請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54677
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王若松(Juo-Song Wang),張百恩(Bei-En Chang) | |
dc.contributor.author | Tan-Ching Hsu | en |
dc.contributor.author | 許丹菁 | zh_TW |
dc.date.accessioned | 2021-06-16T03:36:34Z | - |
dc.date.available | 2018-09-24 | |
dc.date.copyright | 2015-09-24 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-06-05 | |
dc.identifier.citation | Ackermann GE, Paw BH (2003). Zebrafish: a genetic model for vertebrate organogenesis and human disorders. Front Biosci 8(1):d1227-1253.
Aird WC (2002). Endothelial cell dynamics and complexity theory. Crit Care Med 30(5 Suppl):S180-185. Aird WC (2003). Endothelial cell heterogeneity. Crit Care Med 31(4 Suppl):S221-230. Akimenko MA, Mari-Beffa M, Becerra J, Geraudie J (2003). Old questions, new tools, and some answers to the mystery of fin regeneration. Dev Dynam 226(2):190-201. Allen MR (2011). The effects of bisphosphonates on jaw bone remodeling, tissue properties, and extraction healing. Odontology 99(1):8-17. Bamias A, Kastritis E, Bamia C, Moulopoulos LA, Melakopoulos I, Bozas G et al. (2005). Osteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence and risk factors. J Clin Oncol 23(34):8580-8587. Baron MH (2003). Embryonic origins of mammalian hematopoiesis. Exp Hematol 31(12):1160-1169. Benford HL, Frith JC, Auriola S, Monkkonen J, Rogers MJ (1999). Farnesol and geranylgeraniol prevent activation of caspases by aminobisphosphonates: biochemical evidence for two distinct pharmacological classes of bisphosphonate drugs. Mol Pharmacol 56(1):131-140. Bergstrom JD, Bostedor RG, Masarachia PJ, Reszka AA, Rodan G (2000). Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch Biochem Biophys 373(1):231-241. Bi Y, Gao Y, Ehirchiou D, Cao C, Kikuiri T, Le A et al. (2010). Bisphosphonates cause osteonecrosis of the jaw-like disease in mice. Am. J. Pathol. 177(1):280-290. Bilezikian JP (2006). Osteonecrosis of the jaw--do bisphosphonates pose a risk? N Engl J Med 355(22):2278-2281. Boominathan VP, Ferreira TL (2012). Factors promoting increased rate of tissue regeneration: the zebrafish fin as a tool for examining tissue engineering design concepts. Zebrafish 9(4):207-219. Boonyapakorn T, Schirmer I, Reichart PA, Sturm I, Massenkeil G (2008). Bisphosphonate-induced osteonecrosis of the jaws: prospective study of 80 patients with multiple myeloma and other malignancies. Oral Oncol 44(9):857-869. Borromeo GL, Tsao CE, Darby IB, Ebeling PR (2011). A review of the clinical implications of bisphosphonates in dentistry. Aust Dent J 56(1):2-9. Brejc K, Sixma TK, Kitts PA, Kain SR, Tsien RY, Ormo M et al. (1997). Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci U S A 94(6):2306-2311. Cackowski FC, Anderson JL, Patrene KD, Choksi RJ, Shapiro SD, Windle JJ et al. (2010). Osteoclasts are important for bone angiogenesis. Blood 115(1):140-149. Cappariello A, Maurizi A, Veeriah V, Teti A (2014). The Great Beauty of the osteoclast. Arch Biochem Biophys 558(1):70-78. Carano A, Teitelbaum SL, Konsek JD, Schlesinger PH, Blair HC (1990). Bisphosphonates directly inhibit the bone resorption activity of isolated avian osteoclasts in vitro. J Clin Invest 85(2):456-461. Carter GD, Goss AN (2003). Bisphosphonates and avascular necrosis of the jaws. Aust Dent J 48(4):268. Cheng N, Brantley DM, Chen J (2002). The ephrins and Eph receptors in angiogenesis. Cytokine Growth Factor Rev 13(1):75-85. Chie WC, Yang RS, Liu JP, Tsai KS (2004). High incidence rate of hip fracture in Taiwan: estimated from a nationwide health insurance database. Osteoporos Int 15(12):998-1002. Chim SM, Tickner J, Chow ST, Kuek V, Guo B, Zhang G et al. (2013). Angiogenic factors in bone local environment. Cytokine Growth Factor Rev 24(3):297-310. Cho HS, Dong Z, Pauletti GM, Zhang J, Xu H, Gu H et al. (2010). Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: a multifunctional nanocarrier system for cancer diagnosis and treatment. ACS nano 4(9):5398-5404. Cleaver O, Melton DA (2003). Endothelial signaling during development. Nat Med 9(6):661-668. Conte P, Coleman R (2004). Bisphosphonates in the treatment of skeletal metastases. Semin Oncol 31(5 Suppl 10):59-63. Conway EM, Collen D, Carmeliet P (2001). Molecular mechanisms of blood vessel growth. Cardiovasc Res 49(3):507-521. Cordero da Luz FA, Lima Oliveira AP, Borges D, Cristina Brigido P, Barbosa Silva MJ (2014). The Physiopathological Role of IL-33: New Highlights in Bone Biology and a Proposed Role in Periodontal Disease. Mediat inflamm 2014(1):1-5 Coxon FP, Helfrich MH, Van't Hof R, Sebti S, Ralston SH, Hamilton A et al. (2000). Protein geranylgeranylation is required for osteoclast formation, function, and survival: inhibition by bisphosphonates and GGTI-298. J Bone Miner Res 15(8):1467-1476. D'Silva NJ, Summerlin DJ, Cordell KG, Abdelsayed RA, Tomich CE, Hanks CT et al. (2006). Metastatic tumors in the jaws: a retrospective study of 114 cases. J Am Dent Assoc 137(12):1667-1672. Dannemann C, Zwahlen R, Gratz KW (2006). Clinical experiences with bisphopsphonate induced osteochemonecrosis of the jaws. Swiss Med Wkly 136(31-32):504-509. Deng X, Tamai R, Endo Y, Kiyoura Y (2009). Alendronate augments interleukin-1β release from macrophages infected with periodontal pathogenic bacteria through activation of caspase-1. Toxicol. Appl. Pharmacol. 235(1):97-104. Dooley K, Zon LI (2000). Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 10(3):252-256. Du SJ, Frenkel V, Kindschi G, Zohar Y (2001). Visualizing normal and defective bone development in zebrafish embryos using the fluorescent chromophore calcein. Dev Biol 238(2):239-246. Dunford JE, Thompson K, Coxon FP, Luckman SP, Hahn FM, Poulter CD et al. (2001). Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther 296(2):235-242. Duran I, Mari-Beffa M, Santamaria JA, Becerra J, Santos-Ruiz L (2011). Actinotrichia collagens and their role in fin formation. Dev Biol 354(1):160-172. Ema M, Rossant J (2003). Cell fate decisions in early blood vessel formation. Trends Cardiovasc Med 13(6):254-259. Estilo CL, Van Poznak CH, Wiliams T, Bohle GC, Lwin PT, Zhou Q et al. (2008). Osteonecrosis of the maxilla and mandible in patients with advanced cancer treated with bisphosphonate therapy. Oncologist 13(8):911-920. Ferrara N, Gerber HP, LeCouter J (2003). The biology of VEGF and its receptors. Nat Med 9(6):669-676. Fisher JE, Rogers MJ, Halasy JM, Luckman SP, Hughes DE, Masarachia PJ et al. (1999b). Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc Natl Acad Sci U S A 96(1):133-138. Fleisch H, Russell RG, Straumann F (1966). Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212(5065):901-903. Fleisch H (1998). Bisphosphonates: mechanisms of action. Endocr Rev 19(1):80-100. Folkman J (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27-31. Fournier P, Boissier S, Filleur S, Guglielmi J, Cabon F, Colombel M et al. (2002). Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res 62(22):6538-6544. Francis MD, Russell RG, Fleisch H (1969). Diphosphonates inhibit formation of calcium phosphate crystals in vitro and pathological calcification in vivo. Science 165(3899):1264-1266. Fujita H, Shimotsuura S, Yanagisawa A, Morita I, Murota S-i, Ishikawa K (2000). Simvastatin enhanced sodium nitroprusside-induced apoptosis of smooth muscle cells: an involvement of geranylgeraniol. Atherosclerosis 148(2):309-315. Giraudo E, Inoue M, Hanahan D (2004). An amino-bisphosphonate targets MMP-9–expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114(5):623-633. Goishi K, Klagsbrun M (2004). Vascular endothelial growth factor and its receptors in embryonic zebrafish blood vessel development. Curr Top Dev Biol 62(1):127-152. Gore AV, Monzo K, Cha YR, Pan W, Weinstein BM (2012). Vascular development in the zebrafish. Cold Spring Harb Perspect Med 2(5):a006684. Green JR (2004). Bisphosphonates: preclinical review. Oncologist 9(Suppl 4):3-13. Hagino H, Hashimoto J, Okano T, Katagiri H (2008). [Daily practice using the guidelines for prevention and treatment of osteoporosis. Evolution of bisphosphonate therapy. Intravenous injection]. Clin Calcium 18(8):1176-1182. Hanahan D (1997). Signaling vascular morphogenesis and maintenance. Science 277(5322):48-50. Hansen T, Kunkel M, Springer E, Walter C, Weber A, Siegel E et al. (2007). Actinomycosis of the jaws--histopathological study of 45 patients shows significant involvement in bisphosphonate-associated osteonecrosis and infected osteoradionecrosis. Virchows Arch 451(6):1009-1017. Hauge EM, Qvesel D, Eriksen EF, Mosekilde L, Melsen F (2001). Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res 16(9):1575-1582. Hoff A, Toth B, Altundag K, Guarneri V, Adamus A, Nooka A et al. (2006). Osteonecrosis of the jaw in patients receiving intravenous bisphosphonate therapy. J Clin Oncol 24(18 suppl):8528. Huang CC, Lawson ND, Weinstein BM, Johnson SL (2003). reg6 is required for branching morphogenesis during blood vessel regeneration in zebrafish caudal fins. Dev Biol 264(1):263-274. Hughes A, Rogers MJ, Idris AI, Crockett JC (2007). A comparison between the effects of hydrophobic and hydrophilic statins on osteoclast function in vitro and ovariectomy-induced bone loss in vivo. Calcif. Tissue Int. 81(5):403-413. Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD et al. (1995). Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10(10):1478-1487. Huja SS, Fernandez SA, Hill KJ, Li Y (2006). Remodeling dynamics in the alveolar process in skeletally mature dogs. Anat Rec A Discov Mol Cell Evol Biol 288(12):1243-1249. Iovine MK (2007). Conserved mechanisms regulate outgrowth in zebrafish fins. Nat Chem Biol 3(10):613-618. Isogai S, Lawson ND, Torrealday S, Horiguchi M, Weinstein BM (2003). Angiogenic network formation in the developing vertebrate trunk. Development 130(21):5281-5290. Katsarelis H, Shah NP, Dhariwal DK, Pazianas M (2015). Infection and medication-related osteonecrosis of the jaw. J Dent Res 94(4):534-539. Keller EE, Gunderson LL (1987). Bone disease metastatic to the jaws. J Am Dent Assoc 115(5):697-701. Kerbel R, Folkman J (2002). Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2(10):727-739. Kiesel J, Miller C, Abu-Amer Y, Aurora R (2007). Systems level analysis of osteoclastogenesis reveals intrinsic and extrinsic regulatory interactions. Dev Dyn 236(8):2181-2197. Kimmel DB (2007). Mechanism of action, pharmacokinetic and pharmacodynamic profile, and clinical applications of nitrogen-containing bisphosphonates. J Dent Res 86(11):1022-1033. Knopf F, Hammond C, Chekuru A, Kurth T, Hans S, Weber CW et al. (2011). Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev Cell 20(5):713-724. Kumar V, Shahi AK (2014). Nitrogen containing bisphosphonates associated osteonecrosis of the jaws: A review for past 10 year literature. Dent Res J (Isfahan) 11(2):147-153. Kwei S, Stavrakis G, Takahas M, Taylor G, Folkman MJ, Gimbrone MA, Jr. et al. (2004). Early adaptive responses of the vascular wall during venous arterialization in mice. Am J Pathol 164(1):81-89. Laforest L, Brown CW, Poleo G, Geraudie J, Tada M, Ekker M et al. (1998). Involvement of the sonic hedgehog, patched 1 and bmp2 genes in patterning of the zebrafish dermal fin rays. Development 125(21):4175-4184. Lambertenghi-Deliliers G, Bruno E, Cortelezzi A, Fumagalli L, Morosini A (1988). Incidence of jaw lesions in 193 patients with multiple myeloma. Oral Surg Oral Med Oral Pathol 65(5):533-537. Landesberg R, Cozin M, Cremers S, Woo V, Kousteni S, Sinha S et al. (2008). Inhibition of oral mucosal cell wound healing by bisphosphonates. J Oral Maxillofac Surg 66(5):839-847. Lane KT, Beese LS (2006). Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res 47(4):681-699. Lawson ND, Weinstein BM (2002a). In Vivo Imaging of Embryonic Vascular Development Using Transgenic Zebrafish. Dev Biol 248(2):307-318. Lawson ND, Weinstein BM (2002d). Arteries and veins: making a difference with zebrafish. Nat Rev Genet 3(9):674-682. Lin JH, Russell G, Gertz B (1999). Pharmacokinetics of alendronate: an overview. Int J Clin Pract 101(1):18-26. Marini M, Sarchielli E, Toce M, Acocella A, Bertolai R, Ciulli C et al. (2012). Expression and localization of VEGF receptors in human fetal skeletal tissues. Histopathol 27(12):1579-1587. Marx RE (2003). Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg 61(9):1115-1117. Marx RE, Sawatari Y, Fortin M, Broumand V (2005). Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg 63(11):1567-1575. Marx RE, Cillo JE, Jr., Ulloa JJ (2007). Oral bisphosphonate-induced osteonecrosis: risk factors, prediction of risk using serum CTX testing, prevention, and treatment. J Oral Maxillofac Surg 65(12):2397-2410. Mavrokokki T, Cheng A, Stein B, Goss A (2007). Nature and frequency of bisphosphonate-associated osteonecrosis of the jaws in Australia. J Oral Maxillofac Surg 65(3):415-423. McTaggart SJ (2006). Isoprenylated proteins. Cell Mol Life Sci 63(3):255-267. Nechiporuk A, Keating MT (2002). A proliferation gradient between proximal and msxb-expressing distal blastema directs zebrafish fin regeneration. Development 129(11):2607-2617. Novince CM, Ward BB, McCauley LK (2009). Osteonecrosis of the jaw: an update and review of recommendations. Cells Tissues Organs 189(1-4):275-283. Orriss IR, Key ML, Colston KW, Arnett TR (2009). Inhibition of osteoblast function in vitro by aminobisphosphonates. J Cell Biochem 106(1):109-118. Otto, S., S. Hafner, et al. (2010). Bisphosphonate-related osteonecrosis of the jaw: is pH the missing part in the pathogenesis puzzle? J Oral Maxillofac Surg 68(5):1158-1161. Petia F. Pechalova, Elena G. Poriazova, Nikolai V. Pavlov, Bakardjiev AG (2013). Bisphosphonate-Related Osteonecrosis of the Jaws – Diagnosis and Management. Patan S (2004). Vasculogenesis and angiogenesis. Cancer Treat Res 117(3-32. Portal-Nunez S, Lozano D, Esbrit P (2012). Role of angiogenesis on bone formation. Histol Histopathol 27(5):559-566. Poss KD, Shen J, Nechiporuk A, McMahon G, Thisse B, Thisse C et al. (2000). Roles for Fgf signaling during zebrafish fin regeneration. Dev Biol 222(2):347-358. Poss KD, Keating MT, Nechiporuk A (2003). Tales of regeneration in zebrafish. Dev Dyn 226(2):202-210. Quint E, Smith A, Avaron F, Laforest L, Miles J, Gaffield W et al. (2002). Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine. Proc Natl Acad Sci U S A 99(13):8713-8718. Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN et al. (2000). Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res 60(21):6001-6007. Ribatti D, Vacca A, Presta M (2000). The discovery of angiogenic factors: a historical review. Gen Pharmacol 35(5):227-231. Rogers MJ, Watts DJ, Russell RG (1997). Overview of bisphosphonates. Cancer 80(8 Suppl):1652-1660. Rogers MJ (2003). New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 9(32):2643-2658. Rogers TL, Holen I (2011). Tumour macrophages as potential targets of bisphosphonates. J Transl Med 9(177):5876-5879. Rubegni P, Fimiani M (2006). Images in clinical medicine. Bisphosphonate-associated contact stomatitis. N Engl J Med 355(22):e25. Ruggiero SL, Mehrotra B, Rosenberg TJ, Engroff SL (2004). Osteonecrosis of the jaws associated with the use of bisphosphonates: a review of 63 cases. J Oral Maxillofac Surg 62(5):527-534. Ruggiero SL, Drew SJ (2007). Osteonecrosis of the jaws and bisphosphonate therapy. J Dent Res 86(11):1013-1021. Ruggiero SL, Dodson TB, Assael LA, Landesberg R, Marx RE, Mehrotra B et al. (2009). American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaws--2009 update. J Oral Maxillofac Surg 67(5 Suppl):2-12. Ruggiero SL (2011). Bisphosphonate-related osteonecrosis of the jaw: an overview. Ann N Y Acad Sci 1218(1):38-46. Sadler KC, Krahn KN, Gaur NA, Ukomadu C (2007). Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1. Proc Natl Acad Sci U S A 104(5):1570-1575. Santamaria JA, Becerra J (1991). Tail fin regeneration in teleosts: cell-extracellular matrix interaction in blastemal differentiation. J Anat 176(1):9-21. Santini D, Vincenzi B, Dicuonzo G, Avvisati G, Massacesi C, Battistoni F et al. (2003). Zoledronic acid induces significant and long-lasting modifications of circulating angiogenic factors in cancer patients. Clin Cancer Res 9(8):2893-2897. Santini D, Vincenzi B, Hannon RA, Brown JE, Dicuonzo G, Angeletti S et al. (2006). Changes in bone resorption and vascular endothelial growth factor after a single zoledronic acid infusion in cancer patients with bone metastases from solid tumours. Oncol Rep 15(5):1351-1357. Serbedzija GN, Flynn E, Willett CE (1999). Zebrafish angiogenesis: a new model for drug screening. Angiogenesis 3(4):353-359. Shoji W, Isogai S, Sato-Maeda M, Obinata M, Kuwada JY (2003). Semaphorin3a1 regulates angioblast migration and vascular development in zebrafish embryos. Development 130(14):3227-3236. Singh SP, Holdway JE, Poss KD (2012). Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev Cell 22(4):879-886. Sousa S, Afonso N, Bensimon-Brito A, Fonseca M, Simoes M, Leon J et al. (2011). Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration. Development 138(18):3897-3905. Staal A, Frith JC, French MH, Swartz J, Gungor T, Harrity TW et al. (2003). The ability of statins to inhibit bone resorption is directly related to their inhibitory effect on HMG-CoA reductase activity. J Bone Miner Res 18(1):88-96. Staton CA, Stribbling SM, Tazzyman S, Hughes R, Brown NJ, Lewis CE (2004). Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Pathol 85(5):233-248. Stoick-Cooper CL, Moon RT, Weidinger G (2007). Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev 21(11):1292-1315. Talbot WS, Hopkins N (2000). Zebrafish mutations and functional analysis of the vertebrate genome. Genes Dev 14(7):755-762. Tanaka Y, Abe M, Hiasa M, Oda A, Amou H, Nakano A et al. (2007). Myeloma cell-osteoclast interaction enhances angiogenesis together with bone resorption: a role for vascular endothelial cell growth factor and osteopontin. Clin Cancer Res 13(3):816-823. Tarassoff P, Csermak K (2003). Avascular necrosis of the jaws: risk factors in metastatic cancer patients. J Oral Maxillofac Surg 61(10):1238-1239. Thisse C, Zon LI (2002). Organogenesis--heart and blood formation from the zebrafish point of view. Science 295(5554):457-462. Torres-Vazquez J, Kamei M, Weinstein BM (2003). Molecular distinction between arteries and veins. Cell Tissue Res 314(1):43-59. Tu S, Johnson SL (2011). Fate restriction in the growing and regenerating zebrafish fin. Dev Cell 20(5):725-732. Uyanne J, Calhoun CC, Le AD (2014). Antiresorptive drug-related osteonecrosis of the jaw. Dent Clin North Am 58(2):369-384. Walter C, Klein MO, Pabst A, Al-Nawas B, Duschner H, Ziebart T (2010). Influence of bisphosphonates on endothelial cells, fibroblasts, and osteogenic cells. Clin Oral Investig 14(1):35-41. Wang HL, Weber D, McCauley LK (2007). Effect of long-term oral bisphosphonates on implant wound healing: literature review and a case report. J Periodontol 78(3):584-594. Wang J, Goodger NM, Pogrel MA (2003). Osteonecrosis of the jaws associated with cancer chemotherapy. J Oral Maxillofac Surg 61(9):1104-1107. White JA, Boffa MB, Jones B, Petkovich M (1994). A zebrafish retinoic acid receptor expressed in the regenerating caudal fin. Development 120(7):1861-1872. Wilting J, Christ B, Yuan L, Eichmann A (2003). Cellular and molecular mechanisms of embryonic haemangiogenesis and lymphangiogenesis. Naturwissenschaften 90(10):433-448. Woo SB, Hellstein JW, Kalmar JR (2006). Narrative [corrected] review: bisphosphonates and osteonecrosis of the jaws. Ann Intern Med 144(10):753-761. Wood J, Bonjean K, Ruetz S, Bellahcene A, Devy L, Foidart JM et al. (2002). Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J Pharmacol Exp Ther 302(3):1055-1061. Yin G, Bai Y, Luo E (2011). Angiogenic suppression of osteoclasts may play a role in developing bisphosphonate-related osteonecrosis of the jaw. Med Hypotheses 76(3):347-349. Yoshinari N, Kawakami A (2011). Mature and juvenile tissue models of regeneration in small fish species. Biol Bull 221(1):62-78. Zafar S, Coates DE, Cullinan MP, Drummond BK, Milne T, Seymour GJ (2014a). Zoledronic acid and geranylgeraniol regulate cellular behaviour and angiogenic gene expression in human gingival fibroblasts. J Oral Pathol Med 43(9):711-721. Zafar S, Coates DE, Cullinan MP, Drummond BK, Milne T, Seymour GJ (2014c). Zoledronic acid and geranylgeraniol regulate cellular behaviour and angiogenic gene expression in human gingival fibroblasts. J Oral Pathol Med. Zhang J, Hughes S (2006). Role of the ephrin and Eph receptor tyrosine kinase families in angiogenesis and development of the cardiovascular system. J Pathol 208(4):453-461. Ziebart T, Koch F, Klein MO, Guth J, Adler J, Pabst A et al. (2011). Geranylgeraniol - a new potential therapeutic approach to bisphosphonate associated osteonecrosis of the jaw. Oral Oncol 47(3):195-201. 胡家源 (2014). 以斑馬魚模式動物探討雙磷酸鹽造成蝕骨細胞分化與分布的影響, 臺灣大學. 王惠禎 (2014). 利用葉基香葉醇挽救斑馬魚尾鰭再生時因雙磷酸鹽損害細胞之功能, 臺灣大學. 王翰偉 (2013). 以TRAP染色探討雙磷酸鹽對蝕骨細胞及骨骼再生之影響-斑馬魚尾鰭再生模式, 臺灣大學. 吳俊學 (2010). 利用斑馬魚活體實驗來探討雙磷酸鹽造成顎骨壞死之可能機制, 臺灣大學. 陳詠恩 (2013). 以基因轉殖方法及原位雜合反應探討ctsk基因在蝕骨細胞於斑馬魚發育及尾鰭再生過程之表現及其受雙磷酸鹽作用之影響, 臺灣大學. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54677 | - |
dc.description.abstract | 目的:
雙磷酸鹽類藥物應用相當廣泛,在臨床上常用於治療骨質疏鬆症、惡性腫瘤全身性骨轉移、多發性骨髓瘤等病症上。然而,2003年美國口腔顎面外科醫師 Marx提出有雙磷酸鹽藥物相關顎骨壞死 (Bisphosphonate-related osteonecrosis of the jaw, BRONJ) 的案例。所有關於牙科的侵入性治療,如拔牙、牙結石刮除、牙周手術、植牙等,都要特別注意。因此,本實驗室期望可以了解雙磷酸鹽相關顎骨壞死的成因,以期可以找出可以預防、評估與治療的方法。 近年來有多篇研究對BRONJ提出主要有兩個可能的致病機轉:一個是雙磷酸鹽類藥物會抑制蝕骨細胞的作用,導致骨修復功能缺損;另外一個則是會抑制血管再生。本實驗室之前的研究方向,主要是針對藥物對骨細胞及蝕骨細胞的作用機制。結果發現,骨頭再生受到抑制,有生長間隙(bone gap)的情形。其中,尾鰭再生長度較短且不規則、TRAP的染色會呈現大範圍暈染的情形,也懷疑藥物會抑制血管新生作用。 因此本實驗的研究方向,會朝著bisphosphonate抑制血管新生的作用來進行。另外,也會加入mevalonate pathway下游生化產物-香葉基香葉醇 (geranylgeraniol, GGOH)進行挽救實驗(rescue experiment),以期將來可以找出BRONJ治療的方向。 實驗材料與方法: 本實驗以斑馬魚的尾鰭再生作為研究BRONJ的動物模式,來觀察雙磷酸鹽對於血管新生作用的影響。使用基因轉殖斑馬魚(TG(fli1:EGFP),在螢光顯微鏡下觀察血管的螢光表現。 將斑馬魚尾鰭切除後,每個組別分別養在飼育過濾水(對照組)、與不同濃度的Alendronate中 (2.5×10 -5M及5.0 ×10 -5M),在截尾後第一天到第七天,連續觀察血管再生的表現。另外,也會加入GGOH,觀察是否可以回復藥物抑制血管新生的作用。 結果: 在血管新生的表現上,泡藥組別較晚形成接合橋狀 (anastomotic bridges)連結因截尾而開放的傷口。血管網絡 (vascular plexus)的長度較短,且相連血管的密度 (inter-vessel commissure density) 也會降低。因此實驗結果顯示,在有浸泡雙磷酸鹽的組別,血管新生作用會受到抑制,導致尾鰭再生及修復功能的異常甚至魚隻死亡,而且抑制作用會和雙磷酸鹽藥物的劑量有關。而在加入GGOH後,可以回復血管受抑制的情形。 總結: 利用基因轉殖斑馬魚,觀察血管新生的現象。實驗結果顯示在雙磷酸鹽的影響之下,血管新生會受到抑制,進而影響到傷口的癒合、骨頭修復與再生的能力。因此,臨床上常見服用此藥物的病人,會有BRONJ的情形產生。加入GGOH後,對抑制再生的現象,有顯著復原的情形,這也可以作為將來治療的方向。 由本實驗室的研究結果,可以推論血管新生作用與骨頭再生關係密切,其中的連結機制則需要更進一步的實驗來證實。 | zh_TW |
dc.description.abstract | Objectives:
The prescriptions of bisphosphonates are world-wide, often used in osteoporosis, bone metastasis of malignant tumors, multiple myeloma. Bisphosphonate-related osteonecrosis of the jaw (BRONJ) was first reported in 2003 by the American Oral and Maxillofacial Surgeons, Marx. Due to wound healing of the jaw bone was delayed after bisphosphonate use, all dentoalveolar surgeries were involved, such as tooth extraction, root planing, periodontal surgeries, or implantation. Dentists pay special attention to this topic and phenomenon. Thus, we would like to unveil the etiology of BRONJ, and hopping to find the preventive measures and treatment methods. Several causative mechanisms of BRONJ have been proposed. Inhibition of osteoclast function and angiogenesis were considered to be the two main mechanism recently, leading to defect in bone remodeling. The direct mechanism of action was still unknown. To date, there is no effective therapy of the BRONJ. Bisphosphonates inhibit pyrophosphate synthase (FPPS) in the mevalonate pathway, with decreased synthesis of the downstream metabolites, geranylgeraniol (GGOH). Therefore, the research goal of this experiment was to explore the effects of a bisphosphonate on angiogenesis, and demonstrate that the application of GGOH may reverse the adverse effects of bisphosphonates. Materials and Methods: We used transgenic zebrafish (TG (fli1:EGFP)) as an animal model to explore the effects of bisphosphonates on angiogenesis. First of all, we amputated the zebrafish tail fin in half, and all fishes were divided into five groups according to breeding condition by concentration of Alendronate: the control group, 2.5 × 10-5M of Alendronate, 5.0 × 10-5M of Alendronate, 2.5 × 10-5M of Alendronate and GGOH, 5.0 × 10-5M of Alendronate and GGOH. The observation of the angiogenesis took place on day 2, day 3, day 5 and day 7 after fin amputation by the fluorescence microscopy. Furthermore, these findings could help us understand the inhibited angiogenic function affected by bisphosphonates, and expecting to find the potential medication for BRONJ. Results: The results showed that the vascular plexus and inter-vessel density were decreased after bisphosphonate treatments, suggesting that bisphosphonates could supress angiogenesis, and delayed wound healing. The angiogenesis impaired by alendronate was reversed to normal in the presence of GGOH. Hence, systemic application of GGOH may reduce the adverse effects of bisphosphonate therapy. Conclusion: Our study in zebrafish provides a vivid animal model to investigate the role of angiogenesis in the BRONJ in vivo. This experiment showed that angiogenesis may be suppressed under the influence of bisphosphonates, leading to defects in wound healing, bone repair and regeneration eventually resulting in BRONJ. We also demonstrate that the impairing effects of alendronate on angiogenesis may be reversed by application of GGOH. And the results may further extend to the clinical applications in treating BRONJ. In this study, the results suggested that there was close relationship between angiogenesis and osteogenesis, and the complex cross-linked mechanism would require further experiments to confirm. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:36:34Z (GMT). No. of bitstreams: 1 ntu-104-P01422002-1.pdf: 9459630 bytes, checksum: 91ed479bedddb877494a4e67cc918468 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 總目錄
國立臺灣大學碩士學位論文 口試委員會審定書 I 誌謝 II 中文摘要 V 英文摘要 VII 總目錄 X 圖目錄 XII 表目錄 XIII 第壹章 前言 1 第一節 雙磷酸鹽類藥物 (Bisphosphonates, BPs) 1 第二節 雙磷酸鹽類藥物相關的顎骨壞死 4 第三節 血管新生機制 12 第四節 血管增生因子/血管新生素 19 第五節 斑馬魚模式動物 27 第六節 研究斑馬魚血液脈絡系統的方法 38 第七節 斑馬魚的血管發育 44 第八節 文獻回顧 50 第九節 研究動機 62 第貳章 實驗材料 66 第一節 雙磷酸鹽(bisphosphonate) 66 第二節 葉基香葉醇(Geranylgeraniol, GGOH) 66 第三節 觀察製備尾鰭所需藥劑 67 第四節 實驗動物飼養 68 第五節 儀器設備及軟體 69 第參章 實驗方法 70 第一節 基因轉殖斑馬魚恆定品系的培養與挑選 70 第二節 利用螢光顯微鏡觀察斑馬魚截尾後血管新生情形 72 第三節 斑馬魚(adult fish)浸泡alendronate及GGOH溶液觀察尾鰭血管新生情形 77 第肆章 實驗結果 80 第一節 觀察尾鰭血管新生情形 80 第二節 浸泡alendronate後斑馬魚尾鰭血管新生的表現 84 第三節 浸泡alendronate與GGOH後斑馬魚尾鰭血管新生的表現 86 第四節 基因轉殖斑馬魚恆定品系的培養與篩選 88 第五節 血管新生數值觀察結果 90 第伍章 討論 94 第一節 尾鰭血管新生模式 94 第二節 浸泡藥物後斑馬魚尾鰭血管新生的表現 97 第三節 血管新生數值的比較 103 第四節 基因轉殖斑馬魚隻特色 105 第五節 飼養環境不同對尾鰭再生速度的影響 107 第六節 血管新生與鰭條骨再生的關係 108 第陸章 結論與未來展望 115 第柒章 圖 116 第捌章 表 129 第玖章 參考文獻 136 | |
dc.language.iso | zh-TW | |
dc.title | 以斑馬魚模式動物探討雙磷酸鹽藥物對血管新生的影響 | zh_TW |
dc.title | The effects of a bisphosphonate on angiogenesis using zebrafish as an in vivo animal model | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 洪志遠(Chin-Yuan Hong) | |
dc.subject.keyword | 雙磷酸鹽,斑馬魚,顎骨壞死,血管新生,TG(?i1:EGFP)基因轉殖斑馬魚, | zh_TW |
dc.subject.keyword | Bisphosphonate,zebrafish,angiogenesis,osteonecrosis,TG(?i1:EGFP) transgenic zebrafish, | en |
dc.relation.page | 146 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-06-08 | |
dc.contributor.author-college | 牙醫專業學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 9.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。