Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54605
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃信樺(Hsin-Hua Huang)
dc.contributor.authorYu-Fang Hsuen
dc.contributor.author許毓芳zh_TW
dc.date.accessioned2021-06-16T03:07:18Z-
dc.date.available2020-08-25
dc.date.copyright2020-08-25
dc.date.issued2020
dc.date.submitted2020-08-11
dc.identifier.citationAkaike, H. (1977). On entropy maximization principle. Application of statistics, 27-41.
Aki, K. (1965). Maximum likelihood estimate of b in the formula log N= a-bM and its confidence limits. Bull. Earthq. Res. Inst., Tokyo Univ., 43, 237-239.
Audet P., Schwartz S. Y. (2014). Hydrologic control of forearc strength and seismicity in the Costa Rican subduction zone. Nature Geoscience, 6.
Brace, W. F. (1972). Laboratory studies of stick-slip and their application to earthquakes. Tectonophysics, 14(3-4), 189-200.
Brown, M. R., and Ge, S. J. (2018). Distinguishing Fluid Flow Path from Pore Pressure Diffusion for Induced Seismicity. 108(6), 3684-3686.
Benz, H. M., McMahon, N. D., Aster, R. C., McNamara, D. E., and Harris D. B. (2015), Hundreds of earthquakes per day: The 2014 Guthrie, Oklahoma, earthquake sequence, Seismol. Res. Lett., 86(5), 1318–1325.
Ben-Zion, Y., Zaliapin, I. (2019). Spatial variations of rock damage production by earthquakes in southern California. Earth and Planetary Science Letters, 512, 184-193.
Chao, K., Peng, Z., Wu, C., Tang, C. C., and Lin, C. H. (2012). Remote triggering of non-volcanic tremor around Taiwan. 188(1), 301-324.
Chen, W. S., Yu, H.H., Yu, C.F., Chung S. L., Lin, C. H., Lin C. W., ⋯, and Wang K. L. (2016). An Introduction to the Geology of Taiwan. Geological Society of Taiwan, 204.
Ciotoli, G., Sciarra, A., Ruggiero, L., Annunziatellis, A., and Bigi, S. J. A. o. G. (2016). Soil gas geochemical behaviour across buried and exposed faults during the 24 August 2016 central Italy earthquake. 59.
Chemenda, A. I., Yang, R. K., Stephan, J. F., Konstantinovskaya, E. A., Ivanov, G. M. (2001). New results from physical modelling of arc–continent collision in Taiwan: evolutionary model. Tectonophysics, 333(1-2), 159-178.
Chen, X., Shearer, P. M. (2011). Comprehensive analysis of earthquake source spectra and swarms in the Salton Trough, California. Journal of Geophysical Research: Solid Earth, 116(B9).
Cheng, W. B., Chang, C. H. (2016). Tomographic imaging of a seismic cluster in northern Taiwan and its implications for crustal fluid migration. Journal of Geodynamics, 101, 200-214.
Chiarabba, C., De Gori, P., Cattaneo, M., Spallarossa, D., and Segou, M. (2018). Faults Geometry and the Role of Fluids in the 2016-2017 Central Italy Seismic Sequence. Geophysical Research Letters. doi:10.1029/2018gl077485
Craw, D., Upton, P., Yu, B. S., Horton, T., Chen, Y. G. (2010). Young orogenic gold mineralisation in active collisional mountains, Taiwan. Mineralium Deposita, 45(7), 631-646.
Das, S., Scholz, C. H. (1981). Theory of time?dependent rupture in the Earth. Journal of Geophysical Research: Solid Earth, 86(B7), 6039-6051.
Davis, S. D., and Frohlich, C. (1991). Single-link cluster analysis of earthquake aftershocks: Decay laws and regional variations. Journal of Geophysical Research: Solid Earth, 96(B4), 6335-6350. doi:10.1029/90jb02634
Davis, S. D., Frohlich, C. (1991). Single-link cluster analysis, synthetic earthquake catalogues, and aftershock identification. Geophysical Journal International, 104(2), 289-306.
Dal Zilio, L., van Dinther, Y., Gerya, T. V., Pranger, C. C. (2018). Seismic behaviour of mountain belts controlled by plate convergence rate. Earth and Planetary Science Letters, 482, 81-92.
De Barros, L., Baques, M., Godano, M., Helmstetter, A., Deschamps, A., Larroque, C., Courboulex, F. (2019). Fluid?Induced Swarms and Coseismic Stress Transfer: A Dual Process Highlighted in the Aftershock Sequence of the 7 April 2014 Earthquake (Ml 4.8, Ubaye, France). Journal of Geophysical Research: Solid Earth, 124(4), 3918-3932.
Doglioni, C., Barba, S., Carminati, E., and Riguzzi, F. J. G. F. (2014). Fault on–off versus coseismic fluids reaction. 5(6), 767-780.
Doo, W. B., Hsu, S. K., Lo, C. L., Chen, S. C., Tsai, C. H., Lin, J. Y., . . . Ma, Y. F. (2015). Gravity anomalies of the active mud diapirs off southwest Taiwan. 203(3), 2089-2098.
Dodge, D. A., Beroza, G. C., Ellsworth, W. L. (1995). Foreshock sequence of the 1992 Landers, California, earthquake and its implications for earthquake nucleation. Journal of Geophysical Research: Solid Earth, 100(B6), 9865-9880.
Economides, M. J., and Nolte, K. G. (1989). Reservoir stimulation(Vol. 2). Englewood Cliffs, NJ: Prentice Hall.
Ellsworth W. L. (2013). Injection-induced earthquakes. Science, 341.
Ester, M., Kriegel, H. P., Sander, J., Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd (Vol. 96, No. 34, pp. 226-231).
Felzer, K. R., Brodsky, E. E. (2006). Decay of aftershock density with distance indicates triggering by dynamic stress. Nature, 441(7094), 735-738.
Frohlich, C. (2012), Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale, Texas: PNAS.
Gardner, J. K., Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?. Bulletin of the Seismological Society of America, 64(5), 1363-1367.
Goebel, T. H., Kwiatek, G., Becker, T. W., Brodsky, E. E., Dresen, G. (2017). What allows seismic events to grow big?: Insights from b-value and fault roughness analysis in laboratory stick-slip experiments. Geology, 45(9), 815-818.
Goldberg, D. E. (1989). Genetic algorithms in search. Optimization, and MachineLearning.
Gutenberg, B., Richter, C. F. (1956). Magnitude and Energy of Earthquakes. Annali di Geofisica, 9: 1–15.
Hardebeck, J. L., Nazareth, J. J., Hauksson, E. (1998). The static stress change triggering model: Constraints from two southern California aftershock sequences. Journal of Geophysical Research: Solid Earth, 103(B10), 24427-24437.
Healy, J. H., Rubey, W. W., Griggs, D. T., Raleigh, C. B. (1968). The denver earthquakes. Science, 161(3848), 1301-1310.
Helmstetter, A., and Sornette, D. (2002). Diffusion of epicenters of earthquake aftershocks, Omori’s law, and generalized continuous-time random walk models. 66(6), 061104.
Hill, D. P. (1977). A model for earthquake swarms. Journal of Geophysical Research, 82(8), 1347-1352.
Holland, A. A. (2013). Earthquakes triggered by hydraulic fracturing in south?central Oklahoma. 103(3), 1784-1792.
Horton, S. (2012). Disposal of hydrofracking waste fluid by injection into subsurface aquifers triggers earthquake swarm in central Arkansas with potential for damaging earthquake. Seismological Research Letters, 83(2), 250-260.
Hosseini, S. M., Goebel, T. H. W., Jha, B., and Aminzadeh, F. (2018). A Probabilistic Approach to Injection-Induced Seismicity Assessment in the Presence and Absence of Flow Boundaries. Geophysical Research Letters. doi:10.1029/2018gl077552
Huang, J., Turcotte, D. L. (1988). Fractal distributions of stress and strength and variations of b-value. Earth and Planetary Science Letters, 91(1-2), 223-230.
Huang, H. H., Shyu, J. B. H., Wu, Y. M., Chang, C. H., Chen, Y. G. (2012). Seismotectonics of northeastern Taiwan: kinematics of the transition from waning collision to subduction and postcollisional extension. Journal of Geophysical Research: Solid Earth, 117(B1).
Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., . . . Letters, P. S. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. 392, 177-191.
Huang, Y., Beroza, G. C. (2015). Temporal variation in the magnitude?frequency distribution during the Guy? Greenbrier earthquake sequence. Geophysical Research Letters, 42(16), 6639-6646.
Irwin, W. P., and Barnes, I. (1980). Tectonic relations of carbon dioxide discharges and earthquakes. 85(B6), 3115-3121.
Ingebritsen S. E., Manning C. E. (2002). Diffuse fluid flux through orogenic belts: implications for the world ocean. Proc. Natl. Acad. Sci. Unit. States Am., 99, 9,113-6.
Ingebritsen S. E., Manning C. E. (2010). Permeability of the continental crust: Dynamic variations inferred from seismicity and metamorphism. Geofluids, 10(1–2), 193–205.
Ingebritsen S. E. (2012), Modeling the Formation of Porphyry-Copper Ores. Science, 338 (6114), 1551-1552.
Jamtveit, B., Ben-Zion, Y., Renard, F., and Austrheim, H. J. N. (2018). Earthquake-induced transformation of the lower crust. 556(7702), 487.
Jones, L. M., Molnar, P. (1979). Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on faults. Journal of Geophysical Research: Solid Earth, 84(B7), 3596-3608.
Kennedy B. M., Soest M. C. (2007). Flow of mantle fluids through the ductile lower crust: Helium isotope trends. Science, 318, 1433-1436.
Kilb, D., Gomberg, J., Bodin, P. (2000). Triggering of earthquake aftershocks by dynamic stresses. Nature, 408(6812), 570-574.
King, G. C., Stein, R. S., Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935-953.
King Hubbert, M., Rubey, W. W. (1959). Role of fluid pressure in mechanics of overthrust faulting: I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geological Society of America Bulletin, 70(2), 115-166.
Kuo-Chen, H., Wu, F. T., and Roecker, S. W. (2012). Three?dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. 117(B6).
Langenbruch, C., Shapiro, S. A. (2010). Decay rate of fluid-induced seismicity after termination of reservoir stimulationspost injection seismicity. Geophysics, 75(6), MA53-MA62.
Lee, Y. H., Byrne, T., Wang, W. H., Lo, W., Rau, R. J., Lu, H. Y. (2015). Simultaneous mountain building in the Taiwan orogenic belt. Geology, 43(5), 451-454.
Lin, J. Y., Hsu, S. K., and Sibuet, J. C. (2004). Melting features along the western Ryukyu slab edge (northeast Taiwan): Tomographic evidence. 109(B12).
Lin, J. and Stein, R. S. (2004), Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J. Geophys. Res., 109, B02303, doi:10.1029/2003JB002607.
Lin, J. Y., Sibuet, J. C., Lee, C. S., Hsu, S. K., and Klingelhoefer, F. J. (2007). Origin of the southern Okinawa Trough volcanism from detailed seismic tomography. 112(B8).
Li, Z., Xu, Y., Hao, T., and Xu, Y. J. (2009). V p and V p/V s structures in the crust and upper mantle of the Taiwan region, China. 52(7), 975-983.
Langenbruch, C., and Shapiro, S. A. (2010). Decay rate of fluid-induced seismicity after termination of reservoir stimulationsPost injection seismicity. 75(6), MA53-MA62.
Lin S.H. (2014). A development of double-difference earthquake location program using three-dimensional velocity model and its application to the 2013 Ruisui, Taiwan, earthquake sequence. National Taiwan University Master Thesis, Department of Geosciences, 1-91.
Lin, J. Y., Hsu, S. K., Lin, A. T. S., Yeh, Y. C., and Lo, C. L. (2016). Vp/Vs distribution in the northern Taiwan area: Implications for the tectonic structures and rock property variations. 692, 181-190.
Lohman, R. B., and McGuire, J. J. (2007). Earthquake swarms driven by aseismic creep in the Salton Trough, California. Journal of Geophysical Research: Solid Earth, 112(B4).
Lombardi, A. M., Cocco, M., Marzocchi, W. (2010). On the increase of background seismicity rate during the 1997–1998 Umbria-Marche, Central Italy, sequence: apparent variation or fluid-driven triggering?. Bulletin of the Seismological Society of America, 100(3), 1138-1152.
Luen, B., Stark, P. B. (2012). Poisson tests of declustered catalogues. Geophysical journal international, 189(1), 691-700.
Marsan, D. (2008). Extending Earthquakes’ Reach Through Cascading. Science.
Ma K. F., Lin Y. Y., Lee S. J., Mori J., Brodsky E. E. (2012). Isotropic Events Observed with a Borehole Array in the Chelungpu Fault Zone, Taiwan. Science 337 (6093), 459-463.
Miller, S. A. (2013). The role of fluids in tectonic and earthquake processes. In Advances in Geophysics (Vol. 54, pp. 1-46): Elsevier.
Murotani, S., Satake, K., Fujii, Y. (2013). Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~ 9 subduction?zone earthquakes. Geophysical Research Letters, 40(19), 5070-5074.
Keranen, K. M., Weingarten, M., Abers, G. A., Bekins, B. A., Ge, S. (2014). Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science, 345(6195), 448-451.
McGarr, A. (2014). Maximum magnitude earthquakes induced by fluid injection. 119(2), 1008-1019.
Kilb, D., Gomberg, J., Bodin, P. (2000). Triggering of earthquake aftershocks by dynamic stresses. Nature, 408(6812), 570-574.
Moreno, M., Haberland, C., Oncken, O., Rietbrock, A., Angiboust, S., and Heidbach, O. J. N. G. (2014). Locking of the Chile subduction zone controlled by fluid pressure before the 2010 earthquake. 7(4), 292.
Mouthereau, F., Fillon, C., Ma, K. F. (2009). Distribution of strain rates in the Taiwan orogenic wedge. Earth and Planetary Science Letters, 284(3-4), 361-385.
Nava, F. A., Marquez-Ramirez, V. H., Zuniga, F. R., Lomnitz, C. (2017). Gutenberg–Richter b-value determination and large-magnitudes sampling. Natural Hazards, 87(1), 1-11.
Nishikawa, T., Ide, S. (2015). Background seismicity rate at subduction zones linked to slab?bending?related hydration. Geophysical Research Letters, 42(17), 7081-7089.
Nur, A., Byerlee, J. D. (1971). An exact effective stress law for elastic deformation of rock with fluids. 76(26), 6414-6419.
Omori, F. (1894). On the aftershocks of earthquakes. Journal of the College of Science, Imperial University of Tokyo. 7: 111–200.
Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes, J. Am. Stat. Assoc., 83, 9–27.
Ogata, Y. (1992). Detection of precursory relative quiescence before great earthquakes through a statistical model. Journal of Geophysical Research: Solid Earth, 97(B13), 19845-19871.
Obara, K. (2002). Nonvolcanic deep tremor associated with subduction in southwest Japan. 296(5573), 1679-1681.
Obara, K. (2011). Characteristics and interactions between non-volcanic tremor and related slow earthquakes in the Nankai subduction zone, southwest Japan. 52(3-4), 229-248.
Parotidis, M., Shapiro, S., and Rothert, E. J. G. R. L. (2004). Back front of seismicity induced after termination of borehole fluid injection. 31(2).
Peng, Z., and Chao, K. (2008). Non-volcanic tremor beneath the Central Range in Taiwan triggered by the 2001 M w 7.8 Kunlun earthquake. 175(2), 825-829.
Plumper, O. et al. (2017). Fluid-driven metamorphism of the continental crust governed by nanoscale fluid flow. Nature Geoscience, 10.
Reasenberg, P. (1985). Second?order moment of central California seismicity, 1969–1982. Journal of Geophysical Research: Solid Earth, 90(B7), 5479-5495.
Rogers, G., and Dragert, H. J. S. (2003). Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. 300(5627), 1942-1943.
Roland, E., McGuire, J. J. (2009). Earthquake swarms on transform faults. Geophysical Journal International, 178(3), 1677-1690.
Scholz, C. (2002). The mechanics of earthquakes and faulting , Second Ed., Cambridge University Press, Cambridge, U.K.
Secor D. T. (1965), Role of fluid pressure in jointing. Am. J. Sci., 263, 633-646.
Sibson, R. H. (1974). Frictional constraints on thrust, wrench and normal faults. Nature, 249(5457), 542-544.
Sibson, R. H. (1981). Fluid flow accompanying faulting: field evidence and models. 4, 593-603.
Simpson, D. W., Leith, W. (1985). The 1976 and 1984 Gazli, USSR, earthquakes—Were they induced? , 75(5), 1465-1468.
Segall, P. J. G. (1989). Earthquakes triggered by fluid extraction. 17(10), 942-946.
Shapiro, S. A. (1997). Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site.
Salazar, J., Perez, N., Hernandez, P., Soriano, T., Barahona, F., Olmos, R., . . . Letters, P. S. (2002). Precursory diffuse carbon dioxide degassing signature related to a 5.1 magnitude earthquake in El Salvador, Central America. 205(1-2), 81-89.
Sebastian, H. (2004). Seismicity patterns of earthquake swarms due to fluid intrusion and stress triggering. 159(3), 1090-1096.
Shapiro, S. A., Rentsch, S., and Rothert, E. (2005). Characterization of hydraulic properties of rocks using probability of fluid-induced microearthquakes. 70(2), F27-F33.
Shapiro, S. A., and Dinske, C. (2009). Fluid-induced seismicity: Pressure diffusion and hydraulic fracturing. Geophysical Prospecting, 57(2), 301-310. doi:10.1111/j.1365-2478.2008.00770.x
Shelly, D. R., Hardebeck, J. L., Ellsworth, W. L., Hill, D. P. (2016). A new strategy for earthquake focal mechanisms using waveform?correlation?derived relative polarities and cluster analysis: Application to the 2014 Long Valley Caldera earthquake swarm. Journal of Geophysical Research: Solid Earth, 121(12), 8622-8641.
Shyu, J. B. H., Chen, C. F., Wu, Y. M. (2016). Seismotectonic characteristics of the northernmost Longitudinal Valley, eastern Taiwan: Structural development of a vanishing suture. Tectonophysics, 692, 295-308.
Svensen, H., and Jamtveit, B. J. E. (2010). Metamorphic fluids and global environmental changes. 6(3), 179-182.
Skoumal, R. J., Brudzinski, M. R., and Currie, B. S. (2015). Earthquakes induced by hydraulic fracturing in Poland Township, Ohio. 105(1), 189-197.
Stein, R. S. (1999). The role of stress transfer in earthquake occurrence. Nature, 402(6762), 605-609.
Sun, S. C. (1981). The Tertiary basins of offshore Taiwan. In Proc. of the Second ASCOPE Conference and Exhibition (pp. 125-135).
Suppe, J. (1984). Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan.
Teng, L. S. (1996). Extensional collapse of the northern Taiwan mountain belt. Geology, 24(10), 949-952.
Toda S. , Stein R. S., Reasenberg P. A., and J. H. Dieterich, Stress transferred by the Mw=6.5 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities. J. Geophys. Res., 103, 24,543-24,565 (1998).
Talwani, P., Chen, L., and Gahalaut, K. (2007). Seismogenic permeability,ks. Journal of Geophysical Research, 112(B7). doi:10.1029/2006jb004665
Tang, C. C., Peng, Z., Chao, K., Chen, C. H., and Lin, C. H. (2010). Detecting low?frequency earthquakes within non?volcanic tremor in southern Taiwan triggered by the 2005 Mw8. 6 Nias earthquake. 37(16).
Teng, G., Baker, J. W. (2019). Seismicity Declustering and Hazard Analysis of the Oklahoma–Kansas Region. Bulletin of the Seismological Society of America, 109(6), 2356-2366.
Tsai, Y. B. (1986). Seismotectonics of Taiwan. Tectonophysics, 125(1-3), 17-37.
Utsu, T. (1961). A statistical study on the occurrence of aftershocks. 30, 521-605.
Utsu, T. (1965). A method for determining the value of' b' in a formula log n= a-bm showing the magnitude-frequency relation for earthquakes. Geophys. Bull. Hokkaido Univ., 13, 99-103.
Utsu, T. (2002). Statistical features of seismicity. International geophysics series, 81(A), 719-732.
Upton, P., Craw, D. (2014). Extension and gold mineralisation in the hanging walls of active convergent continental shear zones. Journal of Structural Geology, 64, 135-148.
Waldhauser, F., and Ellsworth, W. (2000). A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. 90(6), 1353-1368.
Wang, J. H. (1988). b values of shallow earthquakes in Taiwan. Bulletin of the Seismological Society of America, 78(3), 1243-1254.
Wang, X. Q., Schubnel, A., Fortin, J., David, E. C., Gueguen, Y., Ge, H. K. (2012). High Vp/Vs ratio: Saturated cracks or anisotropy effects?. Geophysical Research Letters, 39(11).
Wang, J. P., Huang, D., Chang, S. C., Wu, Y. M. (2014). New evidence and perspective to the Poisson process and earthquake temporal distribution from 55,000 events around Taiwan since 1900. Natural Hazards Review, 15(1), 38-47.
Wiemer, S. Wyss, M., 2000. Minimum magnitude of completeness in earthquake catalogs: Example from Alaska, the western US and Japan, Bull. Seismol. Soc. Am., 90, 859-869.
Wen, K. L., Wu, T. H., Huang, M. W., Chang, C. L., Liu, S. Y., Wu, B. R. (2014). Taiwan Earthquake Occurrence Probability Estimation from Regional Source Model Since 1900. Terrestrial, Atmospheric Oceanic Sciences, 25(3).
Wu, F. T., Rau, R. J. (1998). Seismotectonics and identification of potential seismic source zones in Taiwan. Terr. Atmos. Oceanic Sci, 9(4), 739-754.
Wu, Y. M. and Ling-Yun Chiao (2006). Seismic Quiescence before the 1999 Chi-Chi, Taiwan, Mw 7.6 Earthquake. Bulletin of the Seismological Society of America, 96(1), 321-327. doi:10.1785/0120050069
Wu, Y. M., Chang, C. H., Zhao, L., Shyu, J. B. H., Chen, Y. G., Sieh, K., and Avouac, J. P. (2007). Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations. 112(B8).
Wu, Y.M., Zhao L., Chang, C. H., and Hsu, Y. J. (2008), Focal-Mechanism Determination in Taiwan by Genetic Algorithm. Bull. Seismol. Soc. Am., 98, 2, 651-661.
Yamashita, T., Knopoff, L. (1989). A model of foreshock occurrence. Geophysical Journal International, 96(3), 389-399.
Yamashita, T., Knopoff, L. (1992). Model for intermediate-term precursory clustering of earthquakes. Journal of Geophysical Research: Solid Earth, 97(B13), 19873-19879.
Yu, S. B., Kuo, L. C., Punongbayan, R. S., Ramos, E. G. (1999). GPS observation of crustal deformation in the Taiwan?Luzon region. Geophysical Research Letters, 26(7), 923-926.
Zaliapin, I., Gabrielov, A., Keilis-Borok, V., Wong, H. (2008). Clustering analysis of seismicity and aftershock identification. Physical review letters, 101(1), 018501.
Zaliapin, I., and Ben-Zion, Y. (2013a). Earthquake clusters in southern California I: Identification and stability. Journal of Geophysical Research: Solid Earth, 118(6), 2847-2864. doi:10.1002/jgrb.50179
Zaliapin, I., and Ben-Zion, Y. (2013b). Earthquake clusters in southern California II: Classification and relation to physical properties of the crust. Journal of Geophysical Research: Solid Earth, 118(6), 2865-2877. doi:10.1002/jgrb.50178
Zaliapin, I., Ben-Zion, Y. (2016). A global classification and characterization of earthquake clusters. Geophysical Journal International, 207(1), 608-634.
Zhang Q. and Shearer P. M. (2015). A new method to identify earthquake swarms applied to seismicity near the San Jacinto Fault, California, Geophys. J. Int. (2016) 205, 995–1005.
陳肇夏、王京新 (1995),臺灣變質相圖說明第二版,地質調查所。
張立承 (2008),台灣地區淺層地震b值特性分析,國立成功大學地球科學系碩士論文,1-71。
陳奕敦 (2012),台灣南部中央山脈之突發性孤立地震群特性探討. 成功大學地球科學系學位論文, 1-151。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54605-
dc.description.abstract地震序列的時空分佈可以提供斷層構造的三維空間型態、應力移轉和可能引發機制等資訊。台灣位於年輕的造山帶上,擁有高度地殼變形率和活躍的地震發生率,因此探討不同地質區中的地震引發機制和活動構造特性對於台灣地區的防災是非常重要的議題。為了探討台灣地區地震序列的活動特性,本研究選用了1990年一月到2018年六月中央氣象局的地震事件,並且利用最近鄰居去叢集方法(Nearest Neighbor Approach)來將所有地震事件區分為背景地震和地震序列。和其他常見的地震去叢集方法相比,最近鄰居去叢集方法保留較多地震事件以符合時間分佈的隨機性,是較適用於台灣地區的去叢集方法。而根據地震序列中的前震活動特性,本研究進一步將地震序列區分為主餘震序列和群震。主餘震序列大多分佈在西部麓山帶附近,而群震則多分布在中央山脈南北段和花蓮北部。從液壓擴散模型、金礦礦脈和溫泉分佈來看,中央山脈南北段的某些群震可能為液壓擴散所引發。此外,中央山脈北段的群震的水力擴散係數大多低於中央山脈南段,可能是和台灣由北而南的造山階段有關,或是受到地殼伸張率影響。zh_TW
dc.description.abstractSpatiotemporal characteristics of earthquake clusters can give insights into 3-D geometry and stress/strain state of fault structures, and potential interaction with fluid and heat. Taiwan is one of the most active orogenic belts with high deformation and seismicity rates. It is expected to observe seismicity driven by varying mechanisms among different geological units. To investigate the tectonic complexity, a high-quality and robust catalog of earthquake clusters is critical. This study collected a long-term-effort earthquake catalog from the Central Weather Bureau from 1990/01 to 2018/06. Based on a statistics-based Nearest Neighbor Approach (NNA), we declustered the entire relocated catalog and produced independent (declustered) and earthquake cluster catalogs. In comparison with other declustering methods, the NNA-derived catalog shows better Poisson process characteristics and remains more events. Based on the foreshock activities, the earthquake clusters can be separated into the typical mainshock-aftershock sequences and the swarms. Most of the mainshock-aftershock sequences are distributed near the Western Foothill. As for the swarms, they are usually distributed in the northern and southern Central Range and northern Hualien regions and some of them may be induced by fluid diffusion. In addition, the hydraulic diffusivity of swarms in the southern Central Range is larger than that in the northern Central Range, which may be resulted from the different orogeny stages from north to south in Taiwan regions.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:07:18Z (GMT). No. of bitstreams: 1
U0001-0308202001200600.pdf: 10065564 bytes, checksum: 3f5cf31ca33afe4da151d7db664787f4 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsAcknowledgment ii
摘要 iii
Abstract iv
Table of Contents v
List of Figures viii
List of Tables xii
Chapter 1 Introduction 1
1.1 Introduction of Earthquake Clusters 1
1.2 Earthquake Declustering and Earthquake Cluster Analysis 1
1.3 Earthquake Cluster Analysis in Taiwan 2
1.4 Purposes 3
Chapter 2 Literature Reviews 4
2.1 Earthquake Cluster Analysis and Earthquake Declustering 4
2.2. Forms of Earthquake Clusters 6
2.2.1 Mainshock-aftershock Sequences (M-A Sequences) 6
2.2.2 Swarms 10
2.3 Seismicity Characteristics in Different Geological units in Taiwan 15
2.3.1 Seismotectonics in Taiwan 15
2.3.2 Gutenberg–Richter b-value 17
2.3.3 Velocity Structures in Taiwan 18
Chapter 3 Data and Methods 22
3.1 Data Selection 22
3.2 Procedure 22
3.3 Defining Dependent Seismicity and Independent Seismicity 24
3.3.1 Gardner and Knopoff (G-K) 24
3.3.2 Epidemic-type Aftershock Sequence (ETAS) model 25
3.3.3 Double-link analysis 27
3.3.4 Nearest-neighbor Approach (NNA) 28
3.4 Poisson Process Test of Independent Seismicity 31
3.5 Earthquake relocation 31
3.5.1 Double-difference Location Algorithm 32
3.5.2 Double-difference Earthquake Relocation with 3D Velocity Model 33
3.6 Density-based Spatial Clustering of Applications with Noise (DBSCAN) 34
3.7 Classification of earthquake clusters 36
3.8 Geometry of Earthquake Clusters 36
3.8.1 Planarity 36
3.8.2 b-value Estimation 37
3.9 Spatiotemporal Migration of Earthquake Clusters 38
Chapter 4 Results 41
4.1 Comparisons of Four Declustering Methods 41
4.1.1 Dependent Seismicity Catalogs 41
4.1.2 Independent Seismicity (Declustered Seismicity) Catalogs 44
4.2 Seismicity Characteristics in Taiwan 49
4.2.1 Distribution of Independent Seismicity and Dependent Seismicity 49
4.2.2 Classification of Earthquake Clusters in Taiwan 51
4.2.3 Foreshock Characteristics of Two Types of Earthquake Clusters 54
4.2.4 Geometry Structure of Earthquake Clusters 56
4.2.5 Spatiotemporal Migration of Earthquake Clusters 62
Chapter 5 Discussions 67
5.1 Different Forms of Earthquake Clusters 67
5.1.1 Spatial Distribution and Focal Mechanisms 67
5.1.2 Asperity Sizes 69
5.2 M-A Sequences 69
5.2.1 Fault Geometry 69
5.2.2 b-Values 70
5.3 Swarms 70
5.3.1 Geometry 70
5.3.2 b-Values 71
5.3.3 Diffusivity of Swarms 72
5.3.4 Swarms in the Central Range 72
5.3.5 Swarms in the Northern Hualien 80
5.4 Seismicity Characteristics Derived from NNA in Taiwan 83
5.4.1 NNA Distributions of Independent Seismicity and Dependent Seismicity in Taiwan 83
5.4.2 Distributions of Rescaled time and Rescaled Spatial Distance in Taiwan 84
Chapter 6 Conclusions 86
Reference 87
Appendix A: Forms of Earthquake Clusters 100
Appendix B: Examples of M-A Sequences 116
Appendix C: Examples of Swarms 118
dc.language.isoen
dc.subject地震去叢集zh_TW
dc.subject偏度zh_TW
dc.subject液壓擴散zh_TW
dc.subject背景地震zh_TW
dc.subject造山帶zh_TW
dc.subject地震去叢集zh_TW
dc.subject偏度zh_TW
dc.subject液壓擴散zh_TW
dc.subject背景地震zh_TW
dc.subject造山帶zh_TW
dc.subjectbackground seismicityen
dc.subjectskewnessen
dc.subjectskewnessen
dc.subjectdeclusteringen
dc.subjectorogenic beltsen
dc.subjectbackground seismicityen
dc.subjectdeclusteringen
dc.subjectorogenic beltsen
dc.subjectfluid diffusionen
dc.subjectfluid diffusionen
dc.title利用最近鄰居去叢集方法探索台灣地區地震序列特性zh_TW
dc.titleEarthquake Cluster Analysis with Nearest Neighbor Approach in Taiwan
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor莊昀叡(Ray Y. Chuang)
dc.contributor.oralexamcommittee葉恩肇(En-Chao Yeh),陳卉瑄(Kate Huihsuan Chen),陳建志(Chien-Chih Chen)
dc.subject.keyword地震去叢集,造山帶,背景地震,液壓擴散,偏度,zh_TW
dc.subject.keyworddeclustering,orogenic belts,background seismicity,fluid diffusion,skewness,en
dc.relation.page120
dc.identifier.doi10.6342/NTU202002243
dc.rights.note有償授權
dc.date.accepted2020-08-11
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地理環境資源學研究所zh_TW
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
U0001-0308202001200600.pdf
  未授權公開取用
9.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved