請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54575完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張慶瑞(Ching-Ray Chang) | |
| dc.contributor.author | Yi-Siang Lin | en |
| dc.contributor.author | 林詣翔 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:05:21Z | - |
| dc.date.available | 2015-07-20 | |
| dc.date.copyright | 2015-07-20 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2015-06-28 | |
| dc.identifier.citation | [1] D. Sophin Seeli. “A Study on Fractal Image Compression using Soft Computing Techniques”. IJCSI, 9, No. 2. 420-430 ( Nov, 2012)
[2] J. J. SANKURAI. “Modern Quantum Mechanics”. Addison-Wesley, New York, revised edition (1994). 5, 54, 61, 119 [3] ROLAND WINKLER. “Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole System”. Springer, Berlin (2003). 7, 9 [4] A. BUNDE, S. HAVLIN. “Fractals in Science”. Springer, Berlin (1994). 1 [5] B. MANDELBROT. “How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension”. Science, New Series. 156, No. 3775. 636-638 (May 5, 1967) [6] M. ALI OMAR. “Elementary Solid State Physics: Principles and Applications”. Addison-Wesley (Jan 10, 1994) [7] MING-HAO LIU. “Spatial Behavior of Electron Spin in Low-Dimensional Systems”. National Taiwan University Doctoral Dissertation (Jun 6, 2008). 73 [8] SUPRIYO DATTA. “Electronic Transport in Mesoscopic Systems”. Cambridge University Press, Cambridge (1995). 67, 70, 74, 81 [9] https://orderinchaos.worpress.com/tag/sierpinski-triangle [10] T. A. Witten, Jr. and L. M. Sander. “Diffusion-limited aggregation, a kinetic critical phenomenon”. Phys. Rev. Lett. 47, 1400-1403 (1981) [11] B. K. Nikolić, S. Souma, L. P. Zârbo and J. Sinova. “Nonequilibrium Spin Hall Accumulation in Ballistic Semiconductor Nanostructures”. Phys. Rev. Lett. 95, 046601 (Jul 20, 2005) [12] HARTMUT HAUG, ANTTI-PEKKA JAUHO. “Quantum Kinetics in Transport and Optics of Semiconductors”. Springer, Berlin (2008) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54575 | - |
| dc.description.abstract | 本論文中,我們利用蘭道方程式計算電荷與其自旋在規則碎形和隨機碎形中的傳輸行為,除此之外,我們考慮兩種裝置在這兩種情況,一個連接兩個極版,另一個連接四個極版。在規則碎形中,我們發現當樣本中的晶格缺陷數達到某一定值,電荷和電子只會被侷限在較高的電位處,且此傳輸係數的值與導體中可穿過的路徑有著公式化的規則;在隨機碎形中,我們不只更深入地尋找三種不同晶格結構的臨界機率,並探討電荷與其自旋的特性,它們表現出與參考數值相同的現象;正方形晶格、正三角形晶格和六角形蜂巢晶格的臨界機率分別是0.59,0.50和0.70。 | zh_TW |
| dc.description.abstract | In the thesis, we calculate transmission coefficients of charge and spin in deterministic and random fractals by using Landau-Keldysh formalism. Besides, consider two setups, two leads and four leads, in both of cases. In the deterministic fractals, we find out that charge and spin are only accumulated in the beginning of the applied bias when the amount of defects increase to a designated value. And, transmission coefficients are followed a formula which is related with opened tunnels in the conductor. In the random fractals, we not only do a deeply studying to seek that values of threshold probability in three kind lattices but also are looking for the properties of charge and spin. They express the same as our reference values. The square lattice, triangular lattice and honeycomb lattice are 0.59, 0.50 and 0.70 for each. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:05:21Z (GMT). No. of bitstreams: 1 ntu-103-R01222043-1.pdf: 8227763 bytes, checksum: 44fefd55676c7deedec182bedfe78a29 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
致謝 i 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF TABLES ix LIST OF ABBREVIATION x Chapter 1 Introduction 1 1.1 Motivation 2 1.2 Two-Dimensional Electron System 2 1.3 Spin-Orbit Coupling 3 1.4 Fractals 4 Chapter 2 Landau-Keldysh Formalism 6 2.1 Modeling a Landau Setup 7 2.2 Constructing the Hamiltonian 7 2.3 Derivation of Lesser Green Function 8 2.4 Observed Physical quantities 9 Chapter 3 Non-equilibrium Transport on Deterministic Fractals 11 3.1 The Sierpinski Carpet 12 3.2 Transport on the Sierpinski Carpet 13 3.2.1 Connected with Two Leads 15 3.2.2 Connected with Four Leads 24 3.3 Summary 28 Chapter 4 Non-equilibrium Transport on Random Fractals 29 4.1 Percolation 30 4.2 Transport on the Percolation Network 32 4.2.1 Connected with Two Leads 36 4.2.2 Connected with Four Leads 42 4.3 Summary 47 Chapter 5 Conclusion 48 REFFERENCE 49 | |
| dc.language.iso | en | |
| dc.subject | 碎形 | zh_TW |
| dc.subject | 傳輸係數 | zh_TW |
| dc.subject | 臨界機率 | zh_TW |
| dc.subject | 蘭道方程式 | zh_TW |
| dc.subject | 臨界機率 | zh_TW |
| dc.subject | 碎形 | zh_TW |
| dc.subject | 蘭道方程式 | zh_TW |
| dc.subject | 傳輸係數 | zh_TW |
| dc.subject | fractals | en |
| dc.subject | Landau-Keldysh formalism | en |
| dc.subject | fractals | en |
| dc.subject | transmission coefficients | en |
| dc.subject | threshold probability | en |
| dc.subject | Landau-Keldysh formalism | en |
| dc.subject | transmission coefficients | en |
| dc.subject | threshold probability | en |
| dc.title | 自旋電子於二維類碎形結構的傳輸行為 | zh_TW |
| dc.title | Spin Transport on Two-Dimensional Fractal-liked Structure | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡崇德(Chong-Der Hu),陳松賢(Son-Hsien Chen) | |
| dc.subject.keyword | 蘭道方程式,碎形,傳輸係數,臨界機率, | zh_TW |
| dc.subject.keyword | Landau-Keldysh formalism,fractals,transmission coefficients,threshold probability, | en |
| dc.relation.page | 50 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-06-29 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 8.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
