang, Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environmental Science, 2012. 5(2): p. 5604-5618. 71. Naoi, K., et al., Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environmental Science, 2012. 5(11): p. 9363-9373. 72. Calvert, P., Inkjet printing for materials and devices. Chemistry of materials, 2001. 13(10): p. 3299-3305. 73. Renedo, O.D., M. Alonso-Lomillo, and M.A. Martinez, Recent developments in the field of screen-printed electrodes and their related applications. Talanta, 2007. 73(2): p. 202-219. 74. Ngo, T.D., et al., Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 2018. 143: p. 172-196. 75. Krebs, F.C., Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar energy materials and solar cells, 2009. 93(4): p. 394-412. 76. Søndergaard, R.R., M. Hösel, and F.C. Krebs, Roll‐to‐Roll fabrication of large area functional organic materials. Journal of Polymer Science Part B: Polymer Physics, 2013. 51(1): p. 16-34. 77. Menard, E., et al., Micro-and nanopatterning techniques for organic electronic and optoelectronic systems. Chemical reviews, 2007. 107(4): p. 1117-1160. 78. Zhang, Y.-Z., et al., Printed supercapacitors: materials, printing and applications. Chemical Society Reviews, 2019. 48(12): p. 3229-3264. 79. Dou, P., et al., Rapid synthesis of hierarchical nanostructured Polyaniline hydrogel for high power density energy storage application and three-dimensional multilayers printing. Journal of Materials Science, 2016. 51(9): p. 4274-4282. 80. Liu, Y., et al., Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Advanced Functional Materials, 2018. 28(21): p. 1706592. 81. Guo, R., et al., In‐plane micro‐supercapacitors for an integrated device on one piece of paper. Advanced Functional Materials, 2017. 27(43): p. 1702394. 82. Hyun, W.J., et al., Scalable, self‐aligned printing of flexible graphene micro‐supercapacitors. Advanced Energy Materials, 2017. 7(17): p. 1700285. 83. Zhang, C.J., et al., Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT: PSS conductive ultrathin films. Nano Energy, 2016. 28: p. 495-505. 84. Lee, H., et al., All-solid-state flexible supercapacitors by fast laser annealing of printed metal nanoparticle layers. Journal of Materials Chemistry A, 2015. 3(16): p. 8339-8345. 85. Peng, Y.-Y., et al., All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environmental Science, 2016. 9(9): p. 2847-2854. 86. Xu, Y., et al., Screen‐printable thin film supercapacitor device utilizing graphene/polyaniline inks. Advanced Energy Materials, 2013. 3(8): p. 1035-1040. 87. Sundriyal, P. and S. Bhattacharya, Inkjet-printed electrodes on A4 paper substrates for low-cost, disposable, and flexible asymmetric supercapacitors. ACS applied materials interfaces, 2017. 9(44): p. 38507-38521. 88. Yoo, J.J., et al., Ultrathin planar graphene supercapacitors. Nano letters, 2011. 11(4): p. 1423-1427. 89. El-Kady, M.F. and R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nature communications, 2013. 4: p. 1475. 90. Wang, G., L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012. 41(2): p. 797-828. 91. Wang, F., et al., Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews, 2017. 46(22): p. 6816-6854. 92. Zhong, C., et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015. 44(21): p. 7484-7539. 93. Cheng, X., et al., Gel polymer electrolytes for electrochemical energy storage. Advanced Energy Materials, 2018. 8(7): p. 1702184. 94. Dubal, D.P., et al., Supercapacitors based on flexible substrates: an overview. Energy Technology, 2014. 2(4): p. 325-341. 95. Kim, H., et al., Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules. Physical review letters, 2016. 116(12): p. 124501. 96. De, S., et al., Size effects and the problem with percolation in nanostructured transparent conductors. ACS nano, 2010. 4(12): p. 7064-7072. 97. Mondal, S., Preparation, properties and applications of nanocellulosic materials. Carbohydrate polymers, 2017. 163: p. 301-316. 98. Kim, J.-H., et al., Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 2015. 2(2): p. 197-213. 99. Salas, C., et al., Nanocellulose properties and applications in colloids and interfaces. Current Opinion in Colloid Interface Science, 2014. 19(5): p. 383-396. 100. Hu, L., et al., Transparent and conductive paper from nanocellulose fibers. Energy Environmental Science, 2013. 6(2): p. 513-518. 101. Kim, J.A., et al., Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon, 2006. 44(10): p. 1898-1905. 102. Sheng, H., et al., Ultrathin, wrinkled, vertically aligned Co (OH) 2 nanosheets/Ag nanowires hybrid network for flexible transparent supercapacitor with high performance. ACS applied materials interfaces, 2019. 11(9): p. 8992-9001. 103. Chen, T., et al., High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets. Scientific reports, 2014. 4: p. 3612. 104. Chen, T., et al., Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. Acs Nano, 2014. 8(1): p. 1039-1046. 105. Lee, H., et al., Highly stretchable and transparent supercapacitor by Ag–Au core–shell nanowire network with high electrochemical stability. ACS Applied Materials Interfaces, 2016. 8(24): p. 15449-15458. 106. Guo, G., et al., Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films. Appl Phys Lett, 2011. 99: p. 83111-83113. 107. Ryu, I., et al., Coaxial RuO2–ITO nanopillars for transparent supercapacitor application. Langmuir, 2014. 30(6): p. 1704-1709. 108. Yu, A., et al., Ultrathin, transparent, and flexible graphene films for supercapacitor application. Applied physics letters, 2010. 96(25): p. 253105. 109. Burke, A. and M. Miller, Testing of electrochemical capacitors: Capacitance, resistance, energy density, and power capability. Electrochimica Acta, 2010. 55(25): p. 7538-7548. 110. Dolah, B., et al. Supercapacitor electrodes from activated carbon monoliths and carbon nanotubes. in J. Phys. Conf. Ser. 2013. 111. Ervin, M.H., L.T. Le, and W.Y. Lee, Inkjet-printed flexible graphene-based supercapacitor. Electrochimica Acta, 2014. 147: p. 610-616. 112. Zhang, C.J., et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nature communications, 2019. 10(1): p. 1-9. 113. Rajendran, V., et al., All-printed, interdigitated, freestanding serpentine interconnects based flexible solid state supercapacitor for self powered wearable electronics. Nano Energy, 2019. 65: p. 104055. 114. Chi, K., et al., Freestanding graphene paper supported three-dimensional porous graphene–polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS applied materials interfaces, 2014. 6(18): p. 16312-16319. 115. Lee, G., et al., High-performance all-solid-state flexible micro-supercapacitor arrays with layer-by-layer assembled MWNT/MnOx nanocomposite electrodes. Nanoscale, 2014. 6(16): p. 9655-9664. 116. Choi, K.-H., et al., All-inkjet-printed, solid-state flexible supercapacitors on paper. Energy Environmental Science, 2016. 9(9): p. 2812-2821. 117. Chang, Q., et al., Water‐Soluble Hybrid Graphene Ink for Gravure‐Printed Planar Supercapacitors. Advanced Electronic Materials, 2018. 4(8): p. 1800059. 118. Cheng, T., et al., Inkjet‐Printed High‐Performance Flexible Micro‐Supercapacitors with Porous Nanofiber‐Like Electrode Structures. Small, 2019. 15(34): p. 1901830. 119. Liang, J., et al., All-printed solid-state supercapacitors with versatile shapes and superior flexibility for wearable energy storage. Journal of Materials Chemistry A, 2019. 7(26): p. 15960-15968. 120. Kuok, F.-H., et al., Application of atmospheric-pressure plasma jet processed carbon nanotubes to liquid and quasi-solid-state gel electrolyte supercapacitors. Applied Surface Science, 2017. 425: p. 321-328. 121. Zhu, C., et al., Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano letters, 2016. 16(6): p. 3448-3456. 122. Jiang, D., et al., Screen-printable films of graphene/CoS2/Ni3S4 composites for the fabrication of flexible and arbitrary-shaped all-solid-state hybrid supercapacitors. Carbon, 2019. 146: p. 557-567. 123. Shulga, Y., et al., Preparation of graphene oxide-humic acid composite-based ink for printing thin film electrodes for micro-supercapacitors. Journal of Alloys and Compounds, 2018. 730: p. 88-95. 124. Zhang, C., et al., Stamping of flexible, coplanar micro‐supercapacitors using MXene inks. Advanced Functional Materials, 2018. 28(9): p. 1705506. 125. Yao, B., et al., Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule, 2019. 3(2): p. 459-470. 126. Jang, S., H. Kim, and J.H. Oh, Simple and rapid fabrication of pencil-on-paper triboelectric nanogenerators with enhanced electrical performance. Nanoscale, 2017. 9(35): p. 13034-13041. 127. Pandey, G. and A. Rastogi, Solid-state supercapacitors based on pulse polymerized poly (3, 4-ethylenedioxythiophene) electrodes and ionic liquid gel polymer electrolyte. Journal of the Electrochemical Society, 2012. 159(10): p. A1664. 128. Chen, P., et al., Inkjet printing of single-walled carbon nanotube/RuO 2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Research, 2010. 3(8): p. 594-603. 129. Huang, C. and P.S. Grant, One-step spray processing of high power all-solid-state supercapacitors. Scientific reports, 2013. 3(1): p. 1-9. 130. Meng, C., et al., Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano letters, 2010. 10(10): p. 4025-4031. 131. Ganesh, B., D. Kalpana, and N. Renganathan, Acrylamide based proton conducting polymer gel electrolyte for electric double layer capacitors. Ionics, 2008. 14(4): p. 339-343. 132. Pan, M.-J. and C.A. Randall, A brief introduction to ceramic capacitors. IEEE electrical insulation magazine, 2010. 26(3): p. 44-50. 133. Jha, M.K., T. Jain, and C. Subramaniam, Origami of Solid-State Supercapacitive Microjunctions Operable at 3 V with High Specific Energy Density for Wearable Electronics. ACS Applied Electronic Materials, 2020. 2(3): p. 659-669. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54684 | - |
dc.description.abstract | 近年來,超級電容的高功率密度、長期穩定性及廣泛的應用性等優勢逐漸受到注意,因此被視為一種相當具有潛力且重要的儲能元件;然而,超級電容的能量密度的比起電化學電池仍然不足,目前為止已經有許多改善能量密度的方式像是改變電容材料、增加活性面積被提出,而超級電容也被預期能夠達到與電池同等的能量密度。本篇論文分為兩個部分,分別探討全透明超級電容的製備以及堆疊式超級電容的製作。 在雙電層電容材料中,大部分都以碳材(活性碳、奈米碳管、石墨烯等)為主,因為其具有良好的導電性、高比表面積、電化學活性高等優勢。但在所有以碳材製備的雙電層式超級電容中,皆不具備透明性;對於現在越來越多的穿戴式裝置以及高轉換率的太陽能電池,勢必需要一個具有透明性質、快速充放電特性的儲能裝置。此外,印刷技術的應用可以讓超級電容的組裝更為方便、快速,因此,在本研究中的第一部分提出了一種全透明式的印刷超級電容的製備。首先,在奈米纖維素之中添加奈米銀做為導電材料,並且以酸化奈米碳管做為輔助增強電容性質,製備出具有超高透明度的超級電容,其比電容最佳表現可以達到34.6F/g;同時,該元件亦具有良好的充放電倍率性能、機械彈性及循環充放電穩定性。 在本論文的第二部分,研究重點進入提升超級電容的電容能力。由於全透明式的超級電容受到要求所限制,電極電阻、電活性物質必然減少,因此,第二部分的研究嘗試利用摺疊堆積的方式仿造積層陶瓷電容,嘗試在相同的表面積上,製備出性能較高的積層超級電容。總而言之,本研究提出了一種新的全透明式的印刷超級電容的方法,並且為儲能技術方面拓展了一條嶄新的道路。 | zh_TW |
dc.description.abstract | Supercapacitors have gained a lot of attention due to their unique features like high power, long cycle life and high power density. They act as a link for energy-power difference between a traditional capacitor (having high power) and batteries (having high energy storage). In this perspective, worldwide researches have been dedicated to address this issue and rapid progress has been achieved. The research presented in this thesis consists of two parts, namely, on the preparation of all solid state printed supercapacitor with high transparency and fabrication of origami stack supercapacitor. Among the electrical double layer capacitor materials, carbon based materials such as carbon nanotube, graphene, active carbon are the most widely used materials due to its high conductivity, high aspect ratio and high electrochemical activity. On the other hand, the demands for wearable electronics and solar cell are increasing. It is necessary to find a high transparent energy storage device because all of the carbon based materials lack transmittance. Therefore, in the first part of the thesis, an all printed method was applied for preparing high transparent supercapacitor. Nanocellulose was used to make good dispersion of silver nanowire. Carbon nanotube was used to enhance the ability of capacitance. And then, we used blade coating to fabricate high transparency supercapacitor. A specific capacitance 34.6 F/g was obtained in this study, and it demonstrated reasonable rate capability, flexibility and cycle stability at the same time. In the second part of the thesis, the research focuses on the enhancement of the supercapacitor capacitance. Because of the limitations for high transparency demand, the reduction of electrical resistance and electrochemical activity materials were inevitable. Therefore, we used stack structure like MLCC structure to achieve higher capacitance for supercapacitor at the same surface area. In summary, this study provides a new approach for all printing method supercapacitor with high transparency and pave the way for energy storage innovations. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:36:40Z (GMT). No. of bitstreams: 1 U0001-0208202021343700.pdf: 3565996 bytes, checksum: 8ac8584daccbbd53d971083cf16fa3e4 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝 i 中文摘要 iv ABSTRACT v 目錄 vii 圖目錄 x 表目錄 xiii 第一章 緒論 1 1.1研究背景 1 1.2研究目的 3 1.3論文架構 3 第二章 理論基礎與文獻回顧 4 2.1超級電容理論原理與類別 4 2.1.1雙電層電容 5 2.1.1-1雙電層電容理論 5 2.1.1-2雙電層電容之充放電過程與示意圖 6 2.1.2偽電容 9 2.1.2-1偽電容理論 9 2.1.2-2雙電層電容之充放電過程與示意圖 11 2.2利用印刷技術製作超級電容 13 2.2.1沿革 13 2.2.2印刷式超級電容之結構 16 2.2.3印刷式超級電容之材料 17 2.2.3-1電極材料 17 2.2.3-2電解質層 17 2.2.3-3電流收集器 18 2.2.3-4基材 18 2.3透明電極與穿戴式電子裝置應用 19 2.4透明基材-奈米纖維素 21 2.4.1發展背景 21 2.4.2奈米纖維素之特性 21 2.4.3奈米纖維素在印刷技術上的應用 22 第三章 實驗系統程序 24 3.1實驗藥品與儀器介紹 24 3.1.1實驗藥品 24 3.1.2實驗儀器 25 3.2實驗流程 26 3.2.1奈米銀線/奈米纖維素複合電極之製備 26 3.2.2奈米碳管層之製備 27 3.2.3固態電解質製備 28 3.2.4電漿表面改質處理程序 28 3.2.5塗膜機 29 第四章 透明超級電容的表面形貌及性能 30 4.1導電電極性質分析 30 4.1.1奈米銀線電極膠製備 30 4.1.2奈米銀線電極透明度與片電阻之分析 33 4.1.3奈米碳管對電容性質之影響 35 4.1.4透明全印刷式超級電容組裝以及外部形貌 37 4.2透明超級電容之性能 40 4.2.1循環伏安圖和充放電圖 40 4.2.2電化學阻抗圖譜 44 4.2.3撓曲度測試 46 4.2.4循環穩定度 50 4.2.5 Ragone Plot 53 第五章 折疊式超級電容 55 5.1研究動機 55 5.2結構設計 57 5.3實驗流程 59 5.3.1點膠機塗佈 59 5.3.2最小電容單元之摺紙步驟 60 5.4折疊式超級電容之性能 61 第六章 結論與未來展望 65 參考資料 66 | |
dc.language.iso | zh-TW | |
dc.title | 堆疊式透明超級電容之設計研究 | zh_TW |
dc.title | Origami Transparent Structure for Supercapacitor Fabrication | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 闕居振(Chu-Chen Chueh),李文亞(Wen-Ya Lee),周鶴修(Ho-Hsiu Chou) | |
dc.subject.keyword | 印刷式透明超級電容,雙電層電容,堆疊結構,全固態式超級電容, | zh_TW |
dc.subject.keyword | Printed supercapacitor,Origami,Electrical double layer capacitor (EDLC),All solid state supercapacitor, | en |
dc.relation.page | 75 | |
dc.identifier.doi | 10.6342/NTU202002229 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-04 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0208202021343700.pdf 目前未授權公開取用 | 3.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。