Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54594
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松(Chao-Sung Lin)
dc.contributor.authorYi-Chen Tsaien
dc.contributor.author蔡易宸zh_TW
dc.date.accessioned2021-06-16T03:06:35Z-
dc.date.available2025-08-06
dc.date.copyright2020-08-25
dc.date.issued2020
dc.date.submitted2020-08-06
dc.identifier.citation[1] '中鋼熱軋產品介紹.' [Online]. Available: https://www.csc.com.tw/csc/pd/inta/inta.html#.
[2] '中鋼熱軋鋼捲內銷價格.' [Online]. Available: https://ww2.money-link.com.tw/Futures/materials.aspx? pu=0052 optionType=5 option=8#SubMain.
[3] D. Melford, 'The influence of residual and trace elements on hot shortness and high temperature embrittlement,' Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 295, no. 1413, pp. 89-103, 1980.
[4] N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the high temperature oxidation of metals. Cambridge University Press, 2006.
[5] '中鋼熱軋產品製造流程.' [Online]. Available: https://www.csc.com.tw/csc/pd/prs.htm.
[6] 河靜鋼鐵冶金技術部, '台塑河靜鋼鐵場熱軋鋼材製造流程簡介.' [Online]. Available: http://www2.fpg.com.tw/html/mgz/Mgz_epaper/135/44-5P4-11.pdf.
[7] R. M. Cornell and U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences and uses. John Wiley Sons, 2003.
[8] H. Wriedt, 'The Fe-O (iron-oxygen) system,' Journal of phase equilibria, vol. 12, no. 2, pp. 170-200, 1991.
[9] E. R. Jette and F. Foote, 'An X‐Ray Study of the Wüstite (FeO) Solid Solutions,' The Journal of Chemical Physics, vol. 1, no. 1, pp. 29-36, 1933.
[10] G. RW, 'Wyckoff,' Crystal Structures,'', ed: Interscience Publishers, NY, 1963.
[11] R. Chen and W. Yuen, 'Oxide-scale structures formed on commercial hot-rolled steel strip and their formation mechanisms,' Oxidation of metals, vol. 56, no. 1-2, pp. 89-118, 2001.
[12] R. Chen and W. Yeun, 'Review of the high-temperature oxidation of iron and carbon steels in air or oxygen,' Oxidation of metals, vol. 59, no. 5-6, pp. 433-468, 2003.
[13] H. Abuluwefa, R. Guthrie, J. Root, and F. Ajersch, 'Real-time observations of the oxidation of mild steel at high temperature by neutron diffraction,' Metallurgical and Materials Transactions B, vol. 27, no. 6, pp. 993-997, 1996.
[14] P. Harkins, 'Dissolution of iron oxide under potential control,' Loughborough University, 1984.
[15] J. Baud, A. Ferrier, and J. Manenc, 'Study of magnetite film formation at metal-scale interface during cooling of steel products,' Oxidation of metals, vol. 12, no. 4, pp. 331-342, 1978.
[16] X. L. Yu, Z. Y. Jiang, D. J. Yang, D. B. Wei, and Q. Yang, 'Precipitation behavior of magnetite in oxide scale during cooling of microalloyed low carbon steel,' in Advanced Materials Research, 2012, vol. 572: Trans Tech Publ, pp. 249-254.
[17] G. B. H. Bolt, X. Cornet, S. Ehlers, F. Friedel and F. Steinert:, 'Investigation of the Formation, Constitution and Properties of Scale Formed during the Finishing Rolling, Cooling and Coiling of Thin Hot Strips,' ECSC Research Project 721O.PR/153, Draft Final Report, 2003.
[18] P. H. Bolt, 'Understanding the properties of oxide scales on hot rolled steel strip,' Steel research international, vol. 75, no. 6, pp. 399-404, 2004.
[19] J. Ahlström, J. Tidblad, L. Tang, B. Sederholm, and S. Leijonmarck, 'Electrochemical Properties of Oxide Scale on Steel Exposed in Saturated Calcium Hydroxide Solutions with or without Chlorides,' International Journal of Corrosion, vol. 2018, 2018.
[20] D. R. Gaskell and D. E. Laughlin, Introduction to the Thermodynamics of Materials. CRC press, 2017.
[21] H. Von Baumbach and C. Wagner, 'Electrical conductivity of zinc oxide and cadmium oxide,' Z. physic. Chem, vol. 22, p. 199, 1933.
[22] C. Wagner, 'On the theory of scaling reactions,' Z. Phys. Chem. B, vol. 21, pp. 25-42, 1933.
[23] H.-b. Wu, D. Wang, P.-c. Zhang, J.-m. Liang, S. Liu, and D. Tang, 'Influences of alloying elements on oxidation behavior of steels and microstructure of oxide scales,' Journal of Iron and Steel Research International, vol. 23, no. 3, pp. 231-237, 2016.
[24] C.-C. Shih, M.-T. Wu, C.-C. Huang, W.-S. Hwang, and J.-C. Kuo, 'Formation of Black Striped Oxide Scale on Hot-Rolled Si-Containing Carbon Steel,' Materials transactions, p. M2018060, 2018.
[25] M. Davies, M. Simnad, and C. Birchenall, 'On the mechanism and kinetics of the scaling of iron,' Jom, vol. 3, no. 10, pp. 889-896, 1951.
[26] T. Adachi and G. Meier, 'Oxidation of iron-silicon alloys,' Oxidation of metals, vol. 27, no. 5-6, pp. 347-366, 1987.
[27] O. Kubaschewski and B. E. Hopkins, 'Oxidation of metals and alloys,' 1953.
[28] C.-W. Yang, S.-M. Cho, Y.-H. Kang, J.-S. Lee, and J.-W. Park, 'The effect of alloy compositions on the microstructure and the mechanical strength of oxide scales on four selected steels,' Materials Science and Engineering: A, vol. 556, pp. 246-252, 2012.
[29] J. Von Fraunhofer and G. Pickup, 'The oxidation behaviour of low alloy steels—Part 2,' Anti-Corrosion Methods and Materials, 1970.
[30] Y. Kondo, 'Behaviour of copper and nickel during high temperature oxidation of steel containing them,' in Materials science forum, 2006, vol. 522: Trans Tech Publ, pp. 53-60.
[31] B. Webler, L. Yin, and S. Sridhar, 'Effects of small additions of copper and copper+ nickel on the oxidation behavior of iron,' Metallurgical and Materials Transactions B, vol. 39, no. 5, p. 725, 2008.
[32] C.-C. Hsieh and W. Wu, 'Overview of intermetallic sigma (ùúé) phase precipitation in stainless steels,' Isrn Metallurgy, vol. 2012, 2012.
[33] P. Wood, H. Evans, and C. Ponton, 'Investigation into the wear behaviour of Stellite 6 during rotation as an unlubricated bearing at 600 C,' Tribology international, vol. 44, no. 12, pp. 1589-1597, 2011.
[34] 杨才福, 苏航, 李丽, and 张永权, '加热工艺对含铜钢表面氧化的影响,' 2007.
[35] B. A. Webler and S. Sridhar, 'Evolution and Distribution of the Copper-rich Phase during Oxidation of an Iron–0.3 wt% Copper Alloy at 1150° C,' ISIJ international, vol. 48, no. 10, pp. 1345-1353, 2008.
[36] P. Perrot, S. Arnout, and J. Vrestal, 'Copper–Iron–Oxygen,' in Ternary Alloy Systems: Springer, 2008, pp. 509-539.
[37] Y. N. Chang and F. I. Wei, 'High temperature oxidation of low alloy steels,' Journal of materials science, vol. 24, no. 1, pp. 14-22, 1989.
[38] S. Hayashi et al., 'The effect of S and Mn on the high-temperature oxidation and scale spallation behavior of low-carbon steels,' ISIJ international, vol. 49, no. 12, pp. 1938-1944, 2009.
[39] T. Smith, 'Low Alloy Steels to Resist Oxidation,' Steel times, vol. 210, no. 6, pp. 339-341, 1982.
[40] V. V. Basabe and J. A. Szpunar, 'Growth rate and phase composition of oxide scales during hot rolling of low carbon steel,' ISIJ international, vol. 44, no. 9, pp. 1554-1559, 2004.
[41] H. Abuluwefa, R. Guthrie, and F. Ajersch, 'The effect of oxygen concentration on the oxidation of low-carbon steel in the temperature range 1000 to 1250 C,' Oxidation of Metals, vol. 46, no. 5-6, pp. 423-440, 1996.
[42] K. Sachs and C. Tuck, 'Surface oxidation of steel in industrial furnaces,' 1968.
[43] C. Tuck, M. Odgers, and K. Sachs, 'The oxidation of iron at 950 C in oxygen/water vapour mixtures,' Corrosion Science, vol. 9, no. 4, pp. 271-285, 1969.
[44] P. Hancock and R. Hurst, 'The mechanical properties and breakdown of surface oxide films at elevated temperatures,' in Advances in corrosion science and technology: Springer, 1974, pp. 1-84.
[45] R. Higginson, M. Jepson, and G. West, 'Use of EBSD to characterise high temperature oxides formed on low alloy and stainless steels,' Materials science and technology, vol. 22, no. 11, pp. 1325-1332, 2006.
[46] J.-Y. Kang et al., 'Phase analysis of steels by grain-averaged EBSD functions,' ISIJ international, vol. 51, no. 1, pp. 130-136, 2011.
[47] 杜正恭, 王凱正, and 蔡淑月, '電子微探儀,' 科儀新知, no. 170, pp. 69-76, 2009.
[48] N. Otsuka et al., 'In-situ measurements of isothermal wüstite transformation of thermally grown FeO scale formed on 0.048 mass% Fe by synchrotron radiation in air,' ISIJ international, vol. 53, no. 2, pp. 286-293, 2013.
[49] H. Utsunomiya, S. Doi, K.-i. Hara, T. Sakai, and S. Yanagi, 'Deformation of oxide scale on steel surface during hot rolling,' CIRP annals, vol. 58, no. 1, pp. 271-274, 2009.
[50] X. Yu and J. Zhou, 'Grain Boundary in Oxide Scale During High-Temperature Metal Processing,' Study of Grain Boundary Character, p. 59, 2017.
[51] J.-H. Kim, D.-I. Kim, J.-H. Shim, and K.-W. Yi, 'Investigation into the high temperature oxidation of Cu-bearing austenitic stainless steel using simultaneous electron backscatter diffraction-energy dispersive spectroscopy analysis,' Corrosion science, vol. 77, pp. 397-402, 2013.
[52] L. Xiao, X. Li, and X. Yang, 'Electronic and optical properties of Fe 2 SiO 4 under pressure effect: ab initio study,' The European Physical Journal B, vol. 91, no. 5, pp. 1-7, 2018.
[53] O. Kubaschewski, Iron—Binary phase diagrams. Springer Science Business Media, 2013.
[54] H. Okamoto and T. Massalski, 'Binary alloy phase diagrams,' ASM International, Materials Park, OH, USA, 1990.
[55] L. Messina, M. Nastar, T. Garnier, C. Domain, and P. Olsson, 'Exact ab initio transport coefficients in bcc Fe− X (X= Cr, Cu, Mn, Ni, P, Si) dilute alloys,' Physical Review B, vol. 90, no. 10, p. 104203, 2014.
