請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54668完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉光勝(Kuang-Sheng Yeh) | |
| dc.contributor.author | Chien-An Lee | en |
| dc.contributor.author | 李健安 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:36:27Z | - |
| dc.date.available | 2018-08-11 | |
| dc.date.copyright | 2015-08-11 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-06-11 | |
| dc.identifier.citation | 第六章 參考文獻
1. Abe, A., and K. Kawahara. 1995. Transcriptional regulation and promoter sequence of the spvR gene of virulence plasmid pKDSC50 in Salmonella choleraesuis serovar Choleraesuis. FEMS Microbiol. Lett. 129:225-230. 2. Abe, A., H. Matsui, H. Danbara, K. Tanaka, H. Takahashi, and K. Kawahara. 1994. Regulation of spvR gene expression of Salmonella virulence plasmid pKDSC50 in Salmonella choleraesuis serovar Choleraesuis. Mol. Microbiol. 12:779-787. 3. Abraham, J. M., C. S. Freitag, J. R. Clements, and B. I. Eisenstein. 1985. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc. Nat. Acad. Sci. U.S.A. 82:5724-5727. 4. Abraham, S. N., J. D. Goguen, and E. H. Beachey. 1988. Hyperadhesive mutant of type 1fimbriated Escherichia coli associated with formation of FimH organelles (fimbriosomes). Infect. Immun. 56:1023-1029. 5. Allen, W. J., G. Phan, S. J. Hultgren, and G. Waksman. 2013. Dissection of pilus tip assembly by the FimD usher monomer. J. Mol. Biol. 425:958-967. 6. Anderson, R. C., D. J. Nisbet, S. A. Buckley, K. J. Genovese, R. B. Harvey, J. R. Deloach, N. K. Keith, and L. H. Stanker. 1998. Experimental and natural infection of early weaned pigs with Salmonella choleraesuis. Res. Vet. Sci. 64:261-262. 7. Baga, M., M. Norgren, and S. Normark. 1987. Biogenesis of E. coli Pap pili: papH, a minor pilin subunit involved in cell anchoring and length modulation. Cell 49:241-251. 8. Barreiro, L. B., G. Laval, H. Quach, E. Patin, and L. Quintana-Murci. 2008. Natural selection has driven population differentiation in modern humans. Nat. Genet. 40:340-345. 9. Bignold, L. P., S. D. Rogers, T. M. Siaw, and J. Bahnisch. 1991. Inhibition of chemotaxis of neutrophil leukocytes to interleukin-8 by endotoxins of various bacteria. Infect. Immun. 59:4255-4258. 10. Boddicker, J. D., N. A. Ledeboer, J. Jagnow, B. D. Jones, and S. Clegg. 2002. Differential binding to and biofilm formation on, HEp-2 cells by Salmonella enterica serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster. Mol. Microbiol. 45:1255-1265. 11. Bolton, A. J., M. P. Osborne, T. S. Wallis, and J. Stephen. 1999. Interaction of Salmonella choleraesuis, Salmonella dublin and Salmonella typhimurium with porcine and bovine terminal ileum in vivo. Microbiol. 145:2431-2441. 12. Brenner, F. W., R. G. Villar, F. J. Angulo, R. Tauxe, and B. Swaminathan. 2000. Salmonella nomenclature. J. Clin. Microbiol. 38:2465-2467. 13. Bullas, L. R., and J. I. Ryu. 1983. Salmonella typhimurium LT2 strains which are r- m+ for all three chromosomally located systems of DNA restriction and modification. J. Bacteriol. 156:471-474. 14. Busch, A., and G. Waksman. 2012. Chaperone-usher pathways: diversity and pilus assembly mechanism. Phil. Trans. R. Soc. B 367:1112-1122. 15. Carleton, H. A., M. Lara-Tejero, X. Y. Liu, and J. E. Galan. 2013. Engineering the type III secretion system in non-replicating bacterial minicells for antigen delivery. Nat. Commun. 4:1590. 16. Chang, C. F., L. C. Chang, Y. F. Chang, M. Chen, and T. S. Chiang. 2002. Antimicrobial susceptibility of Actinobacillus pleuropneumoniae, Escherichia coli, and Salmonella choleraesuis recovered from Taiwanese swine. J. Vet. Diagn. Invest. 14:153-157. 17. Chen, P. L., C. M. Chang, C. J. Wu, N. Y. Ko, N. Y. Lee, H. C. Lee, H. I. Shih, C. C. Lee, R. R. Wang, and W. C. Ko. 2007. Extraintestinal focal infections in adults with nontyphoid Salmonella bacteraemia: predisposing factors and clinical outcome. J. Intern. Med. 261:91-100. 18. Chen, Y. H., T. P. Chen, J. J. Tsai, K. P. Hwang, P. L. Lu, H. H. Cheng, and C. F. Peng. 1999. Epidemiological study of human salmonellosis during 1991-1996 in southern Taiwan. Kaohsiung J. Med Sci. 15:127-136. 19. Chiu, C. H., T. Y. Lin, and J. T. Ou. 1999. Predictors for extraintestinal infection of non-typhoidal Salmonella in patients without AIDS. Int. J. Clin. Pract. 53:161-164. 20. Chiu, C. H., L. H. Su, and C. Chu. 2004. Salmonella enterica serotype Choleraesuis: epidemiology, pathogenesis, clinical disease, and treatment. Clin. Microbiol. Rev. 17:311-322. 21. Chiu, C. H., P. Tang, C. C. Hu, Q. Y. Bao, J. Yu, Y. Y. Chou, H. S. Wang, and Y. S. Lee. 2005. The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res. 33:2351. 22. Chiu, C. H., T. L. Wu, L. H. Su, C. Chu, J. H. Chia, A. J. Kuo, M. S. Chien, and T. Y. Lin. 2002. The emergence in Taiwan of fluoroquinolone resistance in Salmonella enterica serotype choleraesuis. N. Engl. J. M. 346:413-419. 23. Chiu, S., C. H. Chiu, and T. Y. Lin. 2004. Salmonella enterica serotype Choleraesuis infection in a medical center in northern Taiwan. J. Microbiol. Immunol. Infect. 37:99-102. 24. Chiu, T. H., J. C. Pang, W. Z. Hwang, and H. Y. Tsen. 2005. Development of PCR primers for the detection of Salmonella enterica serovar Choleraesuis based on the fliC gene. J. Food Protec. 68:1575-1580. 25. Choi, H. W., R. Brooking, S. Neupane, C. J. Lee, E. Miao, H. F. Staats, and S. N. Abraham. 2014. Salmonella Typhimurium impedes innate immunity with a mast cell-suppressing tyrosine phosphatase sptp. J. Allergy Clin. Immun. 133:247. 26. Clegg, S., and K. T. Hughes. 2002. FimZ is a molecular link between sticking and swimming in Salmonella enterica serovar Typhimurium. J. Bacteriol. 184:1209-1213. 27. Clegg, S., S. Hull, R. Hull, and J. Pruckler. 1985. Construction and comparison of recombinant plasmids encoding type 1 fimbriae of members of the family Enterobacteriaceae. Infect. Immun. 48:275-279. 28. Collinson, S. K., L. Emody, K. H. Muller, T. J. Trust, and W. W. Kay. 1991. Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J. Bacteriol. 173:4773-4781. 29. Cordone, A., E. M. Mauriello, D. J. Pickard, G. Dougan, M. De Felice, and E. Ricca. 2005. The lrp gene and its role in type 1 fimbriation in Citrobacter rodentium. J. Bacteriol. 187:7009-7017. 30. Crossley, K., B. Landseman, and D. Zaske. 1979. An outbreak of infections caused by strains of Staphylococcus aureus resistant to methicillin and aminoglycosides II. Epidemiologic studies J. Infect. Dis. 139:280-287. 31. Darwin, K. H., and V. L. Miller. 1999. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin. Microbiol. Rev. 12:405-428. 32. Duguid, J. P., E. S. Anderson, and I. Campbell. 1966. Fimbriae and adhesive properties in Salmonellae. J. Pathol. 92:107-138. 33. Duguid, J. P., and I. Campbell. 1969. Antigens of the type 1 fimbriae of Salmonellae and other enterobacteria. J. Med. Microbiol. 2:535-553. 34. Dwyer, B. E., K. L. Newton, D. Kisiela, E. V. Sokurenko, and S. Clegg. 2011. Single nucleotide polypmorphisms of fimH associated with adherence and biofilm formation by serovars of Salmonella enterica. Microbiol. 157:3162-3171. 35. Emoto, M., H. Danbara, and Y. Yoshikai. 1992. Induction of gamma/delta T cells in murine salmonellosis by an avirulent but not by a virulent strain of Salmonella choleraesuis. J. Exp. Med. 176:363-372. 36. Emoto, M., H. Nishimura, T. Sakai, K. Hiromatsu, H. Gomi, S. Itohara, and Y. Yoshikai. 1995. Mice deficient in gamma delta T cells are resistant to lethal infection with Salmonella choleraesuis. Infect. Immun. 63:3736-3738. 37. Finlay, B. B., M. N. Starnbach, C. L. Francis, B. A. Stocker, S. Chatfield, G. Dougan, and S. Falkow. 1988. Identification and characterization of TnphoA mutants of Salmonella that are unable to pass through a polarized MDCK epithelial cell monolayer. Mol. Microbiol. 2:757-766. 38. Firon, N., S. Ashkenazi, D. Mirelman, I. Ofek, and N. Sharon. 1987. Aromatic alpha-glycosides of mannose are powerful inhibitors of the adherence of type 1 fimbriated Escherichia coli to yeast and intestinal epithelial cells. Infect. Immun. 55:472-476. 39. Fookes, M., G. N. Schroeder, G. C. Langridge, C. J. Blondel, C. Mammina, T. R. Connor, H. Seth-Smith, G. S. Vernikos, K. S. Robinson, M. Sanders, N. K. Petty, R. A. Kingsley, A. J. Baumler, S. P. Nuccio, I. Contreras, C. A. Santiviago, D. Maskell, P. Barrow, T. Humphrey, A. Nastasi, M. Roberts, G. Frankel, J. Parkhill, G. Dougan, and N. R. Thomson. 2011. Salmonella bongori provides insights into the evolution of the Salmonellae. Plos Pathog 7(8): e1002191.. 40. Foss, D. L., M. J. Zilliox, and M. P. Murtaugh. 2001. Bacterially induced activation of interleukin-18 in porcine intestinal mucosa. Vet. Immunol. Immuno. 78:263-277. 41. Friedrich, M. J., N. E. Kinsey, J. Vila, and R. J. Kadner. 1993. Nucleotide sequence of a 13.9 kb segment of the 90 kb virulence plasmid of Salmonella typhimurium: the presence of fimbrial biosynthetic genes. Mol. Mcrobiol. 8:543-558. 42. Fronzes, R., H. Remaut, and G. Waksman. 2008. Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. EMBO J. 27:2271-2280. 43. Fu, Y. X., and J. E. Galan. 1999. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401:293-297. 44. Galan, J. E., and R. Curtiss, 3rd. 1991. Distribution of the invA, -B, -C, and -D genes of Salmonella typhimurium among other Salmonella serovars: invA mutants of Salmonella typhi are deficient for entry into mammalian cells. Infect. Immun. 59:2901-2908. 45. Gallois, A., J. R. Klein, L. A. Allen, B. D. Jones, and W. M. Nauseef. 2001. Salmonella pathogenicity island 2-encoded type III secretion system mediates exclusion of NADPH oxidase assembly from the phagosomal membrane. J. Immunol. 166:5741-5748. 46. Garner, M. J., R. D. Hayward, and V. Koronakis. 2002. The Salmonella pathogenicity island 1 secretion system directs cellular cholesterol redistribution during mammalian cell entry and intracellular trafficking. Cell Microbiol. 4:153-165. 47. Geibel, S., and G. Waksman. 2013. The molecular dissection of the chaperone-usher pathway. Biochim. Biophys. Acta. 1843(8):1559-67. 48. Gerlach, G. F., S. Clegg, N. J. Ness, D. L. Swenson, B. L. Allen, and W. A. Nichols. 1989. Expression of type 1 fimbriae and mannose-sensitive hemagglutinin by recombinant plasmids. Infect. Immun. 57:764-770. 49. Ghosh, S., A. Mittal, H. Vohra, and N. K. Ganguly. 1996. Interaction of a rat intestinal brush border membrane glycoprotein with type 1 fimbriae of Salmonella typhimurium. Mol. Cell. Biochem. 158:125-131. 50. Gonzalez-Escobedo, G., and J. S. Gunn. 2013. Identification of Salmonella enterica serovar Typhimurium genes regulated during biofilm formation on cholesterol gallstone surfaces. Infect. Immun. 81:3770-3780. 51. Guibourdenche, M., P. Roggentin, M. Mikoleit, P. I. Fields, J. Bockemuhl, P. A. Grimont, and F. X. Weill. 2010. Supplement 2003-2007 (No. 47) to the White-Kauffmann-Le Minor scheme. Res. Microbiol. 161:26-29. 52. Guiney, D. G., F. C. Fang, M. Krause, S. Libby, N. A. Buchmeier, and J. Fierer. 1995. Biology and clinical significance of virulence plasmids in Salmonella serovars. Clin. Infect. Dis. 21 Suppl 2:S146-151. 53. Guo, A., S. Cao, L. Tu, P. Chen, C. Zhang, A. Jia, W. Yang, Z. Liu, H. Chen, and D. M. Schifferli. 2009. FimH alleles direct preferential binding of Salmonella to distinct mammalian cells or to avian cells. Microbiol. 155:1623-1633. 54. Hancox, L. S., K. S. Yeh, and S. Clegg. 1997. Construction and characterization of type 1 non-fimbriate and non-adhesive mutants of Salmonella typhimurium. FEMS Immunol. Med. Microbiol. 19:289-296. 55. Hardt, W. D., L. M. Chen, K. E. Schuebel, X. R. Bustelo, and J. E. Galan. 1998. S.typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93:815-826. 56. Herikstad, H., P. Hayes, M. Mokhtar, M. L. Fracaro, E. J. Threlfall, and F. J. Angulo. 1997. Emerging quinolone-resistant Salmonella in the United States. Emerg. Infect. Dis. 3:371-372. 57. Hess, P., N. Daryab, K. Michaelis, A. Reisenauer, and T. A. Oelschlaeger. 2000. Type 1 pili of Citrobacter freundii mediate invasion into host cells. Adv. Exp. Med. Biol. 485:225-235. 58. Hirose, K., H. Nishimura, T. Matsuguchi, and Y. Yoshikai. 1999. Endogenous IL-15 might be responsible for early protection by natural killer cells against infection with an avirulent strain of Salmonella choleraesuis in mice. J. Leukoc. Biol. 66:382-390. 59. Holmgren, A., and C. I. Branden. 1989. Crystal structure of chaperone protein PapD reveals an immunoglobulin fold. Nature 342:248-251. 60. Kedrov, A., I. Kusters, and A. J. Driessen. 2013. Single-molecule studies of bacterial protein translocation. Biochem. 52:6740-6754. 61. Kisiela, D., A. Laskowska, A. Sapeta, M. Kuczkowski, A. Wieliczko, and M. Ugorski. 2006. Functional characterization of the FimH adhesin from Salmonella enterica serovar Enteritidis. Microbiol. 152:1337-1346. 62. Klemm, P. 1986. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J. 5:1389-1393. 63. Kuehn, M. J., D. J. Ogg, J. Kihlberg, L. N. Slonim, K. Flemmer, T. Bergfors, and S. J. Hultgren. 1993. Structural basis of pilus subunit recognition by the PapD chaperone. Science 262:1234-1241. 64. Kuzminska-Bajor, M., M. Kuczkowski, K. Grzymajlo, L. Wojciech, M. Sabat, D. Kisiela, A. Wieliczko, and M. Ugorski. 2012. Decreased colonization of chicks by Salmonella enterica serovar Gallinarum expressing mannose-sensitive FimH adhesin from Salmonella enterica serovar Enteritidis. Vet. Microbiol. 158:205-210. 65. Le Minor, L., M. Veron, and M. Popoff. 1982. A proposal for Salmonella nomenclature. Ann. Microbiol.133:245-254. 66. Le Minor, L., M. Veron, and M. Popoff. 1982. The taxonomy of Salmonella. Ann. Microbiol. 133:223-243. 67. Lianou, A., and K. P. Koutsoumanis. 2012. Strain variability of the biofilm-forming ability of Salmonella enterica under various environmental conditions. Int. J. Food Microbiol. 160:171-178. 68. Lillington, J., S. Geibel, and G. Waksman. 2014. Biogenesis and adhesion of type 1 and P pili. Biochim. Biophys. Sep;1840(9):2783-93 69. Lin JH, T. C., Weng CN, Chen SP, Pan MC. 2004. Immune efficacy and protective effects of oral microencapsulated inactive Salmonella Choleraesuis vaccine in mice. Taiwan Veterinary Journal 30:271-276. 70. Lindquist, B. L., E. Lebenthal, P. C. Lee, M. W. Stinson, and J. M. Merrick. 1987. Adherence of Salmonella typhimurium to small-intestinal enterocytes of the rat. Infect. Immun. 55:3044-3050. 71. Mackaness, G. B. 1971. Resistance to intracellular infection. J. Infect. Dis. 123:439-445. 72. Malaviya, R., N. J. Twesten, E. A. Ross, S. N. Abraham, and J. D. Pfeifer. 1996. Mast cells process bacterial Ags through a phagocytic route for class I MHC presentation to T cells. J. Immun. 156:1490-1496. 74. Maurer, L., and P. E. Orndorff. 1987. Identification and characterization of genes determining receptor binding and pilus length of Escherichia coli type 1 pili. J. Bacteriol. 169:640-645. 75. McClain, M. S., I. C. Blomfield, and B. I. Eisenstein. 1991. Roles of fimB and fimE in site-specific DNA inversion associated with phase variation of type 1 fimbriae in Escherichia coli. J. Bacteriol. 173:5308-5314. 76. McCormick, B. A., S. P. Colgan, C. Delp-Archer, S. I. Miller, and J. L. Madara. 1993. Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J. Cell Biol. 123:895-907. 77. Men S.C. 2007. Characterization of the culture that may affect the expression of the type 1 fimbriae in Salmonella enterica serotype Choleraesuis, Taipei Medical University, Master Thesis. 78. Murphy, C. N., M. S. Mortensen, K. A. Krogfelt, and S. Clegg. 2013. Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections. Infect. Immun. 81:3009-3017. 79. Naughton, P. J., G. Grant, S. Bardocz, E. Allen-Vercoe, M. J. Woodward, and A. Pusztai. 2001. Expression of type 1 fimbriae (SEF 21) of Salmonella enterica serotype enteritidis in the early colonisation of the rat intestine. J. Med. Microbiol. 50:191-197. 80. Nichols, W. A., S. Clegg, and M. R. Brown. 1990. Characterization of the type 1 fimbrial subunit gene (fimA) of Serratia marcescens. Mol. Microbiol.4:2119-2126. 81. Nishiyama, M., T. Ishikawa, H. Rechsteiner, and R. Glockshuber. 2008. Reconstitution of pilus assembly reveals a bacterial outer membrane catalyst. Science 320:376-379. 82. Nishiyama, M., M. Vetsch, C. Puorger, I. Jelesarov, and R. Glockshuber. 2003. Identification and characterization of the chaperone-subunit complex-binding domain from the type 1 pilus assembly platform FimD. J. Mol. Biol. 330:513-525. 83. Nuccio, S. P., and A. J. Baumler. 2007. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol. Mol. Biol. Rev. 71:551-575. 84. Old, D. C., and S. B. Payne. 1971. Antigens of the type-2 fimbriae of Salmonellae: 'cross-reacting material' (CRM) of type 1 fimbriae. J. Med. Microbiol. 4:215-225. 85. Oldenkamp, E. P. 2004. Predecessors: veterinarians from earlier times. Daniel Elmer Salmon (1850-1914). Tijdschr. Diergeneesk. 129:554-555. 86. Ong, C. L., G. C. Ulett, A. N. Mabbett, S. A. Beatson, R. I. Webb, W. Monaghan, G. R. Nimmo, D. F. Looke, A. G. McEwan, and M. A. Schembri. 2008. Identification of type 3 fimbriae in uropathogenic Escherichia coli reveals a role in biofilm formation. J. Bacteriol. 190:1054-1063. 87. Pascual, D. W., Z. Suo, L. Cao, R. Avci, and X. Yang. 2013. Attenuating gene expression (AGE) for vaccine development. Virulence 4:384-390. 88. Popoff, M. Y., J. Bockemuhl, and F. W. Brenner. 2000. Supplement 1998 (no. 42) to the Kauffmann-White scheme. Res. Microbiol. 151:63-65. 89. Quinn P.J., C. M. E., Markey B., Carter G.R. . 1994. Clinical veterinary microbiology. WOLFE, Virginia,U.S.A. p.226-234 90. Ratiner, Y. A., S. Salmenlinna, M. Eklund, M. Keskimaki, and A. Siitonen. 2003. Serology and genetics of the flagellar antigen of Escherichia coli O157:H7a,7c. J. Clin. Microbiol. 41:1033-1040. 91. Reed, W. M., H. J. Olander, and H. L. Thacker. 1986. Studies on the pathogenesis of Salmonella typhimurium and Salmonella choleraesuis var kunzendorf infection in weanling pigs. Am. J. Vet. Res. 47:75-83. 92. Remaut, H., R. J. Rose, T. J. Hannan, S. J. Hultgren, S. E. Radford, A. E. Ashcroft, and G. Waksman. 2006. Donor-strand exchange in chaperone-assisted pilus assembly proceeds through a concerted beta strand displacement mechanism. Mol. Cell 22:831-842. 93. Roof, M. B., and T. T. Kramer. 1989. Porcine neutrophil function in the presence of virulent and avirulent Salmonella choleraesuis. Vet. Immunol. Immuno. 23:365-376. 94. Russell, P. W., and P. E. Orndorff. 1992. Lesions in 2 Escherichia coli Type 1 Pilus genes alter pilus number and length without affecting receptor binding. J. Bacteriol. 174:5923-5935. 95. Saini, S., J. A. Pearl, and C. V. Rao. 2009. Role of FimW, FimY, and FimZ in regulating the expression of type 1 fimbriae in Salmonella enterica serovar Typhimurium. J. Bacteriol. 191:3003-3010. 96. Salyers, A., Whitt, D. 2002. Bacterial pathogenesis : A molecule approach (2nd). ASM Press, Virginia, U.S.A. 1840 (2014): 2783–2793. 97. Sauer, F. G., J. S. Pinkner, G. Waksman, and S. J. Hultgren. 2002. Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation. Cell 111:543-551. 98. Saulino, E. T., D. G. Thanassi, J. S. Pinkner, and S. J. Hultgren. 1998. Ramifications of kinetic partitioning on usher-mediated pilus biogenesis. EMBO J. 17:2177-2185. 99. Sohel, I., J. L. Puente, W. J. Murray, J. Vuopio-Varkila, and G. K. Schoolnik. 1993. Cloning and characterization of the bundle-forming pilin gene of enteropathogenic Escherichia coli and its distribution in Salmonella serotypes. Mol. Microbiol. 7:563-575. 100. Sokurenko, E. V., H. S. Courtney, D. E. Ohman, P. Klemm, and D. L. Hasty. 1994. FimH family of type 1 fimbrial adhesins: functional heterogeneity due to minor sequence variations among fimH genes. J. Biotechnol. 176:748-755. 101. Srinand, S., R. A. Robinson, J. E. Collins, and K. V. Nagaraja. 1995. Serologic studies of experimentally induced Salmonella choleraesuis var kunzendorf infection in pigs. Am. J. Vet. Res. 56:1163-1168. 102. Steele-Mortimer, O., J. H. Brumell, L. A. Knodler, S. Meresse, A. Lopez, and B. B. Finlay. 2002. The invasion-associated type III secretion system of Salmonella enterica serovar Typhimurium is necessary for intracellular proliferation and vacuole biogenesis in epithelial cells. Cell Microbiol. 4:43-54. 103. Stein, M. A., K. Y. Leung, M. Zwick, F. GarciadelPortillo, and B. B. Finlay. 1996. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol. Microbiol. 20:151-164. 104. Struve, C., M. Bojer, and K. A. Krogfelt. 2008. Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infec. Immun. 76:4055-4065. 105. Swenson, D. L., and S. Clegg. 1992. Identification of ancillary fim genes affecting fimA expression in Salmonella typhimurium. J. Bacteriol. 74:7697-7704. 106. Swenson, D. L., K. J. Kim, E. W. Six, and S. Clegg. 1994. The gene fimU affects expression of Salmonella typhimurium type 1 fimbriae and is related to the Escherichia coli tRNA gene argU. Mol. Gen. Genet. 244:216-218. 107. Takada-Iwao, A., M. Seki, M. Nakanishi, J. Souma, S. Okuda, Y. Okuda, Y. Imai, and S. Sato. 2013. Porcine circovirus type 2 (PCV2) vaccination reduces PCV2 in a PCV2 and Salmonella enterica serovar Choleraesuis coinfection model. Vet. Microbiol. 162:219-223. 108. Thanassi, D. G., J. B. Bliska, and P. J. Christie. 2012. Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function. FEMS Microbiol. Rev. 36:1046-1082. 109. Thanassi, D. G., C. Stathopoulos, K. Dodson, D. Geiger, and S. J. Hultgren. 2002. Bacterial outer membrane ushers contain distinct targeting and assembly domains for pilus biogenesis. J. Bacteriol. 184:6260-6269. 110. Thankavel, K., A. H. Shah, M. S. Cohen, T. Ikeda, R. G. Lorenz, R. Curtiss, 3rd, and S. N. Abraham. 1999. Molecular basis for the enterocyte tropism exhibited by Salmonella typhimurium type 1 fimbriae. J. Biol. Chem. 274:5797-5809. 111. Tinker, J. K., and S. Clegg. 2000. Characterization of FimY as a coactivator of type 1 fimbrial expression in Salmonella enterica serovar Typhimurium. Infec. Immun. 68:3305-3313. 112. Tinker, J. K., and S. Clegg. 2001. Control of FimY translation and type 1 fimbrial production by the arginine tRNA encoded by fimU in Salmonella enterica serovar Typhimurium. Mol. Microbiol. 40:757-768. 113. Tinker, J. K., L. S. Hancox, and S. Clegg. 2001. FimW is a negative regulator affecting type 1 fimbrial expression in Salmonella enterica serovar Typhimurium. J. Bacteriol. 183:435-442. 114. Torok, T. J., R. V. Tauxe, R. P. Wise, J. R. Livengood, R. Sokolow, S. Mauvais, K. A. Birkness, M. R. Skeels, J. M. Horan, and L. R. Foster. 1997. A large community outbreak of salmonellosis caused by intentional contamination of restaurant salad bars. J. Am. Med. Assoc. 278:389-395. 115. Vazquez-Torres, A., Y. Xu, J. Jones-Carson, D. W. Holden, S. M. Lucia, M. C. Dinauer, P. Mastroeni, and F. C. Fang. 2000. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287:1655-1658. 116. Verger, D., E. Miller, H. Remaut, G. Waksman, and S. Hultgren. 2006. Molecular mechanism of P pilus termination in uropathogenic Escherichia coli. EMBO Rep. :1228-1232. 117. Villar, R. G., M. D. Macek, S. Simons, P. S. Hayes, M. J. Goldoft, J. H. Lewis, L. L. Rowan, D. Hursh, M. Patnode, and P. S. Mead. 1999. Investigation of multidrug-resistant Salmonella serotype typhimurium DT104 infections linked to raw-milk cheese in Washington State. J. Am. Med. Assoc. 281:1811-1816. 118. Vugia, D. J., M. Samuel, M. M. Farley, R. Marcus, B. Shiferaw, S. Shallow, K. Smith, F. J. Angulo, and G. Emerging Infections Program FoodNet Working. 2004. Invasive Salmonella infections in the United States, FoodNet, 1996-1999: incidence, serotype distribution, and outcome. Clin. Infect. Dis. 38 Suppl 3:S149-156. 119. Waksman, G., and S. J. Hultgren. 2009. Structural biology of the chaperone-usher pathway of pilus biogenesis. Nature Rev. Microbiol. 7:765-774. 120. Wang, K. C., Y. H. Hsu, Y. N. Huang, and K. S. Yeh. 2012. A previously uncharacterized gene stm0551 plays a repressive role in the regulation of type 1 fimbriae in Salmonella enterica serotype Typhimurium. BMC Mol. Biol. 12:111. 121. Wang, L., Q. Wang, and P. R. Reeves. 2010. The variation of O antigens in gram-negative bacteria. Sub cell. Biochem. 53:123-152. 122. Wills, R. W., J. T. Gray, P. J. Fedorka-Cray, K. J. Yoon, S. Ladely, and J. J. Zimmerman. 2000. Synergism between porcine reproductive and respiratory syndrome virus (PRRSV) and Salmonella choleraesuis in swine. Vet. Microbiol. 71:177-192. 123. Wood, M. W., R. Rosqvist, P. B. Mullan, M. H. Edwards, and E. E. Galyov. 1996. SopE, a secreted protein of Salmonella dublin, is translocated into the target eukaryotic cell via a sip-dependent mechanism and promotes bacterial entry. Mol. Microbiol. 22:327-338. 124. Wray, C., I. M. McLaren, L. P. Randall, and G. R. Pearson. 2000. Natural and experimental infection of normal cattle with Escherichia coli O157. Vet. Rec. 147:65-68. 125. Yeh, K. S., L. S. Hancox, and S. Clegg. 1995. Construction and characterization of a fimZ mutant of Salmonella typhimurium. J. Bacteriol. 177:6861-6865. 126. Yeh, K. S., J. K. Tinker, and S. Clegg. 2002. FimZ binds the Salmonella typhimurium fimA promoter region and may regulate its own expression with FimY. Microbiol. Immunol. 46:1-10. 127. Yue, M., S. C. Rankin, R. T. Blanchet, J. D. Nulton, R. A. Edwards, and D. M. Schifferli. 2012. Diversification of the Salmonella fimbriae: a model of macro- and microevolution. PLOS ONE 7:e38596. 128. Zavialov, A. V., J. Berglund, A. F. Pudney, L. J. Fooks, T. M. Ibrahim, S. MacIntyre, and S. D. Knight. 2003. Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. Cell 113:587-596. 129. Zeiner, S. A., B. E. Dwyer, and S. Clegg. 2012. FimA, FimF, and FimH are necessary for assembly of type 1 fimbriae on Salmonella enterica serovar Typhimurium. Infect. Immun. 80:3289-3296. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54668 | - |
| dc.description.abstract | 線毛是沙門氏菌表面毛髮樣的蛋白結構物,在細菌感染宿主時扮演了吸附宿主細胞如M細胞表面的重要角色。 沙門氏菌擁有數個線毛基因組,而最常見的是表現第一型線毛的fim基因組。第一型線毛可以吸附不同細胞,例如紅血球、白血球、呼吸道上皮細胞、腸道上皮細胞以及酵母菌等。根據研究,第一型線毛與細菌的致病機制有關,而且80%的沙門氏菌都會表現第一型線毛,表示第一型線毛可能在細菌感染的過程中扮演一個重要的角色。豬隻的沙門氏菌症由豬霍亂沙門氏菌以及鼠傷寒沙門氏菌兩種血清型,其中豬隻感染豬霍亂沙門氏菌會導致下痢、敗血症、四肢肢端發紺、泛發性血管內血液凝固症、壞死性肝炎、肉芽腫性腦炎、間質性肺炎、壞死性腸炎等症狀等。而鼠傷寒沙門氏菌主要造成豬隻的胃腸炎。感染宿主廣泛的鼠傷寒沙門氏菌分離株絕大部分都會產生第一型線毛,但是根據本實驗室目前的研究顯示大部分(97%)豬隻分離的細菌不表現第一型線毛。呈現如此的線毛表線型或許在演化上與豬霍亂沙門氏菌感染易造成全身性感染有關。本實驗把豬霍亂沙門氏菌第一型線毛表現株的線毛基因組 fim gene cluster,依照功能做成分段的重組基因,轉形回不表現第一型線毛之豬霍亂沙門氏菌,分析其不表現線毛的原因為何? 對於可能影響的因子做深入的探討。 在S. Choleraesuis 中 fim gene cluster並沒有發現轉錄以及轉譯的功能缺損,本實以分子選殖 (molecular clonin)的方式將重組質體以電穿孔的方式轉型回不表現第一型線毛之豬霍亂沙門氏菌,完成 fimH 6個點突變之後,結果在fimH G63V恢復第一型線毛的表現。推測是主要結構蛋白 FimH 可能有出現胺基酸的變異,造成其無法送出細胞表面外以至於第一型線毛無法生成,可能是該血清型在演化過程中的結果。 | zh_TW |
| dc.description.abstract | Abstract
Fimbriae are surface appendages of Salmonella and play an important role in infecting host cell by initially adhering to surface of host cells, such as M cell. There are several fimbrial gene clusters within the genome of Salmonella, while type 1 fimbriae encoded by fim are the most commonly observed fimbrial appendages among these. Type 1 fimbriae mediates adherence to a variety of cells such as erythrocytes, leukocytes, respiratory cells, intestinal cells, and fungal cells. Moreover, type 1 fimbriae has been documented to be associated with virulence. In fact, 80% of the Salmonella isolates express type 1 fimbriae may suggest this fimbrial type play an important role at some stage in its pathogenesis. Infections in swine are always associated with either Salmonella enterica serovar Choleraesuis (S. Choleraesuis) or Salmonella enterica serovar Typhimurium (S. Typhimurium). Pigs infected with S. Choleraesuis usually exhibit diarrhea, disseminated intravascular coagulation (DIC), necrotic hepatitis, granulomatous encephalitis, interstitial pneumonia, and necrotic/ ulcerative colitis, while salmonellosis manifested as enterocolitis is primarily ascribed to S. Typhimurium. In contrast to S. Typhimurium, with most of the isolates produce type 1 fimbriae and is a serovar with a broad host range, previous examination in our laboratory has revealed that almost 97% of S. Choleraesuis isolates did not exhibit type 1 fimbriae in vitro. It is possible that the evolutionary pressure encountered by S. Choleraesuis during specific host swine adaption may contribute to such phenotype. This phenotype may somehow benefit S. Choleraesuis to sustain systemically. There was no transcriptional defect within the fim genes. The recombinant plasmids possessing the insert DNA with either structural or regulatory elements of fim were constructed and transformed into the non-type 1 fimbrial expressing S. Choleraesuis. Our results revealed that fimH gene may be responsible for the expression of type 1 fimbriae. There were 6 amino acid variations between the FimH peptide of type 1 fimbrial expressing S. Choleraesuis and that of non-type 1 fimbrial expressing ones. Site-directed mutagenesis was therefore performed on such positions of fimH and it was demonstrated that changing amino acid from glycine to valine at the position of 63 could confer a non-type 1 fimbrial expressing S. Choleraesuis to produce fimbrial appendages. Amino acid variation of FimH may deter its polypeptide to properly interact with other Fim subunit to assemble an intact fimbrial shaft. The correlation between such specific amino acid variations within the fimH and pathogenesis of S. Choleraesuis warrants further investigations. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:36:27Z (GMT). No. of bitstreams: 1 ntu-104-R99629030-1.pdf: 2252632 bytes, checksum: 8923e01cb84f5daf82718abfd4e9c7be (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 目錄
中文摘要------------------------------------------------------------------------------------------i 英文摘要-----------------------------------------------------------------------------------------ii 目錄-----------------------------------------------------------------------------------------------iv 第一章 序言-----------------------------------------------------------------------------------1 第二章 文獻回顧-----------------------------------------------------------------------------2 第一節 沙門氏菌-------------------------------------------------------------------------2 ¬2-1-1型態與背景介紹-------------------------------------------------------------2 2-1-2 沙門氏菌命名---------------------------------------------------------------3 2-1-3沙門氏菌血清型分類-------------------------------------------------------4 第二節 沙門氏菌的生化特性----------------------------------------------------------5 第三節 豬霍亂沙門氏菌的致病機制-------------------------------------------------6 2-3-1感染S. Choleraesuis之宿主免疫反應¬¬¬-----------------------------------6 2-3-2 S.Choleraesuis 致病機制相關基因---------------------------------------7 第四節 豬霍亂沙門氏菌感染的影響-------------------------------------------------8 2-4-1 經濟動物的影響-------------------------------------------------------------9 2-4-2 人類感染情形----------------------------------------------------------------9 第五節 沙門氏菌的線毛分類---------------------------------------------------------10 2-5-1.根據外型與凝集功能分類之線毛---------------------------------------10 2-5-2. Chaperone- Usher pathway (CU pathway) 之沙門氏菌線毛分類-12 第六節第一型線毛的特性與目前研究----------------------------------------------12 2-6-1. 基因調控--------------------------------------------------------------------12 2-6-2. Chaperone- Usher pathway 之第一型線毛結構生成----------------15 第七節 凝集素 (adhesion) FimH-----------------------------------------------------17 第八節 研究目的------------------------------------------------------------------------17 第三章 材料與方法-------------------------------------------------------------------------19 第一節 實驗設計------------------------------------------------------------------------19 第二節 材料與方法---------------------------------------------------------------------19 3-2-1實驗用的S. Choleraesuis鑑定、抗生素篩選--------------------------19 3-2-2 酵母菌凝集試驗-----------------------------------------------------------20 3-2-3 細菌菌體DNA萃取------------------------------------------------------21 3-2-4 RNA 萃取與RT-PCR---------------------------------------------------21 3-2-5 重組DNA質體與轉形----------------------------------------------------22 3-2-6 構築fimH 點突變---------------------------------------------------------24 3-2-7 生物膜形成試驗(Biofilm formation assay)----------------------------25 3-2-8 穿透式電子顯微鏡(Transmissible electronic microscopy)----------25 第四章 結果----------------------------------------------------------------------------------27 4-1酵母菌凝集試驗與穿透式電子顯微鏡------------------------------------27 4-2 fimH定序-----------------------------------------------------------------------28 4-3 fimH單點突變對於第一型線毛的影響-----------------------------------28 4-4 RT- PCR------------------------------------------------------------------------28 4-5生物膜形成試驗---------------------------------------------------------------29 第五章 討論----------------------------------------------------------------------------------30 第六章 參考文獻----------------------------------------------------------------------------36 表次 Table 1-------------------------------------------------------------------------------47 Table 2-------------------------------------------------------------------------------49 圖次 Figure 1.-----------------------------------------------------------------------------51 Figure 2.-----------------------------------------------------------------------------52 Figure 3.-----------------------------------------------------------------------------53 Figure 4.-----------------------------------------------------------------------------56 Figure 5.-----------------------------------------------------------------------------57 Figure 6.-----------------------------------------------------------------------------58 Figure 7.-----------------------------------------------------------------------------60 Figure 8.A---------------------------------------------------------------------------61 Figure 8.B---------------------------------------------------------------------------61 | |
| dc.language.iso | zh-TW | |
| dc.subject | FimH | zh_TW |
| dc.subject | 豬霍亂沙門氏菌 | zh_TW |
| dc.subject | 第一型線毛 | zh_TW |
| dc.subject | type 1 fimbriae | en |
| dc.subject | FimH | en |
| dc.subject | Salmonella enterica serovar Choleraesuis | en |
| dc.title | FimH上的胺基酸變異可能是造成豬霍亂沙門氏菌
不表現第一型線毛的原因 | zh_TW |
| dc.title | Amino acid variations in the FimH may contribute to the non-type 1 fimbrial expressing phenotype in
Salmonella enterica serovar Choleraesuis isolates | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 宣詩玲(Shih-Ling Hsuan),陳正文(Zeng-Weng Chen) | |
| dc.subject.keyword | 第一型線毛,豬霍亂沙門氏菌,FimH, | zh_TW |
| dc.subject.keyword | type 1 fimbriae,Salmonella enterica serovar Choleraesuis,FimH, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-06-11 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
