Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54646
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余榮熾
dc.contributor.authorMin-Hui Wuen
dc.contributor.author吳旻蕙zh_TW
dc.date.accessioned2021-06-16T03:36:10Z-
dc.date.available2020-08-11
dc.date.copyright2015-08-11
dc.date.issued2015
dc.date.submitted2015-06-17
dc.identifier.citation1. Lee, P.L., J.J. Kohler, and S.R. Pfeffer, Association of beta-1,3-N-acetylglucosaminyltransferase 1 and beta-1,4-galactosyltransferase 1, trans-Golgi enzymes involved in coupled poly-N-acetyllactosamine synthesis. Glycobiology, 2009. 19(6): p. 655-64.
2. Stanley, P. and R.D. Cummings, Structures Common to Different Glycans, in Essentials of Glycobiology, A. Varki, et al., Editors. 2009: Cold Spring Harbor (NY).
3. Bierhuizen, M.F., M.G. Mattei, and M. Fukuda, Expression of the developmental I antigen by a cloned human cDNA encoding a member of a beta-1,6-N-acetylglucosaminyltransferase gene family. Genes & Development, 1993. 7(3): p. 468-478.
4. Nishihara, S., et al., Alpha1,3-fucosyltransferase 9 (FUT9; Fuc-TIX) preferentially fucosylates the distal GlcNAc residue of polylactosamine chain while the other four alpha1,3FUT members preferentially fucosylate the inner GlcNAc residue. FEBS Lett, 1999. 462(3): p. 289-94.
5. Kudo, T. and H. Narimatsu, Fucosyltransferase 4. GDP-Fucose Lactosamine α1,3-Fucosyltransferase. Myeloid Specific (FUT4). 2014: p. 541-547.
6. Schnaar, R.L., ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 3 (ST3GAL3). 2014: p. 657-665.
7. Schnaar, R.L., ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 4 (ST3GAL4). 2014: p. 667-674.
8. Brockhausen, I., Mucin‐type O‐glycans in human colon and breast cancer: glycodynamics and functions. EMBO reports, 2006. 7(6): p. 599-604.
9. Berg, E.L., et al., A carbohydrate domain common to both sialyl Le(a) and sialyl Le(X) is recognized by the endothelial cell leukocyte adhesion molecule ELAM-1. Journal of Biological Chemistry, 1991. 266(23): p. 14869-14872.
10. Varki, A., Selectin ligands. Proc Natl Acad Sci U S A, 1994. 91(16): p. 7390-7.
11. Taylor, M.E. and K. Drickamer, Paradigms for glycan-binding receptors in cell adhesion. Current Opinion in Cell Biology, 2007. 19(5): p. 572-577.
12. Ugorski, M. and A. Laskowska, Sialyl Lewis(a): a tumor-associated carbohydrate antigen involved in adhesion and metastatic potential of cancer cells. Acta Biochim Pol, 2002. 49(2): p. 303-11.
13. Kannagi, R., et al., Altered expression of glycan genes in cancers induced by epigenetic silencing and tumor hypoxia: clues in the ongoing search for new tumor markers. Cancer Sci, 2010. 101(3): p. 586-93.
14. Kannagi, R., Carbohydrate antigen sialyl Lewis a--its pathophysiological significance and induction mechanism in cancer progression. Chang Gung Med J, 2007. 30(3): p. 189-209.
15. Yamada, N., et al., Increased sialyl Lewis A expression and fucosyltransferase activity with acquisition of a high metastatic capacity in a colon cancer cell line. Br J Cancer, 1997. 76(5): p. 582-7.
16. Akama, T.O., et al., Macular corneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene. Nat Genet, 2000. 26(2): p. 237-241.
17. Akama, T.O. and M.N. Fukuda, Carbohydrate (N-Acetylglucosamine 6-O) Sulfotransferase 5 and 6 (CHST5,6). 2014: p. 1005-1014.
18. Akama, T.O., et al., Human Corneal GlcNAc 6-O-Sulfotransferase and Mouse Intestinal GlcNAc 6-O-Sulfotransferase Both Produce Keratan Sulfate. Journal of Biological Chemistry, 2001. 276(19): p. 16271-16278.
19. Habuchi, O., Carbohydrate (Keratan Sulfate Gal-6) Sulfotransferase 1 (CHST1), in Handbook of Glycosyltransferases and Related Genes, N. Taniguchi, et al., Editors. 2014, Springer Japan. p. 989-996.
20. Torii, T., M. Fukuta, and O. Habuchi, Sulfation of sialyl N-acetyllactosamine oligosaccharides and fetuin oligosaccharides by keratan sulfate Gal-6-sulfotransferase. Glycobiology, 2000. 10(2): p. 203-211.
21. Seko, A. and K. Yamashita, β1,3-N-Acetylglucosaminyltransferase-7 (β3Gn-T7) acts efficiently on keratan sulfate-related glycans. FEBS Letters, 2004. 556(1–3): p. 216-220.
22. Seko, A., et al., β1,4-Galactosyltransferase (β4GalT)-IV Is Specific for GlcNAc 6-O-Sulfate: β4GalT-IV ACTS ON KERATAN SULFATE-RELATED GLYCANS AND A PRECURSOR GLYCAN OF 6-SULFOSIALYL-LEWIS X. Journal of Biological Chemistry, 2003. 278(11): p. 9150-9158.
23. Seko, A. and K. Yamashita, Biosynthesis of Keratan Sulfate, in Experimental Glycoscience, N. Taniguchi, et al., Editors. 2008, Springer Japan. p. 67-69.
24. Funderburgh, J.L., Keratan sulfate biosynthesis. IUBMB Life, 2002. 54(4): p. 187-94.
25. Akama, T.O., et al., Enzymatic synthesis in vitro of the disulfated disaccharide unit of corneal keratan sulfate. J Biol Chem, 2002. 277(45): p. 42505-13.
26. Maszczak-Seneczko, D., et al., UDP-N-acetylglucosamine transporter (SLC35A3) regulates biosynthesis of highly branched N-glycans and keratan sulfate. J Biol Chem, 2013. 288(30): p. 21850-60.
27. Lu, C.H., et al., Suppression of B3GNT7 gene expression in colon adenocarcinoma and its potential effect in the metastasis of colon cancer cells. Glycobiology, 2014. 24(4): p. 359-67.
28. Jones, P.A. and S.B. Baylin, The fundamental role of epigenetic events in cancer. Nat Rev Genet, 2002. 3(6): p. 415-28.
29. Baylin, S.B. and J.G. Herman, DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends in Genetics, 2000. 16(4): p. 168-174.
30. Laird, P.W. and R. Jaenisch, THE ROLE OF DNA METHYLATION IN CANCER GENETICS AND EPIGENETICS. Annual Review of Genetics, 1996. 30(1): p. 441-464.
31. Iacobuzio-Donahue, C.A., Epigenetic Changes in Cancer. Annual Review of Pathology: Mechanisms of Disease, 2009. 4(1): p. 229-249.
32. Collins, L.J., B. Schönfeld, and X.S. Chen, Chapter 4 - The Epigenetics of Non-coding RNA, in Handbook of Epigenetics, T. Tollefsbol, Editor. 2011, Academic Press: San Diego. p. 49-61.
33. Cao, J., The functional role of long non-coding RNAs and epigenetics. Biological Procedures Online, 2014. 16(1): p. 11.
34. Yang, G., X. Lu, and L. Yuan, LncRNA: A link between RNA and cancer. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2014. 1839(11): p. 1097-1109.
35. Prensner, J.R. and A.M. Chinnaiyan, The emergence of lncRNAs in cancer biology. Cancer discovery, 2011. 1(5): p. 391-407.
36. Kannagi, R., Molecular mechanism for cancer-associated induction of sialyl Lewis X and sialyl Lewis A expression-The Warburg effect revisited. Glycoconj J, 2004. 20(5): p. 353-64.
37. Kannagi, R., et al., Current relevance of incomplete synthesis and neo-synthesis for cancer-associated alteration of carbohydrate determinants--Hakomori's concepts revisited. Biochim Biophys Acta, 2008. 1780(3): p. 525-31.
38. Koike, T., et al., Hypoxia induces adhesion molecules on cancer cells: A missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc Natl Acad Sci U S A, 2004. 101(21): p. 8132-7.
39. Yin, J., et al., Altered sphingolipid metabolism induced by tumor hypoxia - new vistas in glycolipid tumor markers. FEBS Lett, 2010. 584(9): p. 1872-8.
40. Miyazaki, K., et al., Loss of disialyl Lewis(a), the ligand for lymphocyte inhibitory receptor sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7) associated with increased sialyl Lewis(a) expression on human colon cancers. Cancer Res, 2004. 64(13): p. 4498-505.
41. Yusa, A., et al., Epigenetic silencing of the sulfate transporter gene DTDST induces sialyl Lewisx expression and accelerates proliferation of colon cancer cells. Cancer Res, 2010. 70(10): p. 4064-73.
42. Kantarjian, H., et al., Decitabine improves patient outcomes in myelodysplastic syndromes. Cancer, 2006. 106(8): p. 1794-1803.
43. West, A.C. and R.W. Johnstone, New and emerging HDAC inhibitors for cancer treatment. The Journal of Clinical Investigation, 2014. 124(1): p. 30-39.
44. Rodriguez-Paredes, M. and M. Esteller, Cancer epigenetics reaches mainstream oncology. Nat Med, 2011: p. 330-339.
45. Campbell, R.M. and P.J. Tummino, Cancer epigenetics drug discovery and development: the challenge of hitting the mark. J Clin Invest, 2014. 124(1): p. 64-9.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54646-
dc.description.abstractPoly-LacNAc醣鏈係由重複的N-acetyllactosamine (Gal-GlcNAc; LacNAc)單元組成,是細胞膜表面的主要醣結構之一。若poly-LacNAc醣鏈上的Gal和GlcNAc的六號碳上的氧 (6-O)發生硫酸化(sulfation),即生成硫化醣鏈(sulfated poly-LacNAc chain)。而過去的研究證實,β-1,3-N-acetylglucosaminyl-
transferase 7 (B3GNT7)、carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 6 (CHST6)、β-1,4-galactosyltransferase 4 (B4GALT4) 與carbohydrate (keratan sulfate Gal-6) sulfotransferase 1 (CHST1)醣轉化酶負責形成硫化醣鏈,且solute carrier family 35 (UDP-N-acetylglucosamine(UDP-GlcNAc) transporter), member A3 (SLC35A3)亦參與影響硫化醣鏈的生合成。
消化道系統癌症癌化的過程,會伴隨癌細胞表面醣結構的改變。Sialyl Lewis a (sLea)與sialyl Lewis x (sLex)建構於poly-LacNAc醣鏈末端,為著名的消化道系統相關癌症的腫瘤相關醣抗原 (tumor-associated carbohydrate antigen)。過去的研究證實。sLea和sLex會大量表現於胃癌、胰臟癌及大腸直腸癌的腫瘤組織中,而且具高度轉移能力的大腸癌細胞株的表現量比低轉移能力的細胞株的表現量高。
本實驗室近期的研究發現,B3GNT7在大腸癌腫瘤組織中,經由DNA甲基化,使其表現相較於正常組織的表現有明顯的下降。若使大腸癌細胞株大量表現B3GNT7,不只會降低其細胞表面的sLea醣抗原,同時癌細胞轉移能力也降低許多。因此,我們進一步分析另四個和硫化醣鏈生合成相關的基因,CHST1、CHST6、B4GALT4及SLC35A3在大腸癌腫瘤組織的表現量。我們發現B4GALT4及SLC35A3有較對照組明顯地抑制。此外,我們將HT-29大量表現B4GALT4,其sLea和sLex皆有下降的現象;但是否會因此而抑制癌細胞惡性轉移的特性還需進一步的動物實驗證明。
為了瞭解在大腸癌細胞是經由何種epigenetic機制調控B4GALT4與SLC35A3基因的表現,我們透過NCBI得知這兩個基因的5’端promoter區皆有CpG island,利用亞硫酸鹽定序 (bisulfite sequencing)方法探究是否有甲基化現象,實驗結果顯示,在大腸癌癌化過程可能並不是藉由DNA甲基化抑制B4GALT4與SLC35A3基因。但有趣的是,在大腸癌細胞株經由去甲基化藥物5-aza-2’-deoxycytidine處理後,B4GALT4和SLC35A3表現量有明顯提升,此現象說明此兩基因可能是經由間接的epigenetic機制調控而被抑制。我們進而測試HDAC inhibitor類的epigenetic藥物,觀察此類藥物對於B4GALT4與SLC35A3基因,以及sLea和 sLex醣抗原表現的影響,目的於探索哪些epigenetic藥物能刺激相關硫化醣鏈基因表現,進而抑制大腸癌轉移的可能。
zh_TW
dc.description.abstractPoly-LacNAc chain, composed of repeating disaccharide unit of N-acetyllactosamine (LacNAc), is one of the major glyco-structures on the cell surface. The sixth carbon positions (C-6) of the Gal and GlcNAc residues of the poly-LacNAc chains can be sulfated, through the activities of carbohydrate (keratan sulfate Gal-6) sulfotransferase 1 (CHST1) and carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 6 (CHST6), respectively, and this transforms the chains into sulfated poly-LacNAc chains. It has been shown that β-1,3-N-acetylglucosaminyltransferase 7 (B3GNT7) and β-1,4-galactosyltransferase 4 (B4GALT4) are responsible for the elongation of sulfated poly-LacNAc chains. In addition, the UDP-GlcNAc transporter, solute carrier family 35, member A3 (SLC35A3) has been shown to be involved in the biosynthesis of sulfated poly-LacNAc chains. The sialyl Lewis a (sLea) and sialyl Lewis x (sLex) glyco-antigens are constructed on the terminals of poly-LacNAc chains. They have been show to play a critical role during carcinogenesis of gastrointestinal cancers, and are well-known tumor-associated carbohydrate antigens.
Our recent investigation demonstrated that B3GNT7 gene was significantly down-regulated, through promoter DNA methylation, in colon tumor tissue. Ectopic expression of B3GNT7 gene in colon cancer cell line suppressed the expression of sLea antigen and reduced the metastasis capability of the cells. Based on these previous findings, we aim to further analyze the expression profile of the other four sulfated poly-LacNAc chain-related genes, CHST1, CHST6, B4GALT4 and SLC35A3, during colon cancer oncogenesis. The result showed that the expression of CHST1 and CHST6 genes did not show a consistent up- or down-regulation pattern in colon tumor tissues, while the expression of B4GALT4 and SLC35A3 genes are significantly down-regulated in tumor tissues. Ectopic expression of the B4GALT4 gene in HT-29 colon cancer cells leads to a reduction in the expression of sLea and sLex antigens on cell surfaces. However, the results obtained from bisulfite sequencing showed that the suppression of the B4GALT4 and SLC35A3 genes in colon tumors were not due to promoter DNA methylation. To explore the epigenetic mechanism leading to the suppression of these genes, we treated colon cancer cells with various epigenetic drugs. Interestingly, the data show that DNA methylation inhibitor 5-aza-2’-deoxycytidine markedly induced the expression of both genes in colon cancer cells, suggesting that unidentified mechanism are directly or indirectly involved in the regulation of B4GALT4 and SLC35A3 genes during colon cancer oncogenesis.
In future investigations, we plan to investigate the mechanism involved in the suppression of B4GALT4 and SLC35A3 and the functional roles of the expression of sulfated poly-LacNAc chains in the suppression of sLea and sLex antigens in colon cancer.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:36:10Z (GMT). No. of bitstreams: 1
ntu-104-R02b46001-1.pdf: 1844700 bytes, checksum: f264918e7882263f65de50e55656bd0d (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
口試委員審定書 i
中文摘要 ii
英文摘要 iv
縮寫表 vi
目錄 viii
圖目錄 x
表目錄 xi
第一章 緒論 1
1.1 Poly-LacNAc醣鏈的介紹構造與生合成 1
1.2 Sialyl Lewis a及sialyl Lewis x醣抗原 1
1.3 Sulfated poly-LacNAc醣鏈的介紹 2
1.4 研究動機及目的 3
第二章 材料與方法 5
2.1 細胞株培養 (Cell Culture) 5
2.2 藥物處理 5
2.3 RNA萃取及同步定量PCR 6
2.4 基因表現 (Gene Expression) 7
2.5 流式細胞儀之分析 (Flow Cytometry Analysis) 8
2.6 DNA甲基化之分析 8
2.7 細胞蛋白質的萃取及西方點墨法 (Western Blot) 9
第三章 結果 11
3.1 硫化醣鏈合成相關基因在大腸腫瘤組織的表現 11
3.2 B4GALT4基因表現對於sLea或sLex抗原表現之影響 11
3.3 Epigenetic藥物對B4GALT4與SLC35A3基因表現的作用 12
3.4 探討大腸癌發生過程抑制B4GALT4與SLC35A3基因表現的機制 13
3.5 Epigenetic藥物對於大腸癌細胞sLea或sLex抗原表現之影響 14
第四章 討論 15
第五章 圖表 18
參考文獻 35
附錄 39
dc.language.isozh-TW
dc.subject甲基化抑制劑zh_TW
dc.subject組蛋白去乙醯?抑制劑zh_TW
dc.subject大腸癌zh_TW
dc.subject癌細胞轉移zh_TW
dc.subject腫瘤相關醣抗原zh_TW
dc.subjecttumor-associated antigenen
dc.subjectmetastasisen
dc.subjectcolon canceren
dc.subjectHDAC inhibitoren
dc.subjectmetastasisen
dc.subjectcolon canceren
dc.subjecttumor-associated antigenen
dc.subjectHDAC inhibitoren
dc.subjectDNA methylation inhibitoren
dc.subjectDNA methylation inhibitoren
dc.title大腸癌癌化過程硫化poly-LacNAc醣鏈相關基因表現的抑制zh_TW
dc.titleSuppression of the expression of sulfated poly-LacNAc chain-related genes in colon canceren
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱善德,張茂山,涂玉清
dc.subject.keyword大腸癌,癌細胞轉移,腫瘤相關醣抗原,甲基化抑制劑,組蛋白去乙醯?抑制劑,zh_TW
dc.subject.keywordcolon cancer,metastasis,tumor-associated antigen,DNA methylation inhibitor,HDAC inhibitor,en
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2015-06-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved