請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54583
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳振中(Chun-Chung Chan) | |
dc.contributor.author | Yi-Shan Wu | en |
dc.contributor.author | 吳宜珊 | zh_TW |
dc.date.accessioned | 2021-06-16T03:05:52Z | - |
dc.date.available | 2020-08-04 | |
dc.date.copyright | 2020-08-04 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-03 | |
dc.identifier.citation | (1) Rudolf Virchow. Wikipedia; 2020 https://en.wikipedia.org/wiki/Rudolf_Virchow. (2) Kyle, R. A. Amyloidosis: A Convoluted Story. Br J Haematol 2001, 114, 529–538. https://doi.org/10.1046/j.1365-2141.2001.02999.x. (3) Chuang, E.; Hori, A. M.; Hesketh, C. D.; Shorter, J. Amyloid Assembly and Disassembly. J Cell Sci 2018, 131. https://doi.org/10.1242/jcs.189928. (4) Pathology Outlines - Renal amyloidosis https://www.pathologyoutlines.com/topic/kidneyamyloidosis.html. (5) Our Science http://www.proclarabio.com/our-science. (6) Greenwald, J.; Riek, R. Biology of Amyloid: Structure, Function, and Regulation. Structure 2010, 18, 1244–1260. https://doi.org/10.1016/j.str.2010.08.009. (7) Hippius, H.; Neundörfer, G. The Discovery of Alzheimer’s Disease. Dialogues Clin Neurosci 2003, 5, 101–108. (8) 關於失智症-認識失智症 http://www.tada2002.org.tw/About/IsntDementia. (9) Drew, L. An Age-Old Story of Dementia. Nature 2018, 559, S2–S3. https://doi.org/10.1038/d41586-018-05718-5. (10) The molecular pathology of Alzheimer’s disease. - PubMed - NCBI https://www.ncbi.nlm.nih.gov/pubmed/22284730. (11) Kang, J.; Lemaire, H. G.; Unterbeck, A.; Salbaum, J. M.; Masters, C. L.; Grzeschik, K. H.; Multhaup, G.; Beyreuther, K.; Müller-Hill, B. The Precursor of Alzheimer’s Disease Amyloid A4 Protein Resembles a Cell-Surface Receptor. Nature 1987, 325, 733–736. https://doi.org/10.1038/325733a0. (12) Glenner, G. G.; Wong, C. W. Alzheimer’s Disease: Initial Report of the Purification and Characterization of a Novel Cerebrovascular Amyloid Protein. Biochem Biophys Res Commun 1984, 120, 885–890. https://doi.org/10.1016/s0006-291x(84)80190-4. (13) Qiu, T.; Liu, Q.; Chen, Y.-X.; Zhao, Y.-F.; Li, Y.-M. Aβ42 and Aβ40: Similarities and Differences. J Pept Sci 2015, 21, 522–529. https://doi.org/10.1002/psc.2789. (14) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. - PubMed - NCBI https://www.ncbi.nlm.nih.gov/pubmed/2474201. (15) Karran, E.; Mercken, M.; Strooper, B. D. The Amyloid Cascade Hypothesis for Alzheimer’s Disease: An Appraisal for the Development of Therapeutics. Nat Rev Drug Discov 2011, 10, 698–712. https://doi.org/10.1038/nrd3505. (16) Selkoe, D. J.; Hardy, J. The Amyloid Hypothesis of Alzheimer’s Disease at 25 Years. EMBO Mol Med 2016, 8, 595–608. https://doi.org/10.15252/emmm.201606210. (17) Meinhardt, J.; Sachse, C.; Hortschansky, P.; Grigorieff, N.; Fändrich, M. Aβ(1-40) Fibril Polymorphism Implies Diverse Interaction Patterns in Amyloid Fibrils. J Mol Biol 2009, 386, 869–877. https://doi.org/10.1016/j.jmb.2008.11.005. (18) Tycko, R. Amyloid Polymorphism: Structural Basis and Neurobiological Relevance. Neuron 2015, 86, 632–645. https://doi.org/10.1016/j.neuron.2015.03.017. (19) Lu, J.-X.; Qiang, W.; Yau, W.-M.; Schwieters, C. D.; Meredith, S. C.; Tycko, R. Molecular Structure of β-Amyloid Fibrils in Alzheimer’s Disease Brain Tissue. Cell 2013, 154, 1257–1268. https://doi.org/10.1016/j.cell.2013.08.035. (20) Gillam, J. E.; MacPhee, C. E. Modelling Amyloid Fibril Formation Kinetics: Mechanisms of Nucleation and Growth. J Phys: Condens Matter 2013, 25, 373101. https://doi.org/10.1088/0953-8984/25/37/373101. (21) Törnquist, M.; Michaels, T. C. T.; Sanagavarapu, K.; Yang, X.; Meisl, G.; Cohen, S. I. A.; Knowles, T. P. J.; Linse, S. Secondary Nucleation in Amyloid Formation. Chem Commun 2018, 54, 8667–8684. https://doi.org/10.1039/C8CC02204F. (22) Meisl, G.; Yang, X.; Hellstrand, E.; Frohm, B.; Kirkegaard, J. B.; Cohen, S. I. A.; Dobson, C. M.; Linse, S.; Knowles, T. P. J. Differences in Nucleation Behavior Underlie the Contrasting Aggregation Kinetics of the Aβ40 and Aβ42 Peptides. PNAS 2014, 111, 9384–9389. https://doi.org/10.1073/pnas.1401564111. (23) Matsumura, S.; Shinoda, K.; Yamada, M.; Yokojima, S.; Inoue, M.; Ohnishi, T.; Shimada, T.; Kikuchi, K.; Masui, D.; Hashimoto, S.; Sato, M.; Ito, A.; Akioka, M.; Takagi, S.; Nakamura, Y.; Nemoto, K.; Hasegawa, Y.; Takamoto, H.; Inoue, H.; Nakamura, S.; Nabeshima, Y.; Teplow, D. B.; Kinjo, M.; Hoshi, M. Two Distinct Amyloid β-Protein (Aβ) Assembly Pathways Leading to Oligomers and Fibrils Identified by Combined Fluorescence Correlation Spectroscopy, Morphology, and Toxicity Analyses. J Biol Chem 2011, 286, 11555–11562. https://doi.org/10.1074/jbc.M110.181313. (24) Omtri, R. S.; Davidson, M. W.; Arumugam, B.; Poduslo, J. F.; Kandimalla, K. K. Differences in the Cellular Uptake and Intracellular Itineraries of Amyloid Beta Proteins 40 and 42: Ramifications for the Alzheimer’s Drug Discovery. Mol Pharm 2012, 9, 1887–1897. https://doi.org/10.1021/mp200530q. (25) Amyloid β peptide ratio 42/40 but not Aβ42 correlates with phospho‐Tau in patients with low‐ and high‐CSF Aβ40 load - Wiltfang - 2007 - Journal of Neurochemistry - Wiley Online Library https://onlinelibrary.wiley.com/doi/full/10.1111/j.1471-4159.2006.04404.x. (26) Cukalevski, R.; Yang, X.; Meisl, G.; Weininger, U.; Bernfur, K.; Frohm, B.; J. Knowles, T. P.; Linse, S. The Aβ40 and Aβ42 Peptides Self-Assemble into Separate Homomolecular Fibrils in Binary Mixtures but Cross-React during Primary Nucleation. Chem Sci 2015, 6, 4215–4233. https://doi.org/10.1039/C4SC02517B. (27) Gu, L.; Guo, Z. Alzheimer’s Aβ42 and Aβ40 Peptides Form Interlaced Amyloid Fibrils. J Neurochem 2013, 126, 305–311. https://doi.org/10.1111/jnc.12202. (28) Kuperstein, I.; Broersen, K.; Benilova, I.; Rozenski, J.; Jonckheere, W.; Debulpaep, M.; Vandersteen, A.; Segers-Nolten, I.; Van Der Werf, K.; Subramaniam, V.; Braeken, D.; Callewaert, G.; Bartic, C.; D’Hooge, R.; Martins, I. C.; Rousseau, F.; Schymkowitz, J.; De Strooper, B. Neurotoxicity of Alzheimer’s Disease Aβ Peptides Is Induced by Small Changes in the Aβ42 to Aβ40 Ratio. EMBO J 2010, 29, 3408–3420. https://doi.org/10.1038/emboj.2010.211. (29) Pauwels, K.; Williams, T. L.; Morris, K. L.; Jonckheere, W.; Vandersteen, A.; Kelly, G.; Schymkowitz, J.; Rousseau, F.; Pastore, A.; Serpell, L. C.; Broersen, K. Structural Basis for Increased Toxicity of Pathological Aβ42:Aβ40 Ratios in Alzheimer Disease. J Biol Chem 2012, 287, 5650–5660. https://doi.org/10.1074/jbc.M111.264473. (30) Chang, C.-C.; Althaus, J. C.; Carruthers, C. J. L.; Sutton, M. A.; Steel, D. G.; Gafni, A. Synergistic Interactions between Alzheimer’s Aβ40 and Aβ42 on the Surface of Primary Neurons Revealed by Single Molecule Microscopy. PLoS One 2013, 8. https://doi.org/10.1371/journal.pone.0082139. (31) Chang, C.-C.; Althaus, J. C.; Carruthers, C. J. L.; Sutton, M. A.; Steel, D. G.; Gafni, A. Synergistic Interactions between Alzheimer’s Aβ40 and Aβ42 on the Surface of Primary Neurons Revealed by Single Molecule Microscopy. PLoS One 2013, 8. https://doi.org/10.1371/journal.pone.0082139. (32) Jan, A.; Gokce, O.; Luthi-Carter, R.; Lashuel, H. A. The Ratio of Monomeric to Aggregated Forms of Aβ40 and Aβ42 Is an Important Determinant of Amyloid-β Aggregation, Fibrillogenesis, and Toxicity. J Biol Chem 2008, 283, 28176–28189. https://doi.org/10.1074/jbc.M803159200. (33) Xiao, Y.; Ma, B.; McElheny, D.; Parthasarathy, S.; Long, F.; Hoshi, M.; Nussinov, R.; Ishii, Y. Aβ(1–42) Fibril Structure Illuminates Self-Recognition and Replication of Amyloid in Alzheimer’s Disease. Nat Struct Mol Biol 2015, 22, 499–505. https://doi.org/10.1038/nsmb.2991. (34) Sengupta, U.; Nilson, A. N.; Kayed, R. The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy. EBioMedicine 2016, 6, 42–49. https://doi.org/10.1016/j.ebiom.2016.03.035. (35) Lee, S. J. C.; Nam, E.; Lee, H. J.; Savelieff, M. G.; Lim, M. H. Towards an Understanding of Amyloid-β Oligomers: Characterization, Toxicity Mechanisms, and Inhibitors. Chem Soc Rev 2017, 46, 310–323. https://doi.org/10.1039/C6CS00731G. (36) Tipping, K. W.; Oosten-Hawle, P. van; Hewitt, E. W.; Radford, S. E. Amyloid Fibres: Inert End-Stage Aggregates or Key Players in Disease? Trends Biochem Sci 2015, 40, 719–727. https://doi.org/10.1016/j.tibs.2015.10.002. (37) Benilova, I.; Karran, E.; De Strooper, B. The Toxic Aβ Oligomer and Alzheimer’s Disease: An Emperor in Need of Clothes. Nat Neurosci 2012, 15, 349–357. https://doi.org/10.1038/nn.3028. (38) Chimon, S.; Ishii, Y. Capturing Intermediate Structures of Alzheimer’s β-Amyloid, Aβ(1−40), by Solid-State NMR Spectroscopy. J Am Chem Soc 2005, 127, 13472–13473. https://doi.org/10.1021/ja054039l. (39) Parthasarathy, S.; Inoue, M.; Xiao, Y.; Matsumura, Y.; Nabeshima, Y.; Hoshi, M.; Ishii, Y. Structural Insight into an Alzheimer’s Brain-Derived Spherical Assembly of Amyloid β by Solid-State NMR. J Am Chem Soc 2015, 137, 6480–6483. https://doi.org/10.1021/jacs.5b03373. (40) Lambert, M. P.; Barlow, A. K.; Chromy, B. A.; Edwards, C.; Freed, R.; Liosatos, M.; Morgan, T. E.; Rozovsky, I.; Trommer, B.; Viola, K. L.; Wals, P.; Zhang, C.; Finch, C. E.; Krafft, G. A.; Klein, W. L. Diffusible, Nonfibrillar Ligands Derived from Aβ1–42 Are Potent Central Nervous System Neurotoxins. PNAS 1998, 95, 6448–6453. (41) Mroczko, B.; Groblewska, M.; Litman-Zawadzka, A.; Kornhuber, J.; Lewczuk, P. Amyloid β Oligomers (AβOs) in Alzheimer’s Disease. J Neural Transm 2018, 125, 177–191. https://doi.org/10.1007/s00702-017-1820-x. (42) Kayed, R.; Head, E.; Thompson, J. L.; McIntire, T. M.; Milton, S. C.; Cotman, C. W.; Glabe, C. G. Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis. Science 2003, 300, 486–489. (43) Viola, K. L.; Klein, W. L. Amyloid β Oligomers in Alzheimer’s Disease Pathogenesis, Treatment, and Diagnosis. Acta Neuropathol 2015, 129, 183–206. https://doi.org/10.1007/s00401-015-1386-3. (44) Sandberg, A.; Luheshi, L. M.; Söllvander, S.; Pereira de Barros, T.; Macao, B.; Knowles, T. P. J.; Biverstål, H.; Lendel, C.; Ekholm-Petterson, F.; Dubnovitsky, A.; Lannfelt, L.; Dobson, C. M.; Härd, T. Stabilization of Neurotoxic Alzheimer Amyloid-Beta Oligomers by Protein Engineering. PNAS 2010, 107, 15595–15600. https://doi.org/10.1073/pnas.1001740107. (45) Lesné, S.; Koh, M. T.; Kotilinek, L.; Kayed, R.; Glabe, C. G.; Yang, A.; Gallagher, M.; Ashe, K. H. A Specific Amyloid-β Protein Assembly in the Brain Impairs Memory. Nature 2006, 440, 352–357. https://doi.org/10.1038/nature04533. (46) Lee, K. L.; Chong, C. C. The Use of Reverse Micelles in Downstream Processing of Biotechnological Products. 11. (47) Matzke, S. F.; Creagh, A. L.; Haynes, C. A.; Prausnitz, J. M.; Blanch, H. W. Mechanisms of Protein Solubilization in Reverse Micelles. Biotechnol Bioeng 1992, 40, 91–102. https://doi.org/10.1002/bit.260400114. (48) Küchler, A.; Yoshimoto, M.; Luginbühl, S.; Mavelli, F.; Walde, P. Enzymatic Reactions in Confined Environments. Nat. Nanotechnol 2016, 11, 409–420. https://doi.org/10.1038/nnano.2016.54. (49) Nanoparticle Synthesis in Reverse Micelles. (50) Three researchers win Nobel Prize in Chemistry for developments in electron microscopy https://phys.org/news/2017-10-nobel-prize-chemistry-american-swiss.html. (51) Gremer, L.; Schölzel, D.; Schenk, C.; Reinartz, E.; Labahn, J.; Ravelli, R. B. G.; Tusche, M.; Lopez-Iglesias, C.; Hoyer, W.; Heise, H.; Willbold, D.; Schröder, G. F. Fibril Structure of Amyloid-β(1–42) by Cryo–Electron Microscopy. Science 2017, 358, 116–119. https://doi.org/10.1126/science.aao2825. (52) Fitzpatrick, A. W. P.; Falcon, B.; He, S.; Murzin, A. G.; Murshudov, G.; Garringer, H. J.; Crowther, R. A.; Ghetti, B.; Goedert, M.; Scheres, S. H. W. Cryo-EM Structures of Tau Filaments from Alzheimer’s Disease. Nature 2017, 547, 185–190. https://doi.org/10.1038/nature23002. (53) Kollmer, M.; Close, W.; Funk, L.; Rasmussen, J.; Bsoul, A.; Schierhorn, A.; Schmidt, M.; Sigurdson, C. J.; Jucker, M.; Fändrich, M. Cryo-EM Structure and Polymorphism of Aβ Amyloid Fibrils Purified from Alzheimer’s Brain Tissue. Nat Commun 2019, 10, 4760. https://doi.org/10.1038/s41467-019-12683-8. (54) Ghosh, U.; Thurber, K. R.; Yau, W.-M.; Tycko, R. Molecular Structure of a Prevalent Amyloid-β Fibril Polymorph from Alzheimer’s Disease Brain Tissue. bioRxiv 2020, 2020.03.06.981381. https://doi.org/10.1101/2020.03.06.981381. (55) Sowade, R. F.; Jahn, T. R. Seed-Induced Acceleration of Amyloid-β Mediated Neurotoxicity in Vivo. Nat Commun 2017, 8, 1–12. https://doi.org/10.1038/s41467-017-00579-4. (56) pCOLADuet-1 plasmid https://www.lifescience-market.com/plasmid-c-94/pcoladuet-1-plasmid-p-63260.html. (57) Hoarau, M.; Malbert, Y.; Irague, R.; Hureau, C.; Faller, P.; Gras, E.; André, I.; Remaud-Siméon, M. A Robust and Efficient Production and Purification Procedure of Recombinant Alzheimers Disease Methionine-Modified Amyloid-β Peptides. PLoS ONE 2016, 11, e0161209. https://doi.org/10.1371/journal.pone.0161209. (58) Liao, Y.-H.; Chen, Y.-R. A Novel Method for Expression and Purification of Authentic Amyloid-Beta with and without N-15 Labels. Protein Expr Purif 2015, 113, 63–71. https://doi.org/10.1016/j.pep.2015.05.002. (59) The principle and method of polyacrylamide gel electrophoresis (SDS-PAGE) | MBL Life Sience -ASIA- https://www.mblbio.com/bio/g/support/method/sds-page.html. (60)SDS-PAGE Service - Pronalyse https://www.creative-proteomics.com/pronalyse/sds-page-service.html. (61) Tamamushi, B.; Watanabe, N. The Formation of Molecular Aggregation Structures in Ternary System: Aerosol OT/Water/Iso-Octane. Colloid Polymer Sci 1980, 258, 174–178. https://doi.org/10.1007/BF01498277. (62) 动态光散射. 維基百科,自由的百科全書; 2015. https://zh.wikipedia.org/wiki. (63) Dynamic Light Scattering | 3P Instruments https://www.3p-instruments.com/measurement-methods/dynamic-light-scattering/. (64) Singh, P. K.; Mora, A. K.; Nath, S. Ultrafast Fluorescence Spectroscopy Reveals a Dominant Weakly-Emissive Population of Fibril Bound Thioflavin-T. Chem Commun 2015, 51, 14042–14045. https://doi.org/10.1039/C5CC04256A. (65) Circular Dichroism Studies of Secondary Structure of Peptides - Google 搜 https://www.google.com/search. (66) Proton-Enhanced Nuclear Induction Spectroscopy. Wikipedia; 2020. https://en.wikipedia.org/wiki/Proton-enhanced_nuclear_induction_spectroscopy (67) DARR | Protein NMR. https://www.protein-nmr.org.uk/solid-state-mas-nmr/spectrum-descriptions/darr/ (68) Transmission electron microscopy (TEM) :: Condensed Matter Physics :: Rudi Winter’s web space https://users.aber.ac.uk/ruw/teach/334/tem.php. (69) Klein, N. D.; Hurley, K. R.; Feng, Z. V.; Haynes, C. L. Dark Field Transmission Electron Microscopy as a Tool for Identifying Inorganic Nanoparticles in Biological Matrices. Anal Chem 2015, 87, 4356–4362.https://doi.org/10.1021/acs.analchem.5b00124. (70) Chen, B.; Thurber, K. R.; Shewmaker, F.; Wickner, R. B.; Tycko, R. Measurement of Amyloid Fibril Mass-per-Length by Tilted-Beam Transmission Electron Microscopy. PNAS 2009, 106, 14339–14344. https://doi.org/10.1073/pnas.0907821106. (71) Sachse, C.; Fändrich, M.; Grigorieff, N. Paired β-Sheet Structure of an Aβ(1-40) Amyloid Fibril Revealed by Electron Microscopy. PNAS 2008, 105, 7462–7466. https://doi.org/10.1073/pnas.0712290105. (72) Matt D’Amato: The Landscape of Virus Hunting | Exploring the Nanoworld https://chem.beloit.edu/edetc/technologist/Matt.html. (73) Scanning Transmission Electron Microscopy. Wikipedia; 2020. (74) Scanning Transmission Electron Microscopy Studies of Mono- and Bimetallic Nanoclusters - ScienceDirect https://www.sciencedirect.com/science/article/pii/B9780080963570000029. (75) Cryo-EM Services - Creative Biostructure https://www.creative-biostructure.com/cryo-em-services_4.htm. (76) Murata, K.; Wolf, M. Cryo-Electron Microscopy for Structural Analysis of Dynamic Biological Macromolecules. BBA Gen Subj 2018, 1862, 324–334. https://doi.org/10.1016/j.bbagen.2017.07.020. (77)「把生物分子看得更清楚!」結構生物學最新神器–冷凍電子顯微鏡 https://www.natgeomedia.com/science/article/content-9509.html. (78) Czarnocki-Cieciura, M.; Nowotny, M. Introduction to High-Resolution Cryo-Electron Microscopy. Postepy Biochem 2016. (79) DE-Series – Direct Electron. https://www.directelectron.com/de-series/ (80) Contrast Transfer Function - an overview | ScienceDirect Topics https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/contrast-transfer-function. (81) He, S.; Scheres, S. H. W. Helical Reconstruction in RELION. J Struct Biol 2017, 198, 163–176. https://doi.org/10.1016/j.jsb.2017.02.003. (82) Scheres, S. H. W. Amyloid Structure Determination in RELION -3.1. Acta Crystallogr D Struct Biol 2020, 76, 94–101. https://doi.org/10.1107/S2059798319016577. (83) Wälti, M. A.; Orts, J.; Vögeli, B.; Campioni, S.; Riek, R. Solution NMR Studies of Recombinant Aβ(1–42): From the Presence of a Micellar Entity to Residual Β‐Sheet Structure in the Soluble Species. ChemBioChem 2015, 16, 659–669. https://doi.org/10.1002/cbic.201402595. (84) Cai, M.; Huang, Y.; Yang, R.; Craigie, R.; Clore, G. M. A Simple and Robust Protocol for High-Yield Expression of Perdeuterated Proteins in Escherichia Coli Grown in Shaker Flasks. J Biomol NMR 2016, 66, 85–91. https://doi.org/10.1007/s10858-016-0052-y. (85) Benilova, I.; Karran, E.; De Strooper, B. The Toxic Aβ Oligomer and Alzheimer’s Disease: An Emperor in Need of Clothes. Nat Neurosci 2012, 15, 349–357. https://doi.org/10.1038/nn.3028. (86) Chimon, S.; Shaibat, M. A.; Jones, C. R.; Calero, D. C.; Aizezi, B.; Ishii, Y. Evidence of Fibril-like Beta-Sheet Structures in a Neurotoxic Amyloid Intermediate of Alzheimer’s Beta-Amyloid. Nat Struct Mol Biol 2007, 14, 1157–1164. https://doi.org/10.1038/nsmb1345. (87) An Asymmetric Dimer as the Basic Subunit in Alzheimer’s Disease Amyloid β Fibrils - Lopez del Amo - 2012 - Angewandte Chemie International Edition - Wiley Online Library https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.201200965. (88) Paravastu, A. K.; Leapman, R. D.; Yau, W.-M.; Tycko, R. Molecular Structural Basis for Polymorphism in Alzheimer’s β-Amyloid Fibrils. PNAS 2008, 105, 18349–18354. https://doi.org/10.1073/pnas.0806270105. (89) Chang, Y.-J.; Chen, Y.-R. The Coexistence of an Equal Amount of Alzheimer’s Amyloid-β 40 and 42 Forms Structurally Stable and Toxic Oligomers through a Distinct Pathway. FEBS J 2014, 281, 2674–2687. https://doi.org/10.1111/febs.12813. (90) Qiang, W.; Yau, W.-M.; Tycko, R. Structural Evolution of Iowa Mutant β-Amyloid Fibrils from Polymorphic to Homogeneous States under Repeated Seeded Growth. J Am Chem Soc 2011, 133, 4018–4029. https://doi.org/10.1021/ja109679q. (91) Glynn, C.; Sawaya, M. R.; Ge, P.; Gallagher-Jones, M.; Short, C. W.; Bowman, R.; Apostol, M.; Zhou, Z. H.; Eisenberg, D. S.; Rodriguez, J. A. Cryo-EM Structure of a Human Prion Fibril with a Hydrophobic, Protease-Resistant Core. Nat Struct Mol Biol 2020. https://doi.org/10.1038/s41594-020-0403-y. (92) Bunce, S. J.; Wang, Y.; Stewart, K. L.; Ashcroft, A. E.; Radford, S. E.; Hall, C. K.; Wilson, A. J. Molecular Insights into the Surface-Catalyzed Secondary Nucleation of Amyloid-Β40 (Aβ40) by the Peptide Fragment Aβ16–22. Sci Adv 2019, 5, eaav8216. https://doi.org/10.1126/sciadv.aav8216. (93) Walsh, D. M.; Thulin, E.; Minogue, A. M.; Gustavsson, N.; Pang, E.; Teplow, D. B.; Linse, S. A Facile Method for Expression and Purification of the Alzheimer’s Disease-Associated Amyloid β-Peptide. FEBS J 2009, 276, 1266–1281. https://doi.org/10.1111/j.1742-4658.2008.06862.x. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54583 | - |
dc.description.abstract | 乙型澱粉樣蛋白 (β-amyloid peptide, Aβ) 是阿茲海默症的致病因子之一,其具有序列 (Aβ40, Aβ42)、形貌和結構多樣性。在阿茲海默症病人腦中的纖維沉積主要由 Aβ42 組成,但共存於腦中的 Aβ40 總含量卻遠高於 Aβ42,兩者之間是否具有交互作用是此領域關注的焦點之一。近年研究也指出處在纖維化中間態的寡聚物 (oligomer) 具有更高的細胞毒性,尤其是 Aβ42 寡聚物,其在阿茲海默症形成初期可能具有關鍵的病理意義,但受限於寡聚物結構的不穩定性、聚集型態的多樣性,對於寡聚物的結構、其誘發其他蛋白聚集的機制 (引晶效應) 及與最終纖維結構的關聯性等至今仍是尚待釐清的謎。為提升寡聚物同質性(homogeneity),本研究以 AOT/isooctane/H2O 逆相微胞系統作為物理性限制空間,使 Aβ 單體在逆相微胞碰撞時經物質交換過程逐漸聚集並維持在寡聚物 (RMAβ) 階段 ,於 30 ℃ 培養 7 天後,結合 6E10 抗體及穿透式電子顯微鏡確認反萃後之 RMAβ 仍維持在粒徑為 37 nm 寡聚物狀態,經暗場 TEM 影像粗估其分子量在 200–400 kDa;Thioflavin-T 螢光分析及 圓偏光二色光譜 (CD) 結果指出 已具 β-sheet 二級結構的 RMAβ 脫離逆相微胞後仍會繼續聚集成纖維 (on-pathway),且由固態核磁共振光譜判定其結構並非單一構型。為探討on-path way 寡聚物對單體的引晶效應,嘗試將不同組成的 RMAβ 寡聚物與 Aβ40 單體共培養,竟意外地發現 RMAb42 寡聚物具有加速 Aβ40 聚集的特性,這與其他文獻提出的結論──Ab42 纖維對 Aβ40 不具有引晶能力──是截然不同的,所以在本研究中分別透過 RMAβ40 自聚集及以 RMAβ40 和 RMAβ42 作為核種對 Aβ40 單體進行引晶兩種方式培養澱粉樣纖維,以電子顯微鏡追蹤聚集物的形貌變化,並利用低溫電子顯微鏡 (cryo-EM) 重建主要纖維的結構,希望能進一步說明不同核種對於引晶機制及纖維結構的影響。 | zh_TW |
dc.description.abstract | Beta-amyloid peptides (Aβ) have been regarded as the key factor in the pathology of Alzheimer’s disease (AD) for years. Amyloid-β peptides of variable length coexist in the central nervous system and possess strong propensity to aggregate. There are distinct Aβ aggregates forming during the fibrillization process and Aβ oligomers are considered to be a more relevant therapeutic target than other species such as fibril in recent research. In this study, we have developed H2O/sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane reverse micelles (RMs) system to provide a physically confined space to restrict the growth of Aβ aggregates. After incubated at 30 ℃ for 7 days, Aβ40 peptides were in the oligomeric state (RMAβ40) with 34 nm average diameter as confirmed by TEM images and 6E10 dot-blot assay. The size of the oligomers was estimated by intensity ratio between β-amyloid fibril and tobacco mosaic virus (TMV) standard in dark-field TEM images to be about 200–400 kDa. The result of Thioflavin-T (ThT) assay and circular dichroism (CD) spectra revealed that the extracted RMAβ40 with partial β-sheet secondary structure grew rapidly into protofibril without lag-phase (on-pathway). Although the solid-state NMR data indicated that the structure of RMAβ40 oligomers was polymorphic, the RMs system is still a clean and simple plateform for the preparation of Aβ oligomers. Furthermore, the interaction between Aβ40 and Aβ42 have been investigated, because the neurotoxicity of Aβ42 oligomers and the cross-seeding between Aβ42 and Aβ40 peptides are critical issues for the pathology of AD. We tried to prepare RMAβ40, RMAβ42, and RMAβ42/40 oligomers as seeds to promote Aβ40 fibrillization. The aggregation kinetics was tracked by ThT assay and the fibril morphology by transmission electron microscope (TEM). Surprisingly, the data showed a pronounced seeding effect of RMAβ42 oligomers to Aβ40 monomers, which is in stark contrast to the results when using Aβ42 fibril fragments as seeds in other studies. To unravel whether Aβ42 oligomers also affect the structure of Aβ40 monomer during the seeding process, we attempted to use cryogenic electron microscopy (cryo-EM) to build 3D structure of the corresponding fibrils. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:05:52Z (GMT). No. of bitstreams: 1 U0001-0308202003284000.pdf: 10142085 bytes, checksum: 8fafb0af4bb4d119d4258c87f1da0bee (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員審定書………………………………………………………………….Ⅰ 謝誌 II 中文摘要 V Abstract VI 縮寫表 VII 目錄 IX 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1.1 乙型類澱粉蛋白在阿茲海默症病理上的重要 1 1.1.1 類澱粉蛋白 1 1.1.2 阿茲海默症 3 1.1.3 澱粉樣級聯假說 4 1.1.4 Aβ 形貌多樣性與成核纖維化 6 1.2 乙型類澱粉樣蛋白 40 與 42 片段 8 1.2.1 Aβ40 和 Aβ42 之異質性 8 1.2.2 Aβ40 和 Aβ42 間的交互作用 9 1.2.3 Aβ40 和 Aβ42 間之交叉引晶作用 12 1.3 Aβ 胜肽寡聚物 14 1.3.1 致病機制推論 14 1.3.2 寡聚物多樣性 15 1.3.3 寡聚物結構 18 1.3.4 Aβ42 寡聚物 19 1.4 逆相微胞系統 20 1.5 低溫電子顯微鏡之結構鑑定 25 1.5.1 低溫電子顯微鏡在結構學中的崛起 25 1.5.2 重建螺旋纖維蛋白 27 1.6 研究動機 31 第二章 製備與鑑定 32 2.1 化學試劑與使用儀器 32 2.1.1 化學試劑 32 2.1.2 使用儀器 34 2.2 胜肽製備 36 2.2.1 蛋白表達 37 2.2.2 胜肽純化 41 2.2.3 胜肽鑑定 42 2.3 製備逆相微胞寡聚物 45 2.2.1 Aβ40 單體製備 45 2.3.2 逆相微胞寡聚物 46 2.4 鑑定技術 47 2.4.1 動態光散射粒徑分析儀 47 2.4.2 硫黃素螢光偵測 48 2.4.3 圓偏光二色光譜 49 2.4.4 斑點印跡法 50 2.4.5 固態核磁共振 51 2.4.6 穿透式電子顯微鏡 54 2.4.7 掃描穿透式電子顯微鏡 56 2.4.8 冷凍電子顯微鏡 57 第三章 以逆相微胞製備寡聚物 64 3.1 Aβ胜肽製備與鑑定 64 3.1.1 Aβ42蛋白表達與純化 64 3.1.2 15N同位素標定之 Aβ40 胜肽 67 3.2 逆相微胞寡聚物 (RMAβ) 70 3.2.1 RMAβ逆相微胞之穩定度 70 3.2.2 反向萃取 RMAβ 70 3.2.3 RMAβ40 性質鑑定 71 3.2.4 逆相微胞之共聚物 79 3.3 RMAβ寡聚物纖維 82 3.3.1 TEM鑑定 82 3.3.2 Cryo-EM 初始模型 83 第四章 寡聚物對單體之引晶作用 85 4.1 RMAβ 引晶作用 85 4.2 RMAβ 引晶條件優化 86 4.3 RMAβ 引晶纖維鑑定 92 4.3.1 RMAβ40 引晶纖維形貌分析 92 4.3.2 RMAβ42 引晶纖維形貌分析 93 4.3.3 RMAβ 引晶纖維之 MPL 分析 94 第五章 結論與未來展望 97 5.1 論文總結 97 5.2 未來展望 99 參考文獻 100 附錄 107 附錄A 以親和性離子純化 Aβ42 107 附錄B 15N-labeled Aβ40 蛋白表現條件測 109 附錄C 反萃條件測試 111 附錄D 粒徑層析管柱鑑定寡聚物尺寸 113 附錄E 引晶條件測試 115 附錄F 製備 AOT 逆向微胞流程 116 | |
dc.language.iso | zh-TW | |
dc.title | 乙型類澱粉樣蛋白40與42片段間交互引晶作用之研究 | zh_TW |
dc.title | Cross-seeding effect between Aβ (1–40) and Aβ (1–42) | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃人則 (Jen-Tse Huang),戴桓青(Hwan-Ching Tai),余慈顏(Tsyr-Yan Yu) | |
dc.subject.keyword | 乙型類澱粉樣蛋白, | zh_TW |
dc.subject.keyword | beta-amyloid fibrils,oligomers,aggregation,reverse micelles,cryo-EM, | en |
dc.relation.page | 116 | |
dc.identifier.doi | 10.6342/NTU202002247 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-04 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0308202003284000.pdf 目前未授權公開取用 | 9.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。