Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54640
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor常怡雍(Yee-Yung Charng)
dc.contributor.authorTzu-Ying Yangen
dc.contributor.author楊子瑩zh_TW
dc.date.accessioned2021-06-16T03:36:07Z-
dc.date.available2022-08-03
dc.date.copyright2020-08-06
dc.date.issued2020
dc.date.submitted2020-08-03
dc.identifier.citationAhn SG, Thiele DJ (2003) Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev. 17: 516-528
Alscher RG (1989) Biosynthesis and antioxidant function of glutathione in plants. Physiol. Plant. 77: 457-464
Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16: 2448-2462
Bangash SaK, Muller-Schussele SJ, Solbach D, Jansen M, Fiorani F, Schwarzlander M, Kopriva S, Meyer AJ (2019) Low-glutathione mutants are impaired in growth but do not show an increased sensitivity to moderate water deficit. PLOS ONE 14: e0220589
Bedhomme M, Adamo M, Marchand CH, Couturier J, Rouhier N, Lemaire SD, Zaffagnini M, Trost P (2012) Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro. Biochem. J. 445: 337-347
Boyer JS (1982) Plant productivity and environment. Science 218: 443-448
Cairns NG, Pasternak M, Wachter A, Cobbett CS, Meyer AJ (2006) Maturation of arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol. 141: 446-455
Cairns NG, Pasternak M, Wachter A, Cobbett CS, Meyer AJ (2006) Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol. 141: 446-455
Charng Y-Y, Liu H-C, Liu N-Y, Hsu F-C, Ko S-S (2006) Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol. 140: 1297-1305
Charng YY, Liu HC, Liu NY, Hsu FC, Ko SS (2006) Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol. 140: 1297-1305
Cheng MC, Ko K, Chang WL, Kuo WC, Chen GH, Lin TP (2015) Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. Plant J. 83: 926-939
Chi WT, Fung RW, Liu HC, Hsu CC, Charng YY (2009) Temperature-induced lipocalin is required for basal and acquired thermotolerance in Arabidopsis. Plant, Cell Environ. 32: 917-927
Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione‐deficient, cadmium‐sensitive mutant, cad2–1, of Arabidopsis thaliana is deficient in γ‐glutamylcysteine synthetase. Plant J. 16: 73-78
Doyle SM, Wickner S (2009) Hsp104 and ClpB: protein disaggregating machines. Trends Biochem. Sci. 34: 40-48
Drazkiewicz M, Skorzynska-Polit E, Krupa Z (2010) Effect of BSO-supplemented heavy metals on antioxidant enzymes in Arabidopsis thaliana. Ecotoxicol. Environ. Saf. 73: 1362-1369
Dron M, Clouse SD, Dixon RA, Lawton MA, Lamb CJ (1988) Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts. Proc. Natl. Acad. Sci. U.S.A. 85: 6738-6742
Dubreuil-Maurizi C, Vitecek J, Marty L, Branciard L, Frettinger P, Wendehenne D, Meyer AJ, Mauch F, Poinssot B (2011) Glutathione deficiency of the Arabidopsis mutant pad2-1 affects oxidative stress-related events, defense gene expression, and the hypersensitive response. Plant Physiol. 157: 2000-2012
Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133: 21-25
Foyer CH, Lopez‐Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide‐and glutathione‐associated mechanisms of acclimatory stress tolerance and signalling. Physiol. Plant. 100: 241-254
Fratelli M, Gianazza E, Ghezzi P (2004) Redox proteomics: identification and functional role of glutathionylated proteins. Expert Rev. Proteomics 1: 365-376
Gálvez S, Bismuth E, Sarda C, Gadal P (1994) Purification and characterization of chloroplastic NADP-isocitrate dehydrogenase from mixotrophic tobacco cells (comparison with the cytosolic isoenzyme). Plant Physiol. 105: 593-600
Geu-Flores F, Moldrup ME, Bottcher C, Olsen CE, Scheel D, Halkier BA (2011) Cytosolic gamma-glutamyl peptidases process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in Arabidopsis. Plant Cell 23: 2456-2469
Giustarini D, Rossi R, Milzani A, Colombo R, Dalle‐Donne I (2004) S‐glutathionylation: from redox regulation of protein functions to human diseases. J. Cell. Mol. Med. 8: 201-212
Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94: 73-82
Hodges M (2002) Enzyme redundancy and the importance of 2‐oxoglutarate in plant ammonium assimilation. J. Exp. Bot. 53: 905-916
Holmgren A (1976) Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc. Natl. Acad. Sci. U.S.A. 73: 2275-2279
Hoppe G, Chai YC, Crabb JW, Sears J (2004) Protein S-glutathionylation in retinal pigment epithelium converts heat shock protein 70 to an active chaperone. Exp. Eye Res. 78: 1085-1092
Horvath E, Bela K, Holinka B, Riyazuddin R, Galle A, Hajnal A, Hurton A, Feher A, Csiszar J (2019) The Arabidopsis glutathione transferases, AtGSTF8 and AtGSTU19 are involved in the maintenance of root redox homeostasis affecting meristem size and salt stress sensitivity. Plant Sci. 283: 366-374
Hu C, Lin SY, Chi WT, Charng YY (2012) Recent gene duplication and subfunctionalization produced a mitochondrial GrpE, the nucleotide exchange factor of the Hsp70 complex, specialized in thermotolerance to chronic heat stress in Arabidopsis. Plant Physiol. 158: 747-758
Ito H, Iwabuchi M, Ogawa KI (2003) The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione. Plant Cell Physiol. 44: 655-660
Jiang K, Moe-Lange J, Hennet L, Feldman LJ (2016) Salt stress affects the redox status of Arabidopsis root meristems. Front. Plant Sci. 7: 81
Krishna P, Gloor G (2001) The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperones 6: 238
Kumar D, Chattopadhyay S (2018) Glutathione modulates the expression of heat shock proteins via the transcription factors BZIP10 and MYB21 in Arabidopsis. J. Exp. Bot. 69: 3729-3743
Lancien M, Gadal P, Hodges M (1998) Molecular characterization of higher plant NAD‐dependent isocitrate dehydrogenase: evidence for a heteromeric structure by the complementation of yeast mutants. Plant J. 16: 325-333
Lancien M, Gadal P, Hodges M (2000) Enzyme redundancy and the importance of 2-oxoglutarate in higher plant ammonium assimilation. Plant Physiol. 123: 817-824
Lee U, Rioflorido I, Hong SW, Larkindale J, Waters ER, Vierling E (2007) The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. Plant J. 49: 115-127
Lemaitre T, Hodges M (2006) Expression analysis of Arabidopsis thaliana NAD-dependent isocitrate dehydrogenase genes shows the presence of a functional subunit that is mainly expressed in the pollen and absent from vegetative organs. Plant Cell Physiol. 47: 634-643
Lemaitre T, Hodges M (2006) Expression analysis of Arabidopsis thaliana NAD-dependent isocitrate dehydrogenase genes shows the presence of a functional subunit that is mainly expressed in the pollen and absent from vegetative organs. Plant Cell Physiol. 47: 634-643
Lemaitre T, Urbanczyk-Wochniak E, Flesch V, Bismuth E, Fernie AR, Hodges M (2007) NAD-dependent isocitrate dehydrogenase mutants of Arabidopsis suggest the enzyme is not limiting for nitrogen assimilation. Plant Physiol. 144: 1546-1558
Lemaitre T, Urbanczyk-Wochniak E, Flesch V, Bismuth E, Fernie AR, Hodges M (2007) NAD-dependent isocitrate dehydrogenase mutants of Arabidopsis suggest the enzyme is not limiting for nitrogen assimilation. Plant Physiol. 144: 1546-1558
Lin M, Behal RH, Oliver DJ (2004) Characterization of a mutation in the IDH-II subunit of the NAD+-dependent isocitrate dehydrogenase from Arabidopsis thaliana. Plant Sci. 166: 983-988
Lind C, Gerdes R, Hamnell Y, Schuppe-Koistinen I, Von Löwenhielm HB, Holmgren A, Cotgreave IA (2002) Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis. Arch. Biochem. Biophys. 406: 229-240
Lindquist S (1986) The heat-shock response. Annu. Rev. Biochem. 55: 1151-1191
Lindquist S, Craig EA (1988) The heat-shock proteins. Annu. Rev. Genet. 22: 631-677
Liu HC, Liao HT, Charng YY (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant, Cell Environ. 34: 738-751
Liu Y, Zhang C, Chen J, Guo L, Li X, Li W, Yu Z, Deng J, Zhang P, Zhang K, Zhang L (2013) Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state. Plant Physiol. Biochem. 64: 92-98
Marty L, Siala W, Schwarzlander M, Fricker MD, Wirtz M, Sweetlove LJ, Meyer Y, Meyer AJ, Reichheld JP, Hell R (2009) The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 106: 9109-9114
Masella R, Di Benedetto R, Vari R, Filesi C, Giovannini C (2005) Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J. Nutr. Biochem. 16: 577-586
Mcloughlin F, Kim M, Marshall RS, Vierstra RD, Vierling E (2019) HSP101 interacts with the proteasome and promotes the clearance of ubiquitylated protein aggregates. Plant Physiol. 180: 1829-1847
Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J. 52: 973-986
Miseta A, Csutora P (2000) Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol. Biol. Evol. 17: 1232-1239
Mitchell JB, Russo A, Kinsella TJ, Glatstein E (1983) Glutathione elevation during thermotolerance induction and thermosensitization by glutathione depletion. Cancer Res. 43: 987-991
Niazi AK, Bariat L, Riondet C, Carapito C, Mhamdi A, Noctor G, Reichheld JP (2019) Cytosolic isocitrate dehydrogenase from Arabidopsis thaliana Is regulated by glutathionylation. Antioxidants 8: 16-33
Noctor G, Arisi A-CM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J. Exp. Bot. 49: 623-647
Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Biol. 49: 249-279
Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez‐Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant, Cell Environ. 35: 454-484
Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F (2007) Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J. 49: 159-172
Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F (2007) Identification of PAD2 as a γ‐glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J. 49: 159-172
Pasternak M, Lim B, Wirtz M, Hell R, Cobbett CS, Meyer AJ (2008) Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J. 53: 999-1012
Reichheld JP, Khafif M, Riondet C, Droux M, Bonnard G, Meyer Y (2007) Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development. Plant Cell 19: 1851-1865
Requejo R, Hurd TR, Costa NJ, Murphy MP (2010) Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage. FEBS J. 277: 1465-1480
Russo A, Mitchell J, Mcpherson S (1984) The effects of glutathione depletion on thermotolerance and heat stress protein synthesis. Br. J. Cancer 49: 753-758
Schlaeppi K, Bodenhausen N, Buchala A, Mauch F, Reymond P (2008) The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. Plant J. 55: 774-786
Schmidtmann E, König A-C, Orwat A, Leister D, Hartl M, Finkemeier I (2014) Redox regulation of Arabidopsis mitochondrial citrate synthase. Mol. Plant Pathol. 7: 156-169
Shanmugam V, Tsednee M, Yeh KC (2012) ZINC TOLERANCE INDUCED BY IRON 1 reveals the importance of glutathione in the cross-homeostasis between zinc and iron in Arabidopsis thaliana. Plant J. 69: 1006-1017
Thordal‐Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. Plant J. 11: 1187-1194
Townsend DM (2007) S-glutathionylation: indicator of cell stress and regulator of the unfolded protein response. Mol. Interventions 7: 313-324
Vernoux T, Wilson RC, Seeley KA, Reichheld J-P, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inzé D (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12: 97-109
Vierling E (1991) The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 579-620
Volkov RA, Panchuk, Ii, Mullineaux PM, Schoffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol. Biol. 61: 733-746
Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9: 244-252
Wani R, Nagata A, Murray BW (2014) Protein redox chemistry: post-translational cysteine modifications that regulate signal transduction and drug pharmacology. Front. Pharmacol. 5: 224
Wingate VP, Lawton MA, Lamb CJ (1988) Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol. 87: 206-210
Wray W, Boulikas T, Wray VP, Hancock R (1981) Silver staining of proteins in polyacrylamide gels. Anal. Biochem. 118: 197-203
Wu TY, Juan YT, Hsu YH, Wu SH, Liao HT, Fung RW, Charng YY (2013) Interplay between heat shock proteins HSP101 and HSA32 prolongs heat acclimation memory posttranscriptionally in Arabidopsis. Plant Physiol. 161: 2075-2084
Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10: 1539-1550
Yadav S (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot. 76: 167-179
Yang J, Zhang H, Gong W, Liu Z, Wu H, Hu W, Chen X, Wang L, Wu S, Chen C, Perrett S (2020) S-Glutathionylation of human inducible Hsp70 reveals a regulatory mechanism involving the C-terminal alpha-helical lid. J. Biol. Chem. 295: 8302-8324
Yeh CH, Kaplinsky NJ, Hu C, Charng YY (2012) Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Sci. 195: 10-23
Yoshida K, Hisabori T (2014) Mitochondrial isocitrate dehydrogenase is inactivated upon oxidation and reactivated by thioredoxin-dependent reduction in Arabidopsis. Front. Environ. Sci. 2
Zaffagnini M, Bedhomme M, Marchand CH, Morisse S, Trost P, Lemaire SD (2012) Redox regulation in photosynthetic organisms: focus on glutathionylation. Antioxid. Redox Signal. 16: 567-586
Zaffagnini M, Michelet L, Marchand C, Sparla F, Decottignies P, Le Marechal P, Miginiac-Maslow M, Noctor G, Trost P, Lemaire SD (2007) The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation. FEBS J. 274: 212-226
Zhang H, Yang J, Wu S, Gong W, Chen C, Perrett S (2016) Glutathionylation of the bacterial Hsp70 chaperone DnaK provides a link between oxidative stress and the heat shock response. J. Biol. Chem. 291: 6967-6981
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54640-
dc.description.abstract穀胱甘肽 (Glutathione) 在細胞中扮演著維持氧化還原恆定的重要角色。先前研究發現,經過 buthionine sulfoximine 處理後的動物細胞,其穀胱甘肽的含量減少,也讓耐熱性和主要的熱休克蛋白的合成受到抑制。為了了解穀胱甘肽的含量是否會影響植物的耐熱性和熱休克反應,此研究對穀胱甘肽合成相關的阿拉伯芥突變種 (cad2-1、pad2-1和zir1) 進行了四種不同的耐熱性測定。所有突變種在四種熱處理條件下皆顯示了熱敏感的表現型,說明了穀胱甘肽對於植物耐熱的重要性。在正常條件和熱處理後,突變種中的穀胱甘肽和氧化型穀胱甘肽 (oxidized glutathione) 的含量有顯著地降低。外加 10 mM 的穀胱甘肽使得pad2-1 恢復部分的耐熱性。在熱處理前後,熱休克蛋白 HSP101、HSP90、HSP70、sHSP-CI、HSA32 和 HSFA2 的表現量並不會受到穀胱甘肽含量影響。蛋白質沈澱分離分析發現造成 pad2-1 的熱敏感性的原因和 hsp101 是有所不同的,暗示穀胱甘肽的缺乏不至於導致分子伴侶功能的喪失。在突變種中,NAD+-異檸檬酸脫氫酶的活性有些微但顯著的下降,顯示穀胱甘肽的含量可能會影響某些氧化還原調節蛋白的功能。因此,在植物和動物中,穀胱甘肽對於熱休克反應之調節機制並不相同。結果也顯示穀胱甘肽在阿拉伯芥中有著抵抗熱逆境的重要作用。zh_TW
dc.description.abstractGlutathione (GSH) is an important metabolite that functions in maintaining the cellular redox homeostasis in response to stresses. The reduction of glutathione content upon buthionine sulfoximine treatment results in the inhibition of thermotolerance acquisition and major heat shock proteins (HSPs) synthesis during heat acclimation in animal cells. To investigate whether the level of glutathione influences the thermotolerance and heat shock response in plants, the glutathione deficiency mutants (cad2-1, pad2-1, and zir1) in Arabidopsis were subjected to four distinct thermotolerance assay. All the mutants showed heat-sensitive phenotypes, indicating that glutathione is vital for thermotolerance. Analysis of the GSH/GSSG (oxidized glutathione) content by ultra-performance liquid chromatography mass spectrometry showed that the GSH/GSSG levels were dramatically reduced in the mutants under both normal and heat stress conditions. The thermotolerance of pad2-1 can be partially restored under heat stress conditions by treating with exogenous glutathione at 10 mM. Quantitative RT-PCR and western blotting analysis showed that the abundance of heat-inducible proteins, i.e. HSP101, HSP90, HSP70, sHSP-CI, HSA32, and HSFA2, were not significantly affected in the mutants before and after heat treatment. The thermo-sensitivity of pad2-1 was not due to compromised proteostasis, suggesting that glutathione deficiency does not substantially affect chaperone functions. The activity of NAD+-dependent isocitrate dehydrogenase decreased slightly but significantly in the mutants, indicating that the glutathione content may influence function of some redox-regulated proteins. Hence, the mechanisms of glutathione-mediated heat stress response in plants and animals may not be the same. Glutathione plays a pivotal role in Arabidopsis in conferring heat tolerance.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:36:07Z (GMT). No. of bitstreams: 1
U0001-0208202023052300.pdf: 3959269 bytes, checksum: 8fc99289f960ec159f239b84db62d336 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsContents
謝誌 -------------------------------------------------------------------------------------------------i
摘要 -------------------------------------------------------------------------------------------------ii
Abstract -------------------------------------------------------------------------------------------iii
Abbreviations -------------------------------------------------------------------------------------v
Contents ------------------------------------------------------------------------------------------vii
Chapter 1 Introduction ---------------------------------------------------------------------1
1.1 Plant heat shock response --------------------------------------------------------------1
1.2 Glutathione in plants --------------------------------------------------------------------2
1.3 Glutathione content and abiotic stresses ---------------------------------------------4
1.4 The function of protein glutathionylation --------------------------------------------6
1.5 NAD+-dependent isocitrate dehydrogenase (IDH) ---------------------------------8
1.6 Specific aims -----------------------------------------------------------------------------9
Chapter 2 Materials and Methods ------------------------------------------------------10
2.1 Plant materials and growth conditions ----------------------------------------------10
2.2 Genomic DNA extraction, genotyping, and DNA sequencing -------------------10
2.3 Quantification of glutathione contents and UPLC-MS/MS analysis -----------12
2.4 Thermotolerance assays ---------------------------------------------------------------13
2.5 Glutathione treatment of seedlings --------------------------------------------------14
2.6 Isolation of total RNA and quantitative RT-PCR analysis ------------------------14
2.7 Protein extraction and immunoblotting ---------------------------------------------15
2.8 DAB staining ---------------------------------------------------------------------------15
2.9 Separation of soluble and insoluble protein fractions ----------------------------16
2.10 Silver staining -------------------------------------------------------------------------18
2.11 Crude protein extraction and NAD+-Isocitrate dehydrogenase (IDH) activity
assay ------------------------------------------------------------------------------------19
Chapter 3 Results ----------------------------------------------------------------------------20
3.1 Confirmation of GSH1 mutant genotypes ------------------------------------------20
3.2 The content of glutathione in response to heat stress -----------------------------20
3.3 Glutathione is vital for thermotolerance in Arabidopsis --------------------------21
3.4 Exogenous glutathione supplement increases heat stress tolerance -------------22
3.5 HS response is not affected by depletion of glutathione --------------------------23
3.6 HS-induced accumulation of H2O2 was not altered by glutathione depletion -23
3.7 Thermotolerance defect of pad2-1 is not due to protein aggregation -----------24
3.8 Reduction of NAD+-dependent isocitrate dehydrogenase activity in pad2-1
after HS ---------------------------------------------------------------------------------25
Chapter 4 Discussion ------------------------------------------------------------------------27
4.1 Overestimated levels of GSSG in Arabidopsis seedlings -------------------------27
4.2 Reduced glutathione level does not affect the expression of major HSPs in
Arabidopsis -----------------------------------------------------------------------------27
4.3 The effects of H2O2 accumulation during long recovery time -------------------28
4.4 Glutathione deficiency may not affect proteostasis during HS ------------------28
4.5 Reduced activity of NAD+-dependent isocitrate dehydrogenase under SAT
assay condition ------------------------------------------------------------------------29
Chapter 5 Future work ----------------------------------------------------------------------30
Figures --------------------------------------------------------------------------------------------32
Appendix ------------------------------------------------------------------------------------------45
References ----------------------------------------------------------------------------------------48
dc.language.isoen
dc.subject熱逆境反應zh_TW
dc.subject耐熱性zh_TW
dc.subject穀胱甘肽zh_TW
dc.subjectγ-谷氨酰半胱氨酸合成酶zh_TW
dc.subject阿拉伯芥zh_TW
dc.subject熱逆境反應zh_TW
dc.subject耐熱性zh_TW
dc.subject穀胱甘肽zh_TW
dc.subjectγ-谷氨酰半胱氨酸合成酶zh_TW
dc.subject阿拉伯芥zh_TW
dc.subjectHeat stress responseen
dc.subjectthermotoleranceen
dc.subjectHeat stress responseen
dc.subjectthermotoleranceen
dc.subjectArabidopsis thalianaen
dc.subjectγ-glutamylcysteine synthetaseen
dc.subjectArabidopsis thalianaen
dc.subjectγ-glutamylcysteine synthetaseen
dc.subjectglutathioneen
dc.subjectglutathioneen
dc.title穀胱甘肽在阿拉伯芥耐熱性反應中的作用zh_TW
dc.titleThe Role of Glutathione in Thermotolerance and Heat Shock Response in Arabidopsis thalianaen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉國楨(Kuo-Chen Yeh),楊健志(Chien-Chih Yang)
dc.subject.keyword熱逆境反應,耐熱性,穀胱甘肽,γ-谷氨酰半胱氨酸合成酶,阿拉伯芥,zh_TW
dc.subject.keywordHeat stress response,thermotolerance,glutathione,γ-glutamylcysteine synthetase,Arabidopsis thaliana,en
dc.relation.page54
dc.identifier.doi10.6342/NTU202002237
dc.rights.note有償授權
dc.date.accepted2020-08-04
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
U0001-0208202023052300.pdf
  未授權公開取用
3.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved