請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54667完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王傑智(Chieh-Chih Wang) | |
| dc.contributor.author | HUNG-CHIH LU | en |
| dc.contributor.author | 盧泓志 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:36:26Z | - |
| dc.date.available | 2015-08-11 | |
| dc.date.copyright | 2015-08-11 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-06-11 | |
| dc.identifier.citation | Arieli, Y., Freedman, B., Machline, M., & Shpunt, A. (2012). Depth mapping using projected
patterns. US Patent 8,150,142. Bascle, B., Blake, A., & Zisserman, A. (1996). Motion deblurring and super-resolution from an image sequence. In Computer VisionECCV’96 (pp. 571–582). Springer. Cho, S. & Lee, S. (2009). Fast motion deblurring. In ACM Transactions on Graphics (TOG), volume 28, (pp. 145). Girod, B. & Scherock, S. (1990). Depth from defocus of structured light. In 1989 Advances in Intelligent Robotics Systems Conference, (pp. 209–215). Khoshelham, K. (2011). Accuracy analysis of kinect depth data. In ISPRS workshop laser scanning, volume 38, (pp. W12). Kim, T. H., Ahn, B., & Lee, K. M. (2013). Dynamic scene deblurring. In 2013 IEEE International Conference on Computer Vision (ICCV), (pp. 3160–3167). Kim, T. H. & Lee, K. M. (2014). Segmentation-free dynamic scene deblurring. In 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 2766–2773). Liu, R., Li, Z., & Jia, J. (2008). Image partial blur detection and classification. In IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, (pp. 1–8). Nayar, S. & Ben-Ezra, M. (2004). Motion-based motion deblurring. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(6), 689–698. Ringaby, E. & Forss´en, P.-E. (2011). Scan rectification for structured light range sensors with rolling shutters. In 2011 IEEE International Conference on Computer Vision (ICCV), (pp. 1575–1582). Scharstein, D. & Szeliski, R. (2003). High-accuracy stereo depth maps using structured light. In 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings, volume 1, (pp. I–195). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54667 | - |
| dc.description.abstract | 利用深度相機取得的三維場景的去模糊化在電腦視覺領域中是一個新穎的題目。動態模糊(motion blur)發生在許多基於結構光(structured light)的三維相機中。我們分析了基於結構光的三維相機產生動態模糊的原因,並設計了一個新穎的方法在三維場景中去模糊化。我們利用物體的模型去取代三維場景中有動態模糊的部分。因為我們處理連續的三維影像,因此我們可以在物體還沒產生動態模糊時建出物體的模型。我們的去模糊演算法分為兩個部分:動態模糊偵測以及動態模糊去模糊化。在動態模糊偵測部分,我們依物體的速度來辦定是否產生動態模糊。在動態模糊去模糊化部分,我們先判斷動態模糊的種類,並應用跌代最近點演算法(iterative closest point algorithm)針對不同種類的動態模糊來做不同的處理。我們對三組真實數據(real data)做實驗,成功得到了去模糊化的結果。 | zh_TW |
| dc.description.abstract | Deblurring of 3D scenes captured by 3D sensors is a novel topic in computer vision. Motion blur occurs in a number of 3D sensors based on structured light techniques. We analyze the causes of motion blur captured by structured light depth cameras and design a novel algorithm using the speed cue and object models to deblur a 3D scene. The main idea is using the 3D model of an object to replace the blurry object in the scene. Because we aim to deal with consecutive 3D frame sequences, ie 3D videos, an object model can be built in the frame where the object is not blurry yet. Our deblurring method can be divided into two parts: motion blur detection and motion blur removal. For the motion blur detection part, we use the speed cue to detect where the motion blur is. For the motion blur removal part, first we judge the type of the motion blur, and then we apply the iterative closest point (ICP) algorithm in different ways according to the motion blur type. The proposed method is evaluated in real world cases and successfully accomplishes motion blur detection and blur removal. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:36:26Z (GMT). No. of bitstreams: 1 ntu-104-R02922127-1.pdf: 3248896 bytes, checksum: 5770083f8fc50d18094e492b7a7c89c7 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | CHAPTER 1. Introduction 1
CHAPTER 2. RelatedWork 3 CHAPTER 3. Motion Blur Detection 5 3.1. The Foundation of Structured Light 5 3.2. Causes of Motion Blur of Structured Light Depth Cameras 7 3.3. The Difference between Motion Blur in 2D Images and 3D Piont Clouds 7 3.4. Our Blur Detection Method 12 CHAPTER 4. Deblurring 14 4.1. Building Object Model 14 4.2. Judge the Type of Motion Blur 14 4.3. Find the Correct Object Model Pose 17 CHAPTER 5. Experiment and Discussion 19 5.1. Experiment Setup 19 5.2. Experiment Results and Discussion 19 CHAPTER 6. Conclusion and Future Work 25 BIBLIOGRAPHY 27 | |
| dc.language.iso | en | |
| dc.subject | 結構光 | zh_TW |
| dc.subject | 深度相機 | zh_TW |
| dc.subject | 去模糊 | zh_TW |
| dc.subject | Deblurring | en |
| dc.subject | Structured Light | en |
| dc.subject | Depth Camera | en |
| dc.title | 深度相機的模糊偵測與去模糊 | zh_TW |
| dc.title | Structured Light Depth Camera Motion Blur Detection and Deblurring | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡竹生,林文杰,林惠勇 | |
| dc.subject.keyword | 深度相機,結構光,去模糊, | zh_TW |
| dc.subject.keyword | Depth Camera,Structured Light,Deblurring, | en |
| dc.relation.page | 28 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-06-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
