請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54580
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林正芳 | |
dc.contributor.author | Qian Zhang | en |
dc.contributor.author | 張倩 | zh_TW |
dc.date.accessioned | 2021-06-16T03:05:40Z | - |
dc.date.available | 2016-08-11 | |
dc.date.copyright | 2015-08-11 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-06-27 | |
dc.identifier.citation | Adel A., R. Ismail, A. Geioushy, H. Bouzid, A. A. Saleh, A. A.Hajry,D. W.Bahnemann,TiO2 decoration of graphene layers for highly efficient photocatalyst: Impact of calcination at different gas atmosphere on photocatalytic efficiency. Applied Catalysis B: Environmental,129(2013)62–70.
Akhavan O. and E. Ghaderi, Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photo in activation of Bacteria in Solar Light Irradiation, The Journal of Physical Chemistry C, 113(2009) 20214–20220. Anpo M., H. Yamashita, K. Ikeue, Y. Fujii, S.G. Zhang, Y. Ichihashi, D.R. Park, Y. Suzuki, K. Koyano, T. Tatsumi, Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts, Catalysis Today, 44 (1998) 327–332. Anpo M., H.Yamashita, Y.Ichihashi, S.Ehara. Photocatalytic Reduction of CO2 with H2O on Various Titanium Oxide Catalysts of Special Interest, Journal of Electro analytical Chemistry,396(1995)21–26. Anpo, M. andK.Chiba, Photecatalytic reduction of CO2 on anchored titanium oxide catalysts, Journal of Molecular Catalysis A: Chemical,74(1992)207-212. Basua S., P. Bhattacharyya, Recent developments on graphene and graphene oxide based solid state gas sensors, Sensors and Actuators B: Chemical, 173(2012)1-21. Bourlinos A. B., D.Gournis, D. Petridis, T. Szabo´, A.Szeri, and I.De´ka´ny, Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids, Langmuir, 19(2003) 6050-6055. Chen W. F., L. Yan, and P. R. Bangal, Chemical reduction of graphene oxide to graphene by sulfer-containing compounds. The Journal of Physical Chemistry C, 114(2010)19885-19890. CuiJ. F.,X. W.Fang, K.Schmidt-Rohr, Quantification of C=C and C=O Surface Carbons in Detonation Nanodiamond by NMR, The Journal of Physical Chemistry C, 118(2014)9621–9627. Czerw R., B. Foley, D. Tekleab, A. Rubio, P. M. Ajayan, D. L. Carroll, Substrate-interface interactions between carbon nanotubes and the supporting substrate, Physical Review B, 66(2002) 33408 – 33414. DeyG.R. , A.D. Belapurkar, K. Kishore, Photo-catalytic reduction of carbon dioxide to methane using TiO2 as suspension in water, Journal of Photochemistry and Photobiology A: Chemistry, 163(2004)503–508. Dimitrijevic N. M., B. K. Vijayan, O. G. Poluektov, T. Rajh, K A. Gray, H. He, and P.Zapol, Role of Water and Carbonates in Photocatalytic Transformation of CO2 to CH4 on Titania, Journal of the American Chemical Society, 133 (2011) 3964–3971. Ding G., TiO2–graphene nanocomposites for photocatalytic hydrogen production from splitting water, International Journal of Hydrogen Energy, 37(2012) 2224–2230. FavaroM. , S. Agnoli, C. D. Valentin, C. Mattevi, M. Cattelan, L. Artiglia, E. Magnano, F. Bondino, S. Nappini, G. Granozzi, TiO2/graphene nanocomposites from the direct reduction of graphene oxide by metal evaporation, Carbon, 68(2014) 319–329. Fujishima A., T. N.Rao, D. A.Tryk, Titanium dioxide photocatalysis.Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(2000)1–21. Gattrell M., N. Gupta, and A. Co., A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. Journal of Electroanalytical Chemistry, 594(2006)1–19. Geim A. K., K. S. Novoselov, The rise of graphene. Nature Materials, 6(2007) 183-191. Giordani S., J. F. Colomer, F. Cattaruzza, J. Alfonsi, M. Meneghetti, M. Prato, D. Bonifazi, Multifunctional hybrid materials composed of fullerene-based functionalized-single-walled carbon nanotubes, Carbon, 47(2009)578-588. Godfrey B, Renewable energy power for a sustainable future. Oxford university press, Oxford, 2004. Grün, R. Dose determination on fossil tooth enamel using ESR spectrum deconvolution with Gaussian and Lorentzian peak. Ancient TL, 16(1998)51-55. Guan G., T. Kida, T. Harada, M. Isayama, A. Yoshida, Photoreduction of carbon dioxide with water over K2Ti6O13photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight, Applied Catalysis A: General, 249 (2003) 11–18. GuoJ. , S. Ouyang, T. Kako, J. Ye, Mesoporous In(OH)3 for photoreduction of CO2 into renewable hydrocarbon fuels, Applied Surface Science, 280(2013) 418–423. Guo J., S. Zhu, Z. Chen, Y. Li, Z.Yu, Q.Liu, J. Li, C. Feng, D.Zhang, Sonochemical synthesis of TiO2nanoparticals on graphene for use as photocatalyst. Ultrasonics Sonochemistry, 5(2011)1082–1090 (b). Guo S., S. Dong, Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society Reviews, 40(2011) 2644-2672 (a). Habisreutinger S. N., S. M. Lukas and J. K. Stolarczyk, Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors, Angewandte Chemie International Edition, 52(2013) 7372–7408. Hammond G. P., J.Spargo, The prospects for coal-fired power plants with carbon capture and storage: A UK perspective, Energy Conversion and Management, 86(2014)476–489. Han S. K., T. M. Hwang, Y. Yoon, J. W. Kang, Evidence of singlet oxygen and hydroxyl radical formation in aqueous goethite suspension using spin-trapping electron paramagnetic resonance (EPR), Chemosphere, 84 (2011) 1095–1101. Handoko A. D., K. Li and J. Tang, Recent progress in artificial photosynthesis: CO2 photoreductionto valuable chemicals in a heterogeneous system, Current Opinion in Chemical Engineering,2(2012)200–206. He H., J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide. Chemical Physics Letters, 287(1998) 53-56. Hu G.,B. Tang, Photocatalytic mechanism of graphene/titanate nanotubes photocatalyst under visible-light irradiation. Materials Chemistry and Physics, 138(2013), 608–614. Indrakanti V.P., J. D. Kubicki, H. H. Schobert, Photo induced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy and Environmental Science, 2(2009)745-758. Ismach A., C.D., S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor and Y. Zhang, Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. Nano Letters, 10(2010) 1542-1548. Ismail A. A., R.A. Geioushy, H. Bouzid, S. A. AlSayari, A. AlHajry, D. W. Bahnemann, TiO2 decoration of graphene layers for highly efficient photocatalyst: Impact of calcination at different gas atmosphere on photocatalytic efficiency, Applied Catalysis B: Environmental, 129(2013)62–70. Jeannie Z. , Y. Tan, Y. Fernández, D. Liu, M. Maroto-Valer, J. Bian, X. Zhang, Photoreduction of CO2 using copper-decorated TiO2 nanorod films with localized surface plasmon behavior, Chemical Physics Letters, 531(2012) 149–154. Jeffrey C. , S. Wu, H.M. Lin, C.L. Lai, Photo reduction of CO2 to methanol using optical-fiber photoreactor, Applied Catalysis A: General, 296( 2005) 194–200. Jeffrey C.,S.Wu, Photocatalytic Reduction of Greenhouse Gas CO2 to Fuel. Catalysis Surveys from Asia13(2009)30-40. Jiang G., Z. Lin, C. Chen, L. Zhu, Q. Chang, N.Wang, W. Wei, H.Tang, TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants, Carbon, 49(2011) 2693–2701. Jo, W. K., R. J.Tayade, New generation energy-efficient light source for photocatalysis: LEDs for environmental application, Industrial &Engineering Chemistry Reasearch, 53(2014)2073-2084. Khalid N.R., E. Ahmed, Z. Hong, L. Sana., M. Ahmed, Enhanced photocatalytic activity of graphenee TiO2 composite under visible light irradiation, Current Applied Physics 13 (2013) 659-663. Kim K. S., Y. Z., H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(2009)706-710.(a) Kim S. R., M. K. Parvze, M. Chhowall, UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells. Chemical Physics Letters, 483(2009) 124-127.(b) Kim W. J., Y. M. Chang, J. Lee, D. K. Kang, J. H. Lee and Y. W. Song, Ultrafast optical nonlinearity of multi-layered graphene synthesized by the interface growth process, Nanotechnology, 23 (2012) 225706-225711. Lang B., A LEED study of the deposition of carbon on platinum crystal surfaces. Surface Science, 53(1975) 317-321. Lee S. C., J. S. Kim, W. C. Shin, M. J. Choi, S. J. Choung, Catalyst deactivation during hydrogenation of carbon dioxide: Effect of catalyst position in the packed bed reactor. Journal of Molecular Catalysis A: Chemical, 301(2009) 98–105. Lee W. H., C. H. Liao, M. F. Tsai, C. W. Huang, J. C.S. Wu, A novel twin reactor for CO2photoreduction to mimic artificial photosynthesis, Applied Catalysis B: Environmental, 132–133 (2013) 445–455. Lerf A., H.He, M. Forster and J. Klinowski, Structure of Graphite Oxide Revisited. The Journal of Physical Chemistry B, 102(1998) 4477-4482. LiX., H.Liu, D.Luo, J.Li, Y.Huang, H.Li, Y.Fang, Y.Xu, L.Zhu, Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chemical Engineering Journal, 180(2012)151–158. Li X., W.Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 324(2009)1312-1314. Li Y., W. N. Wang, Z. Zhan, M. H. Woo, C. Y. Wu, P. Biswas, photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts, Applied Catalysis B: Environmental, 100(2010) 386–392. Liu B. N., F. Luo, H. Wu, Y. Liu, C. Zhang, and J. Chen, One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite. Advanced Functional Materials. 18(2008) 1518-1525. Liu C., G.Hu, H. Gao, Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N,N-dimethylformamide. The Journal of Supercritical Fluids, 63(2012)99-104.(a) Liu D., Y. Fernández, O. Ola, S. Mackintosh, M. M. Valer, C. M.A. Parlett, A. F. Lee, J. C.S. Wu, On the impact of Cu dispersion on CO2photoreduction over Cu/TiO2, Catalysis Communications, 25(2012)78–82.(b) Liu J., C.K.P., D. Zhan, L. Lai, S. H. Lim, L. Wang, X. Liu, N. G. Sahoo, C. Li, Z. Shen, J. Lin, Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano Energy, 2(2013)377-386.(a) Liu L. , D.T. Pitts, H. Zhao, C. Zhao, Y. Li, Silver-incorporated bicrystalline (anatase/brookite) TiO2microspheres for CO2 photoreduction with water in the presence of methanol, Applied Catalysis A: General, 467(2013)474–482.(b) Liu R., H. Yoshida, S. Fujita, N. Lu, W.H. Tu, M. Arai, Selective photoreduction of CO2 to CO in CO2-dissolved expanded liquid phase with heterogeneous CO2-philic Pd complex catalysts, Applied Catalysis A: General 455 (2013) 32–38.(c) Liu X., L. Pan, T. Lv, G. Zhu, T. Lu, Z. Suna and C. Sun, Microwave-assisted synthesis of TiO2-reduced graphene oxide composites for the photocatalytic reduction of Cr(VI), RSC Advances, 1(2011)1245–1249. Liu Y., B. Huang, Y. Da, X. Zhang, X. Qin, M. Jiang, M. H. Whangbo, Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst, Catalysis Communications, 11(2009)210–213. Lo C. C., C. H. Hung, C. S. Yuan, J. F. Wu, Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor, Solar Energy Materials and Solar Cells, 91(2007)1765–1774. Long R., N. J. English, O. V. Prezhdo, Photo-induced charge separation across the graphene-TiO2 interface is faster than energy losses: A time-domain ab initio analysis. Journal of the American Chemical Society, 134(2012)14238-14248. Lu J., J. X.Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano, 3(2009) 2367-2375. Lu, X., M.Yu, H.Huang, R. S.Ruoff, Tailoring graphite with the goal of achieving single sheets. Nanotechnology, 10(1999) 269–272. Luisa M., P. Martínez, M. T. Sergio, V. Likodimos, P. Falaras, J. L. Figueiredo, J. L. Faria, A. M.T. Silva, Role of oxygen functionalities on the synthesis of photocatalytically active graphene-TiO2 composites, Applied Catalysis B: Environmental, 158–159(2014)329–340. Lv X. J. , S. X. Zhou, C. Zhang , H. X. Chang, Y. Chen and W. F. Fu, Synergetic effect of Cu and graphene as cocatalyst on TiO2 for enhanced photocatalytic hydrogen evolution from solar water splitting, Journal of Materials Chemistry, 22(2012) 18542-18549. Maezono T., Masahiro Tokumura, Makoto Sekine, Yoshinori Kawase, Hydroxyl radical concentration profile in photo-Fenton oxidation process: Generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II, Chemosphere, 82 (2011) 1422–1430. Mahmodi G., S. Sharifnia, M. Madani, V. Vatanpour, Photoreduction of carbon dioxide in the presence of H2, H2O andCH4 over TiO2 and ZnO photocatalysts, Solar Energy, 97 (2013) 186–194. ManzanaresM. , C. Fàbrega, J. O. Ossó, L. F. Vega, T. Andreu, J. R. Morante, Engineering the TiO2 outermost layers using magnesium for carbon dioxide photoreduction, Applied Catalysis B: Environmental, 150–151( 2014) 57–62. Mao J., L. Ye, K. Li, X. Zhang, J. Liu, T. Peng, L. Zan, Pt-loading reverses the photocatalytic activity order of anatase TiO2{0 0 1}and{0 1 0} facets for photoreduction of CO2 to CH4,Applied Catalysis B: Environmental, 144 (2014) 855–862. Min Y.L. , K. Zhang, W. Zhao, F.C. Zheng, Y.C. Chen, Y.G. Zhang, Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue, Chemical Engineering Journal, 193–194(2012) 203–210. Nguyen T. V., J. C.S. Wu, Photoreduction of CO2 in an optical-fiber photoreactor: Effects of metals addition and catalyst carrier, Applied Catalysis A: General 335 (2008) 112–120.(a) Nguyen T. V., J. C.S. Wu, Photoreduction of CO2 to fuels under sunlight using optical-fiber reactor, Solar Energy Materials & Solar Cells 92 (2008) 864–872.(b) Novoselov K. S., A.K.Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science, 306(2004)666-669. Park S. and r. Ruof, Chemical methods for the production of graphenes, Nature Nanotechnology, 4(2009) 217 – 224. Pu N.W., C. A.Wang, Y. Sung, Y. M. Liu, M. D. Ger, Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Materials Letters, 63(2009) 1987-1989. Rajalakshmi K., V. Jeyalakshmi, K. P. Krishnamurthy, B. Viswanathan, Photocatalytic reduction of carbon dioxide by water on titania: role of photophysical and structure properities, Indian journal of chemistry, 51A(2012) 411-419. Rasko J., F. Solymosi, Infrared Spectroscopic Study of the Photoinduced Activation of CO2 on TiO2 and Rh/TiO2 Catalysts,The Journal of Physical Chemistry A,98(1994) 7147–7152. Reina A., S.Thiele, X. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer and J. Kong, Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces. Nano Research, 2(2009) 509-516. Reina A., X.Jia, J. Ho,D. Nezich, H. Son,V. Bulovic, M. S. Dresselhaus and J. Kong, Large Area, Few-Layer Graphene Films on arbitrary Substrates by Chemical Vapor Deposition. Nano Letters. 9(2008) 30-35. Rockafellow E. M., X. Fang, B. G. Trewyn, S. Klaus, W. S. Jenks, Solid-State 13C NMR Characterization of Carbon-Modified TiO2, Chemistry of Materials, 21(2009) 1187–1197. Saladin F. and I. Alxneit, Temperature dependence of the photochemical reduction of CO2in the presence of H2Oat the solid/gas interface of TiO2, Journal of the Chemical Society, Faraday Transactions, 93(1997) 4159-4163. Sandeep K. V., A. G. Venkatesh, Advances in Graphene-Based Sensors and Devices. Journal of Nanomedicine & Nanotechnology, 4(2013) 127-128. Schniepp H. C., J. L. Li, M. J. McAllister, H. Sai,M. H. Alonso, D. H. Adamson, R. K. Prudhomme, R. Car, D. A. Saville, and I. A. Aksay, Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. The journal of physical chemistry B letters, 110(2006) 8535-8539. Shornikova O. N., N. E. Sorokina, N. V. Maksimova, V. V. Avdeev, Graphite intercalation in the graphite-H2SO4-R (R = H2O, C2H5OH, C2H5COOH) systems. Inorganic Materials, 41(2005) 120-126. Silverstein R. M., F. X. Webster, D. J. Kiemle, Spectrometric identification of organic compounds (seventh edition), Wiley, New York, 2011. Slamet H. W. N., E. Purnama, S. Kosela, J. Gunlazuardi, Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method, Catalysis Communications, 6 (2005) 313–319. Songolzadeh M., M. Soleimani, M. T. Ravanchi, and R. Songolzadeh, Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions, The Scientific World Journal, 34 (2014), 1-34. Spain, I.L. Chemistry & Physics of Carbon, New York,1981, 119-304. Stankovich S., D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45 (2007) 1558–1565. Stankovich S., H. Geoffrey, B. Dommett, M. K. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. B. T. Nguyen, R. S. Ruoff, Graphene-based composite materials. Nature, 442(2006) 282-286. Štengl V., D. Popelková, P. Vláčil. TiO2-Graphene Nanocomposite as High Performace Photocatalysts; The Journal of Physical Chemistry C. 115(2011) 25209–25218. Subrahmanyam M., S. Kaneco, N. Alonso-Vante, A screening for the photo reduction of carbon dioxide supported onmetal oxide catalysts for C1–C3 selectivity, Applied Catalysis B: Environmental. 23 (1999) 169–174 Sun Z., Z. Yang, H. Liu, H. Wang, Z. Wu, Visible-light CO2 photocatalytic reduction performance of ball-flower-like Bi2WO6 synthesized without organic precursor: Effect of post-calcination and water vapor, Applied Surface Science, 315 (2014) 360–367 Szczepankiewicz S. H., J. A. Moss, and M. R. Hoffmann, Slow Surface Charge Trapping Kinetics on Irradiated TiO2, The Journal of Physical Chemistry B, 106(2002) 2922-2927. Tahir M., N. A. S. Amin, Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4, Applied Catalysis B: Environmental 162 (2015) 98–109. Takashi M. and Y. Kotake, Optimal time and dosage of phenyl N-tert-Butyl nitrone (PBN) for the inhibition of nitric oxide synthase introduction in mice. Free Radical Biology & Medicine, 22(1997) 463–470. Tan J. Z.Y., Y. Fernández, D. Liu, M. M. Valer, J. Bian, X. Zhang, Photoreduction of CO2 using copper-decorated TiO2nanorod films with localized surface plasmon behavior, Chemical Physics Letters, 531 (2012) 149–154. Tan L. L., W. J. Ong, S. P. Chai and A. R. Mohamed, Reduced graphene oxide-TiO2nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide, Nanoscale research letters, 8(2013) 465-473. Tang Y., S. Luo, Y. Teng, C. Liu, X. Xu, X. Zhang, L. Chen, Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays, Journal of Hazardous Materials, 241–242 (2012) 323–330. Teramura K. , H. Tsuneoka, T. Shishido, T. Tanaka, Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst, Chemical Physics Letters, 1-3 (2008) 191–194. Tian J. and G. Cao, Semiconductor quantum dot-sensitized solar cells, Nano Reviews, 4(2013) 10. Tu W.,Y. Zhang, Q. Liu, S. Yan,S. Bao, X. Wang, M. Xiao, Z. Zou, An In Situ Simultaneous Reduction-Hydrolysis Technique for Fabrication of TiO2 -Graphene 2D Sandwich-Like Hybrid Nanosheets: Graphene-Promoted Selectivity of Photocatalytic-Driven Hydrogenation and Coupling of CO2 into Methane and Ethane. Advanced Functional Materials, 23(2013) 1743-1749. Turchia C. S., D. F. Ollis, Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack, Journal of Catalysis, 122(1990) 178–192. Wang G. Q., L. B. Du, D. Y. Zhang, Y. C. Xu, Z. He, Q. Tian, H. Y. Jia, Y. Liu, Succinimide-Linked Nitrone: Synthesis and ESR Studies, OALib Journal, 27(2010),80-88(In Chinese). Wang Q., W. Wu, J. Chen, G. Chu, K. Ma, H. Zou, Novel synthesis of ZnPc/TiO2 composite particles and carbon dioxide photo-catalytic reduction efficiency study under simulated solar radiation conditions, Colloids and Surfaces A,409(2012) 118–125. Wang T., L. Yang, K. Yuan, X. Du, Y. Yang, Numerical investigation on photocatalytic CO2 reduction by solar energy in double-skin sheet reactor, Energy Conversion and Management, 87 (2014) 606–617.(b) Wang T., X. Meng, P. Li, S. Ouyang,K. Chang, G. Liu, Z. Mei, J. Ye, Photoreduction of CO2 over the well-crystallized ordered mesoporous TiO2 with the confined space effect, Nano Energy, 9 (2014) 50–60.(a) Wang Y. S., J. H. Shen, J. J. Horng, Chromate enhanced visible light driven TiO2photocatalyticmechanism on Acid Orange 7 photodegradation, Journal of Hazardous Materials, 274 (2014) 420–427.(c) Whipple, D. T., E. C. Finke, P. J. A. Kenis,.Micro fluidic Reactor for the Electrochemical Reduction of Carbon Dioxide: The Effect of pH. Electrochemical and Solid-State Letters, 13(2011) B109-B111. Williams G., B.Seger, P.V.Kamat, TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano, 2(2008) 1487-1491. Wu T., H.Shen, L. Sun, B. Cheng, B. Liu and J. Shen, Facile Synthesis of Ag Interlayer Doped Graphene by Chemical Vapor Deposition Using Polystyrene As Solid Carbon Source. ACS Applied Materials & Interfaces, 4(2012) 2041-2047. Wu Y., G. Lu, S. Li, The long-term photocatalytic stability of Co2+modified P25-TiO2powders for the H2 production from aqueous ethanol solution, Journal of Photochemistry and Photobiology A: Chemistry, 181 (2006) 263–267. XuY., H.Bai, G.Lu, C.Li, G. Q.Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society, 130(2008) 5856–5857. Yamashita H., H. Nishiguchi, N. Kamada, M. Anpo, Y. Tearoka, H. Hatano, S. Eiiara, K. Kikui, L. Palmisano, A. Sclafani, M. Schiavello, M. A. Fox, Photocatalytic Reduction of CO2 with H2O on TiO2 and Cu/TiO2. Research on Chemical Intermediates. 20(1994) 815-823. Yamashita H., Y. Fujii, Y. Ichihashi, S.G. Zhang, K. Ikeue, D.R. Park, K. Koyano, T. Tatsumi, M. Anpo, Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves, Catalysis Today, 45 (1998) 221–227. Yang C. C., J. Vernimmen, V. Meynen, P. Cool, G. Mul, Mechanistic study of hydrocarbon formation in photocatalytic CO2 reduction over Ti-SBA-15, Journal of Catalysis, 284(2011)1–8. Zhang J. l., H. Yang, G. Shen, P. Cheng, J. Zhang and S. Guo, Reduction of graphene oxide via Lascorbicacid, Chemical Communications, 46(2010) 1112-1114.(a) Zhang Q., C. F. Lin, Y. H. Jing and C. T. Chang, Photocatalytic reduction of carbon dioxide to methanol and formic acid by graphene-TiO2, Journal of the Air & Waste Management Association, 64 (2014) 578-585. Zhang X.Y. , H. P. Li , X. L. Cui and Y. Lin, Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting, Journal of Materials Chemistry, 20(2010) 2801-2806.(b) Zhang Y., C. Pan, TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. Journal of Materials Science, 46(2011)2622-2626. Zhang Y., S. Wang, Li Li, K. Zhang, J. Qiu, M. Davis, L. J. H. Weeks, Tuning electrical conductivity and surface area of chemically-exfoliated graphene through nanocrystal functionalization. Materials Chemistry and Physics, 135(2012) 1057-1063. Zhao C., A. Krall, H. Zhao, Q. Zhang , Y. Li, Ultrasonic spray pyrolysis synthesis of Ag/TiO2 nanocomposite photocatalysts for simultaneous H2 production and CO2 reduction, International journal of Hydrogen energy, 37(2012) 9967-9976. Zhao Z. H. , J. M. Fan, Z. Z.Wang, Photo-catalytic CO2 reduction using sol–gel derived titania-supported zinc-phthalocyanine, Journal of Cleaner Production,15(2007) 1894–1897. Zhong P., K. L. Ren, G. Liu, Y. Sui,EPR Measurement of Hydroxyl Radicals and Rate Constant of n-Hexadecane Photocatalytic Degradation, Chemical Journal of Chinese Universities, 23 (2002) 2313-2316(In Chinese). Zhou K., Y. Zhu, X. Yang and C. Li, One-pot preparation of graphene/Fe3O4composites by a solvothermal reaction, New Journal of Chemistry, 34(2010) 2950–2955. Zhou S. , Y. Liu, J. Li, Y. Wang, G. Jiang, Z. Zhao, D. Wang, A. Duan, J. Liu, Y. Wei, Facile in-situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO, Applied Catalysis B: Environmental, 158–159(2014) 20–29. Zhou X., T. Shi, J. Wu, H. Zhou, (0 0 1) Facet-exposed anatase-phase TiO2 nanotube hybrid reduced graphene oxide composite: Synthesis, characterization and application in photocatalytic degradation, Applied Surface Science, 287(2013) 359–368 Liang Y., H. Wang, H. S. Casalongue, Z. Chen, H. Dai, TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials, Nano Research, 3(2010) 701-705 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54580 | - |
dc.description.abstract | 隨著全球氣候變暖問題日益嚴重,溫室氣體的排放越來越引起社會廣泛關注。如何在低能耗條件下,有效利用溫室氣體二氧化碳,並將其轉化為能源是本研究的主要目的。理論上CO2在接受H+ 和電子後可以被還原轉化為甲酸與甲醇等能源產物。但由於CO2極其穩定的分子結構而使得上述反應難以時間,因此為了達到CO2良好的還原效率,反應需要有高效率的催化劑的參與和適合的操作條件。本研究採用純石墨與廢棄石墨製備石墨烯-TiO2作為光催化劑進行CO2還原反應。此外,由於該反應機理與材料本身特性、產物種類以及參與反應的自由基均有相關,本研究將從這三個方面入手,深入探討反應機制與路徑。
為瞭解材料自身特性,本研究採用元素分析儀(EA),X光螢光光譜(XRF)與能量散射光譜(EDS)對原材料與最終製備之觸媒進行所含成分分析。利用N2等溫吸脫附儀進行材料表面積之分析。利用X光繞射光譜儀對材料晶型結構進行分析。此外,由於材料表面有眾多官能基團,會影響材料表面電性與親水性,從而對材料在液相反應中的效率有一定程度之影響。為瞭解這些官能基團特性,本研究利用傅立葉轉換紅外光譜(FTIR) 和X射線光電子能譜(XPS)對材料表面官能集團進行分析。另外通過穿透式電子顯微鏡(TEM) 對材料進行表觀形態分析之結果顯示,通過純石墨製備之觸媒中碳的主要存在形態是單層石墨烯。反之,在以廢棄物製備之觸媒中則出現多層石墨烯堆疊在一起之情形。光催化材料之光學特性與電子移轉能力則分別利用紫外-可見分光光度計與光電化學測試系統進行分析。 為評估環境因素對還原產率之影響,本實驗亦探討部份環境因素如石墨烯負載量,催化劑投加量,pH值和回收次數等對還原產率之影響。實驗結果顯示,在40%石墨烯-TiO2投加量為0.4 g L-1時,可見光CO2光催化還原反應在中性條件下可以達到最佳產物產率。隨著觸媒投加量的增加,反應效率初始呈現上升趨勢。但是觸媒投加量過多的條件下,會對光產生一定程度的遮蔽作用,進而使產物產率呈現下降趨勢。此外,因為石墨烯負載量與材料本身之電子轉移能力直接相關,所以隨著石墨烯負載量之增加,反應效率亦呈現上升趨勢。此外由於在不同pH條件下,CO2在水中之溶解形態不同,表面所帶電量也不同,在催化反應發生時會與表面帶電的材料產生不同吸附或排斥作用,進而對反應產率產生影響。最後,為了探討自製觸媒材料之穩定性,本研究對回收材料的光還原效能亦進行評估,其結果顯示在回收2次以後,觸媒催化性能基本穩定,仍具有較好之催化能力,適宜回收再利用。 最後,為了整體瞭解該還原反應之反應機理,本研究從最終產物種類與反應產生之自由基兩個方面進行深入探討。實驗結果顯示,利用石墨烯-TiO2對CO2進行光化學還原的主要產物是甲酸和甲醇,其中甲酸的產量持續高於甲醇。而利用電子自旋光譜(ESR)對反應產生自由基進行偵測之結果顯示,在反應進行過程中有一氧化碳自由基生成。結合文獻分析得知一氧化碳自由基通過與氫離子與電子結合反應後,可以產生甲醇。結合最終產物種類與自由基檢測結果,本研究進行之CO2光催化反應之路徑可以歸納總結為CO2 → HCOOH → CH2O → CH3OH 和 HCO3- → ∙CO2- → ∙CO- → CH3OH兩種方式。 基於本研究進行機理研究之成果,採用兩種動力學模型對反應進行模擬:(1) 擬一級反應動力學模型:假設在反應階段,溶解于水中之CO2於不同產物之轉換均符合擬一級反應動力學模型,並以此對反應資料進行擬合。(2) 近似穩態模型:該模型適用於系統中具有不確定濃度中間體的自由基反應。故於本研究中,根據機理分析得出之CO2還原路徑,利用近似穩態模型(PSSH)對中間產物與最終產物進行資料擬合。 綜上所述,本研究成功利用純石墨與廢棄石墨進行石墨烯-TiO2材料之製備,並成功將該材料應用於CO2還原反應,更進一步針對反應機理與動力學進行深入探討。 | zh_TW |
dc.description.abstract | The continuous increase in concentration of CO2 in the atmosphere, as well as the depletion of fossil fuels, has become a public concern in recent years. The use of solar energy (i.e., unlimited energy) to convert CO2 as fuels, such as formic acid and methanol, could address those concerns. The reactions for the generation of these fuels are based on the premise that dissolved CO2 can be reduced by accepting protons and electrons. Promoting the reduction reaction requires catalysts with high efficiency under favorable operation conditions. Two kinds of graphene-loaded TiO2, which were prepared from pure graphite and waste graphite, were used in this research to convert CO2 into fuels. This dissertation also focused on the mechanism of the reactions that are related to the characteristics of the catalysts, the selectivity of the final products, and the radicals involved in the reaction.
In this research, the components of the catalysts were characterized via elemental analysis (EA), X-ray fluorescence (XRF), and energy-dispersive spectroscopy (EDS). The surface area was determined using an N2 adsorption/desorption isotherm analyzer (BET). X-ray diffraction (XRD) results confirmed that TiO2 had a mixed crystal phase of anatase and rutile. Functional groups that could affect the surface potential and polarity of the catalyst were determined via Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The presence of single- and multi-layered graphene was determined via morphological studies, specifically transmission electron microscopy (TEM). The optical characteristics and charge transfer ability of the catalysts were tested via UV-visible (UV-Vis) spectroscopy and photoelectrochemical analysis. To obtain the highest conversion efficiency, parameters such as graphene loading, catalyst loading, pH, and recycle times were analyzed. The maximum yield of the final products was obtained with 40% graphene loading and 0.4 g L-1 catalytic loading at neutral condition under visible light irradiation. Based on the results, the penetration efficiency of light was related to catalytic loading, which can inhibit the efficiency when the catalysts were loaded in excess. Furthermore, the efficiency of the reaction was also affected by graphene loading because of the charge separation ability of the different catalysts. Moreover, the relationships between the surface potential of the catalysts and the carbon species in the solution at varying pH were also found to be critical factors that affected CO2 reduction. The recycled catalysts exhibited stable reduction efficiency after two recycle times, thereby indicating the possibility for reuse. The final products and the radicals generated in the intermediate reaction step were identified to determine the plausible mechanism of the reaction. In this research, Gas Chromatography Mass Spectrometry (GC-MS) results showed that the final products were formic acid and methanol. Electron paramagnetic resonance (ESR), which can be used to analyze unpaired electrons, was utilized to determine and identify the radicals involved in the reaction. The ESR results indicate that carbon monoxide radicals were present, and these radicals can react with hydrogen ions and electrons to generate CH3OH. Combining the results of ESR and GC-MS, the possible reduction paths can be summarized as CO2→ HCOOH → CH2O → CH3OH and CO2 →∙CO2−→∙CO- → CH3OH. Two kinetic models were then developed based on the result of mechanism studies. First, the kinetic model for formic acid and methanol can be assumed to be a pseudo-first order model. Second, based on the possible pathway of CO2 reduction, the pseudo-steady-state hypothesis (PSSH) model was also utilized. This model was suit for the system with several intermediates of unknown concentration and was then utilized to investigate the process of CO2 reduction. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:05:40Z (GMT). No. of bitstreams: 1 ntu-104-D01541011-1.pdf: 5399991 bytes, checksum: 6c27b424f31460dcdf78fc283ef75482 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | Abstract x
Chinese abstract xii Chapter 1 Introduction 1 1.1 Background 2 1.2 Research objective and approach 3 1.3 Organization 4 1.4 Contributions 5 Chapter 2 Literature review 7 2.1 Foundation of the photocatalytic reaction and catalytic selection 7 2.2 Preparation of graphene and graphene-TiO2 10 2.3 Parameters for CO2 reduction 21 2.4 The mechanism of CO2 photoredcution 32 Chapter 3 Materials and methods 37 3.1 Preparation of catalysts 38 3.2 CO2 reduction 40 3.3 The mechanism research 45 Chapter 4 The characteristics of the catalysts 47 4.1 Components 47 4.2 Surface area 49 4.3 Crystal phase 50 4.4 Surface functional groups 51 4.5 Morphology 57 4.6 Optical Analysis 59 4.7 Photoelectrochemical Analysis 62 4.8 Summery 63 Chapter 5 The performance of the catalysts 64 5.1 Effects of graphene loading 64 5.2 Effects of catalytic loading 69 5.3 Effects of pH 72 5.4 Effect of recycle times 75 5.5 Summery 81 Chapter 6 Mechanism and Kinetics 82 6.1 Mechanisms 82 6.2 Kinetics modeling 88 6.3 Summary 102 Chapter 7 Conclusions and Recommendation 103 7.1 Conclusions 103 7.2 Recommendation 104 Reference 106 | |
dc.language.iso | en | |
dc.title | 利用純與廢棄石墨製備含鈦石墨烯負載TiO2及其應用於二氧化碳還原為燃料之研究 | zh_TW |
dc.title | Photo reduction of CO2 to fuel with graphene-TiO2 made from pure and waste graphite under visible light | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 李俊福,顧洋,張章堂,林坤儀,席行正 | |
dc.subject.keyword | graphene,TiO2,CO2 reduction, | zh_TW |
dc.subject.keyword | 石墨烯負載TiO2,二氧化碳還原, | en |
dc.relation.page | 119 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-06-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 5.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。