[56] E. Clementi, D. Raimondi, and W. Reinhardt, 'Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons,' The Journal of chemical physics, vol. 47, no. 4, pp. 1300-1307, 1967.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54594-
dc.description.abstract鋼鐵材料因為優異機械性質與較低製造成本是最常用的金屬材料,熱軋延是將鋼錠輥軋成鋼板的唯一加工製程,在此嚴苛環境下(1050 ~ 1280 ºC持溫1~2小時均質化處理)會導致鋼板嚴重氧化,除了影響材料利用效率外,後續冷軋的氧化層去除也是製程重點。低碳鋼中的Si、Cr作為去氧化劑、抗腐蝕元素而刻意添加,Cu則固溶於基材作為後續奈米Cu析出所需,然而在高溫環境下液體Cu傾向於表面、晶界析出,熱軋過程中可能造成熱脆(Hot Shortness)問題。
本研究探討低碳鋼中Si、Cr和Cu對熱軋氧化層形成的影響,取六種Si、Cr、Cu含量不同的熱軋試片進行微結構分析後,對同樣六種試片做高溫氧化實驗。熱軋試片從再熱(1230 ºC持溫2小時)開始,緊接著為粗軋、精軋與盤捲步驟,取最後盤捲鋼板做OM、SEM、EDS、EBSD、EPMA等為結構分析;高溫氧化則取精軋前的溫度1150 ºC持溫1分鐘並爐冷降溫,升降溫過程皆保持於氬氣環境防止升降溫過程的氧化層生成。接著以OM、SEM、EDS、EBSD、EPMA、TEM等儀器探討氧化層微結構及高溫狀態下的析出機制。結果顯示,Si、Cr、Cu於界面處析出會降低氧化層厚度,Si、Cr與Fe0.95O形成的Fayalite、Chromite會增加氧化層於底材的附著性。含Cu量0.1 wt%的試片,Cu會在底材/氧化層界面處連續分佈,含Cu量0.3 wt%的試片則不止於界面處析出,在底材晶界也有以奈米Cu析出的現象。在同時含Si、Cr、Cu的試片中,Cu則作顆粒狀散亂分佈於Fayalite、Chromite所形成的次氧化層中,推測Si、Cr在高溫氧化中可以改善液體Cu所造成的熱脆現象。
zh_TW
dc.description.abstractCarbon steel is the most commonly used material nowadays because of its superior mechanical properties and low cost. Hot rolling is the only way to process a billet steel to steel plate. Under harsh conditions, such as homogenization at 1050 ºC ~ 1280 ºC for 1 ~ 2 h, the steel plate tends to suffer severe oxidation, which not only reduces the utilization efficiency of material, but also impacts on the following deoxidizing process before cold rolling. For low carbon steel, Si and Cr are added as deoxidizing agent and anti-corrosion elements. Cu, on the other hand, is added for the subsequent precipitation of Cu nano particles. However, under high temperature conditions, liquid Cu tends to precipitate at the surface and grain boundaries, which may lead to hot shortness during the hot rolling process.
This research studied the effect of Si, Cr and Cu on oxide scale formation during hot rolling. Six as-received hot rolling specimens with different concentrations of Si, Cr and Cu were employed through high temperature oxidation experiment. The hot rolling process begins with reheating process, which is held at 1230 ºC for 2 h, followed by rough rolling, finish rolling, and coiling. The final coiling steel plates were characterized using OM, SEM, EDS, EBSD, EPMA. The high temperature oxidation experiment is conducted at 1150 ºC for 1 min, followed by cooling to room temperature in furnace. The atmosphere of oxidation experiment is kept in Ar to prevent from forming scale during heating and cooling processes. The various steel samples after high temperature oxidation were characterized using OM, SEM/EDS, EBSD, EPMA, and TEM to gain better understanding on the scale microstructure and precipitation mechanism. Experimental results show that Si, Cr, Cu precipitating at the interface tend to reduce the scale thickness. Moreover, Si and Cr react with FeO to form Fayalite and Chromite structure, which strengthens the adhesion between the scale and the steel substrate. For the sample with 0.1 wt% Cu, Cu precipitates at the interface as a continuous layer. For the sample with 0.3 wt% Cu, Cu precipitates not only at the interface but also at the grain boundaries of steel as Cu nano particles. In the presence of Si, Cr and Cu, Cu particles form and disperses into the subscale composed of Fayalite and Chromite. It is thus inferred that during high temperature oxidation, Si and Cr ameliorate hot shortness caused by liquid Cu.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:06:35Z (GMT). No. of bitstreams: 1
U0001-0308202002082100.pdf: 72304327 bytes, checksum: 863e72efc7b91fdc0f5b35ba00494ca1 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 viii
表目錄 xii
第1章 前言 1
第2章 文獻回顧 3
2.1 熱軋產品 3
2.2 熱軋製程 4
2.3 高溫氧化之氧化層種類 5
2.3.1 Wüstite(Fe1-xO) 7
2.3.2 Magnetite(Fe3O4) 8
2.3.3 Hematite(Fe2O3) 9
2.4 氧化熱力學 10
2.5 氧化機制 12
2.5.1 n-type氧化層 13
2.5.2 p-type氧化層 15
2.5.3 合金元素對缺陷產生機制的影響 16
2.6 氧化動力學 16
2.6.1 直線規律 17
2.6.2 拋物線規律 18
2.6.3 對數規律 19
2.7 合金元素 19
2.8 溫度、時間、氧化氣氛 26
2.8.1 溫度 26
2.8.2 時間 27
2.8.3 氧化氣氛 29
2.9 幾何因素 30
第3章 實驗方法 33
3.1 熱軋試片分析 34
3.2 高溫氧化實驗 34
3.3 橫截面試片製備 35
3.4 高溫氧化實驗困難 36
3.5 微結構觀察與實驗分析 39
3.5.1 光學顯微鏡 39
3.5.2 掃描式電子顯微鏡 39
3.5.3 聚焦離子束與電子束顯微系統 39
3.5.4 穿透式電子顯微鏡 40
3.5.5 電子微探儀 40
第4章 結果與討論 41
4.1 熱軋試片分析 41
4.1.1 OM、SEM橫截面觀測 41
4.1.2 EBSD氧化層相鑑定 45
4.1.3 EPMA氧化層元素分佈分析 53
4.2 高溫氧化試片分析 56
4.2.1 OM、SEM橫截面觀測 56
4.2.2 EBSD氧化層相鑑定 62
4.2.3 TEM觀測、繞射圖形相鑑定 70
4.2.4 EPMA表面元素分佈分析 81
4.3 析出機制 83
第5章 結論 88
第6章 未來展望 89
參考文獻 90
dc.language.isozh-TW
dc.subject低碳鋼zh_TW
dc.subject附著性zh_TW
dc.subject熱脆zh_TW
dc.subject低碳鋼zh_TW
dc.subject合金元素zh_TW
dc.subject高溫氧化zh_TW
dc.subject附著性zh_TW
dc.subject高溫氧化zh_TW
dc.subject合金元素zh_TW
dc.subject熱脆zh_TW
dc.subjecthigh temperature oxidationen
dc.subjectadhesionen
dc.subjectalloying elementsen
dc.subjectadhesionen
dc.subjecthigh temperature oxidationen
dc.subjectalloying elementsen
dc.subjectlow carbon steelen
dc.subjecthot shortnessen
dc.subjectlow carbon steelen
dc.subjecthot shortnessen
dc.title合金元素矽鉻銅對低碳鋼高溫氧化的影響zh_TW
dc.titleThe Effect of Alloying Elements Si, Cr, Cu on High Temperature Oxidation of Low Carbon Steelen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡文達,汪俊延,葛明德,林景崎
dc.subject.keyword高溫氧化,合金元素,低碳鋼,熱脆,附著性,zh_TW
dc.subject.keywordhigh temperature oxidation,alloying elements,low carbon steel,hot shortness,adhesion,en
dc.relation.page93
dc.identifier.doi10.6342/NTU202002245
dc.rights.note有償授權
dc.date.accepted2020-08-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-0308202002082100.pdf
  未授權公開取用
70.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved