請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54678完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管希聖(Shi-Sheng Goan) | |
| dc.contributor.author | Yi-hsiu Liu | en |
| dc.contributor.author | 劉伊修 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:36:34Z | - |
| dc.date.available | 2017-08-11 | |
| dc.date.copyright | 2015-08-11 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-06-05 | |
| dc.identifier.citation | [1] X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, and W. Naylor,
Quantum teleportation over 143 kilometres using active feed-forward,' Nature, vol. 489, pp. 269{273, 2012. [2] H. Q. Liang, J. M. Liu, S. S. Feng, and J. G. Chen, Quantum teleporta- tion with partially entangled states via noisy channels,' Quantum Information Processing, vol. 12, pp. 2671{2687, 2013. [3] C. H. Bennett, G. B., S. Popescu, B. Schumacher, and J. A. Smolin, Pu- ri cation of noisy entanglement and faithful teleportation via noisy channels,' Physical Review Letters, vol. 76, pp. 722{725, 1996. [4] Y. B. Sheng, S. Y. Zhao, J. Liu, and L. Zhou, Atomic entanglement puri cation using photonic faraday rotation,' Quantum Information Processing, vol. 13, pp. 881{893, 2013. [5] Y. B. Sheng, L. Zhou, and G. L. Long, Hybrid entanglement puri cation for quantum repeaters,' Physical Review A, vol. 88, no. 022302, 2013. [6] Y. Xia, L. L. Fan, S. Y. Hao, J. He, and J. Song, E cient nonlocal entan- gled state distribution over the collective-noise channel,' Quantum Information Processing, vol. 12, pp. 3553{3568, 2013. [7] X. Chen, E cient multipartite polarization entanglement distribution over arbitrary noise channel,' Communication in Theoretical Physics, vol. 60, pp. 421{426, 2013. [8] H. B. Xing, M. Yang, P. Dong, S. D. Fang, and Z. L. Cao, Enhancing and expanding remote photonic entanglement via local ltering operations,' Optics Communications, vol. 321, pp. 205{210, 2014. [9] M. Z. Zhu and L. Ye, E cient entanglement puri cation via quantum commu- nication bus,' Quantum Information Processing, vol. 13, pp. 1397{1412, 2014. [10] J. W. Pan, G. W. S. Gasparoni, R. Ursin, and A. Zeilinger, Experimental entanglement puri cation of arbitrary unknown states,' Nature, vol. 423, pp. 417{422, 2003. [11] Y. B. Sheng, L. Zhou, and X. F. Wang, Distillation of genuine mixed states for quantum communications,' Arxiv, no. 1401.3563, 2014. [12] D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, Quantum privacy ampli cation and the security of quantum cryptography over noisy channels,' Physical Review Letters, vol. 77, pp. 2818{2821, 1996. [13] W. Dur, H. J. Briegel, J. I. Cirac, and P. Zoller, Quantum repeaters based on entanglement puri cation,' Physical Review A, vol. 59, pp. 169{181, 1998. [14] S. Bratzik, S. Abruzzo, and H. Kampermann, Quantum repeaters and quan- tum key distribution the impact of entanglement distillation on the secret key rate,' Physical Review A, vol. 87, no. 062335, 2013. [15] J. Y. Hsieh, C. M. Li, and D. S. Chuu, A simpli cation of entanglement puri cation,' Physical Letters A, vol. 324, pp. 94{101, 2004. [16] J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, Entanglement puri cation for quantum communication,' Nature, vol. 410, pp. 1067{1070, 2001. [17] X. H. Li, Deterministic polarization-entanglement puri cation using spatial entanglement,' Physical Review A, vol. 82, no. 044304, 2010. [18] Y. B. Sheng and F. G. Deng, One-step deterministic polarization entanglement puri cation using spatial entanglement,' Physical Review A, vol. 82, no. 044305, 2010. [19] X. H. Li, F. G. Deng, and H. Y. Zhou, Faithful qubit transmission against collective noise without ancillary qubit,' Applied Physics Letters, vol. 91, no. 144101, 2007. [20] Y. B. Sheng and L. Zhou, Deterministic polarization entanglement puri cation using time-bin entanglement,' Laser Physics Letter, vol. 11, no. 085203, 2014. [21] F. Marsili, V. Verma, J. Stern, and S. Harrington, Detecting single infrared photons with 93 percent system e ciency,' Nature Photonics, vol. 7, pp. 210{ 214, 2013. [22] M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: necessary and su cient conditions,' Physics Letters A, vol. 223, pp. 1{8, 1996. [23] C. Simon and J. W. Pan, Polarization entanglement puri cation using spatial entanglement,' Physical Review Letters, vol. 89, no. 257901, 2002. [24] T. Yang, Q. Zhang, and J. Zhang, All-versus-nothing violation of local real- ism by two-photon, four-dimensional entanglement,' Physical Review Letters, vol. 95, no. 240406, 2005. [25] P. Kok and S. Braunstein, Postselected versus nonpostselected quantum tele- portation using parametric down-conversion,' Physical Review A, vol. 61, no. 042304, 2000. [26] C.Wagenknecht, C. M. Li, and A. Reingruber, Experimental demonstration of a heralded entanglement source,' Nature Photonics, vol. 4, pp. 549{552, 2010. [27] Y. H. Chen, M. J. Lee, and W. Hung, Demonstration of the interaction be- tween two stopped light pulses,' Physical Review Letters, vol. 108, no. 173603, 2012. [28] A. Reiserer, S. Ritter, and G. Rempe, Nondestructive detection of an optical photon,' Science, vol. 342, pp. 1349{1351, 2013. [29] Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, , and J.-W. Pan, Experimental realization of entanglement concentration and a quantum repeater,' Physical Review Letters, vol. 90, no. 207901, 2003. [30] M. A. Hall, J. B. Altepeter, and P. Kumar, Ultrafast switching of photonic entanglement,' Physical Review Letters, vol. 106, no. 503901, 2011. [31] A. Casaburi, E. Esposito, and M. Ejrnaes, a 2 by 2 square millimeter supercon- ducting strip-line detector for high-performance time-of- ight mass spectrome- try,' Superconductor Science and Technology, vol. 25, no. 115004, 2012. [32] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum infor- mation,' Cambridge, pp. 26{28, 2000. [33] T. Inagaki, Entanglement distribution over 300 km of ber,' Optics Express, vol. 21, pp. 23 241{23 249, 2013. [34] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Mixed state entanglement and quantum error correction,' Physcal Review A, vol. 54, pp. 3824{3851, 1996. [35] B. C. Ren and F. Deng, Hyperentanglement puri cation and concentration assisted by diamond nv centers inside photonic crystal cavities,' Laser Physics Letters, vol. 10, no. 115201, 2013. [36] X. T. Yu, Z. C. Zhang, and J. Xu, Distributed wireless quantum communica- tion networks with partially entangled pairs,' Chinese Physics B, vol. 23, no. 010303, 2014. [37] W. Dur and H. J. Briegel, Entanglement puri cation and quantum error cor- rection,' Reports on progress in physics, vol. 70, p. 1381, 2007. [38] M. Tarkhov, J. Claudon, J. P. Poizat, and A. Korneev, Ultrafast reset time of superconducting single photon detectors,' Applied Physics Letters, vol. 92, no. 241112, 2008. [39] N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,' Nature Photonics, vol. 5, pp. 230{233, 2011. [40] A. Fedrizzi, R. Ursin, T. Herbstand, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, High- delity transmission of entanglement over a high-loss free-space channel,' Nature Physics, vol. 5, pp. 389{392, 2009. [41] Y. B. Sheng and F. G. Deng, Deterministic entanglement puri cation and complete nonlocal bell-state analysis with hyperentanglement,' Physical Review A, vol. 81, no. 032307, 2010. [42] Y. D. Zhang, Principles of quantum information physics (in chinese),' Science Press, pp. 250{265, 2006. [43] K. Chen, C. M. Li, and Q. Zhang, Experimental realization of one-way quan- tum computing with two-photon four-qubit cluster states,' Physical Review Letters, vol. 99, no. 120503, 2007. [44] M. A. Hall, J. B. Altepeter, and P. Kumar, All optical switching of photonic entanglement,' New Journal of Physics, vol. 13, no. 105004, 2011. [45] H. Tanji, S. Ghosh, and J. Simon, Heralded single-magnon quantum memory for photon polarization states,' Physical Review Letters, vol. 103, no. 043601, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54678 | - |
| dc.description.abstract | 雖然最近幾年有許多值得一提的突破性的進展,以高的純度傳輸一個量子
態到遙遠的地方依然是ㄧ個挑戰。為了完成這目標,量子傳輸(Quantum Teleportation)是一個很強大的方法。它能傳輸一個未知態到另一個地點。但是被 傳輸的態的純度跟事先被傳輸的量子貝爾糾纏對的純度有關係。透過量子糾纏對 才能執行量子傳輸。除此之外,量子糾纏在量子資訊和量子通訊中都扮演著非 常重要的角色,例如量子金鑰傳輸(QKD)、量子超密傳輸(Quantum Superdense Coding)。因為量子態比起古典的訊號是更脆弱,所以在量子通道中傳輸時量子態 容易受到環境的干擾而使得原本的量子純態變成混態。這篇論文會介紹能夠除去 位元錯誤和相位錯誤的協定即使它們同時發生。此外,藉著線性光學元件和單光 子偵測器我們提出一個可以純化貝爾對角態的機率式協定。此外,跟其他的機率 式純化協定不同的是,我們提出的協定能純化大的位元錯誤率和相位錯誤率的糾 纏混態。更重要的是我們提出一個可以百分之百純化貝爾對角態的協定,而且使 用者能知道所想要的糾纏對何時與在何處產生。 | zh_TW |
| dc.description.abstract | Transmitting a quantum state with high fidelity to a distant place is still a challenge even though there are some ramarkable breakthroughs recently. Quantum teleportation, which distributes an unknown state to a distant place, is one of powerful ways to achieve this goal. But the fidelity of the teleported state depends on the fidelity of the distributed entangled Bell pairs, through which Alice and Bob can implement the quantum teleportation protocol. Besides, quantum entanglement plays a vital role in quantum information and quantum communication, such as in quantum key distribution (QKD) and quantum superdense coding. A quantum state is more fragile than a classical signal. When transmitting a quantum state through a quantum channel, a quantum state tends to be disturbed by noise from the environment so that a pure state becomes a mixed state. We introduce some protocols through which one can enhance the fidelity of mixed entangled pairs even
when simultaneous bit-flip error and phase-flip error occur. Specicially, we propose a probablistic protocol purifying mixed Bell diagonal states to a higher-fidelity entangled state by passive linear optical components and single-photon detectors. Besides, unique from other probablistic protocols, our proposed protocol has a characteristic to purify mixed entangled states with either large bit-flip error probability or large phase-flip error probability. Moreover, we propose a deterministic protocol using spatial entanglement, which allows users to know where and when the desired output of polarization entangled photon pair comes out. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:36:34Z (GMT). No. of bitstreams: 1 ntu-104-R97245010-1.pdf: 1638825 bytes, checksum: 0f7886c59fe42e735f9c8d105c61f733 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 1 Introduction 1
2 Literature Review 4 2.1 Bennett et al.'s protocol and the Oxford protocol . . . . . . . . . . . 5 2.2 Polarization Beam Splitter protocol . . . . . . . . . . . . . . . . . . . 12 2.3 Deterministic protocol using spatial entanglement . . . . . . . . . . . 14 2.3.1 X. H. Li's protocol . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 Y. B. Sheng et al's protocol . . . . . . . . . . . . . . . . . . . 17 2.4 Time-bin protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 Recent development of single-photon detectors . . . . . . . . . . . . . 19 2.6 Entanglement measurement . . . . . . . . . . . . . . . . . . . . . . . 20 2.6.1 Peres-Horodecki criterion . . . . . . . . . . . . . . . . . . . . . 20 2.6.2 Concurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 Entanglement Purication for Entanglement Mixed States 23 3.1 The probablistic protocol to overcome over-half error probabilities . . 23 3.1.1 The description of the protocols . . . . . . . . . . . . . . . . . 23 3.1.2 The derivation of the equations of recursion of THPP followed by OHPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 The PBS edition of Deutsch et al.'s protocol . . . . . . . . . . . . . . 38 3.2.1 The description of the protocol . . . . . . . . . . . . . . . . . 38 3.3 The composite protocol with PBS edition of Deutsch et al.'s protocol 43 3.4 A deterministic protocol using spatial entanglement . . . . . . . . . . 51 3.4.1 Procedure of TDMP . . . . . . . . . . . . . . . . . . . . . . . 52 3.4.2 The devices to realize the detection and the switching . . . . . 61 3.5 Convert polarization entanglement into spatial entanglement . . . . . 62 4 Discussion and Conclusion 64 | |
| dc.language.iso | en | |
| dc.subject | 量子糾纏純化 | zh_TW |
| dc.subject | 量子傳輸 | zh_TW |
| dc.subject | 糾纏純化協定 | zh_TW |
| dc.subject | Quantum Teleportation | en |
| dc.subject | Entanglement Purication Protocol | en |
| dc.subject | Quantum Entanglement Purication | en |
| dc.title | 量子混態的量子糾纏純化研究 | zh_TW |
| dc.title | Study of Quantum Entanglement Purification of
Mixed States | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張志義(Chi-Yee Cheung),李哲明(Che-Ming Li),林俊達(Guin-Dar Lin) | |
| dc.subject.keyword | 糾纏純化協定,量子糾纏純化,量子傳輸, | zh_TW |
| dc.subject.keyword | Entanglement Purication Protocol,Quantum Entanglement Purication,Quantum Teleportation, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-06-05 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
