請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54548完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭宗甫(Tzong-Fu Kuo) | |
| dc.contributor.author | JunJie Huang | en |
| dc.contributor.author | 黃俊杰 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:03:37Z | - |
| dc.date.available | 2020-07-20 | |
| dc.date.copyright | 2015-07-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-01 | |
| dc.identifier.citation | American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2006, 29(1): 43-48.
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2013, 36(1): S67-S74. Anitua E. Plasma rich in growth factors: Preliminary results of use in the preparation of future sites for implants. Int J Oral Maxillofac Implants, 1999, 14: 529-535. Anitua, E. et al. Platelet-rich plasma: preparation and formulation. Oper. Tech. Ortho, 2012, 22: 25–32. Antyghem MC, Fajardy I, Pigny P, et al. Kinetics of diabetes -associated autoantibodies after sequential intraportal islet allograft associated with kidney transplantation in type I diabetes. Diabetes-Metab, 2003, 29(6): 595- 601. Appel MC, Rossini AA, Williams RM, et al. Viral studies in streptozotocin- induced pancreatic insulitis. Diabetologia, 1978, 15 (4): 327-336. Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet, 2001, 358(9277): 221-229. Babbush CA, Kevy SV, Jacobson MS. An in vitro and in vivo evaluation of autologous platelet concentrate in oral reconstruction. Implant Dent, 2003, 12: 24-34. Bailey CJ, Turner RC. Metformin. N Engl J Med, 1996, 334(9): 574-579. Barratt BJ, Payne F, Lowe CE, et al. Remapping the insulin gene IDDM2 locus in type 1 diabetes. Diabetes, 2004, 53(7): 1884-1889. Beyth S, Borovsky Z, Mevorach D, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T cell unresponsiveness. Blood, 2005, 105: 2214-2219. Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function. Cell, 2001, 5 (7): 829-841. Bonifacio E, Genovese S, Braghi S, et al. Islet autoantibody markers in IDDM: Risk assessment strategies yielding high sensitivity. Diabetologia, 1995, 38: 816-822. Bottini N, Muscumeci L, Alonso A, et al. A functional variant of lympoid tyrosine phosphatase is associated with type 1 diabetes. Nat Genet. 2004, 36(4): 337-338. Boyle JP, Honeycutt AA, Narayan KM, et al. Projection of diabetes burden through 2050: impact ofchanging demography and disease prevalence in the U.S. Diabetes Care, 2001, 24 (11): 1936-1940. Bucher P, Mathe Z, Bosco D, et al. Islet of Langerhans transplantation for the treatment of type I diabetes. Swiss-Surg, 2003, 9(5): 242- 246. Buyukdevrim AS. Islet pathology in streptozotocin-induced auto-immune diabetic mice: new insights into clinical practice. Diabete Metab, 1994, 20(2): 87-94. Cao LZ, Tang DQ, Horb ME, et al. High glucose is necessary for complete maturation of Pdx1-VP16–expressing hepatic cells into functional insulin-producing cells. Diabetes, 2004, 53: 3168-3178. Cap lan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends in Molecular Medicine, 2001, 7: 259-264. Caplan A. Mesenchymal stem cells. J Ortho Res, 1991, 9: 641-650.Grigoriadis AE, Heersche JN, Aubin JE. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in bone-derived clonal cell population: effect of dexamethasone. J Cell Biol, 1988, 106(6): 2139-2151. Chakrabarti SK, Mirmira RG. Transcription factors direct the development and function of pancreatic βcells. Trends Endocrinol Metab, 2003, 14(2): 78-84. Chang IC, Tsai CH, Chang YC. Platelet-rich fibrin modulates the expression of extracellular signal regulated protein kinase and osteoprotegerin in human osteoblasts. J Biomed Mater Res A, 2010, 95 (1): 327-332 Chen LB, Jiang XB, Yang L. Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol, 2004, 10(20): 3016-3020. Chen Yao Su, et al. In vitro release of growth factors from platelet-rich fibrin (PRF): a proposal to optimize the clinical applications of PRF. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009, 108: 56-61. Chentoufi AA, Polychronakos C. Insulin expression levels in the thymus modulate insulin-specific autoreactive T cell tolerance: the mechanism by which the IDDM2 locus may predispose to diabetes. Diabetes, 2002, 51: 1383-1390. Chiasson JL, Josse RG, Gomis R, et al. Acarbose for the prevention of diabetes mellitus: the STOP-NIDDM randomised trial. 2002, 359(9323): 2072-2077. Choukroun J, Adda F. Schoeffler C, et al. Une opportunite? En paro-implantologie:le PRF. Implantodontie, 2000, 42: 55-62. Davani S, Marandin A, Mersin N, et al. Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation, 2003, 108(1): 253-258. David M, Joseph C, Antoine D, et aI. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part III: Leucocyte activation: A new feature for platelet concentrates? Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006, 101: E51-55. David M, Joseph C, Antoine D, et al. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part II: Platelet-related biologic features. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006, 101: E45-50. David M. Dohan, Joseph Choukroun, Antoine Diss, Steve L. Dohan,Anthony. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. OOOOE, 2006, 101(3): E37-E44. Dohan DM, de peppo GM, Doglioli P, et al. Slow release of growth factors and thrombospondin-1 in Choukroun's platelet-rich fibrin (PRF):A gold standard to achieve for all surgical platelet concentrates technologies. Growth Factors, 2009, 27(1): 63-69. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006, 8(4): 315-317. Elias D, Prigozin H, Rapoport M et al. Autoimmune diabetes induced by the beta-cell toxin STZ immunity to the 60-KDa heat shock protein and to insulin. Diabetes, 1994, 43(8): 992-998. Engelgau MM, Geiss LS, Saaddine JB, et al. The evolving burden of diabetes in the United States. AnnIntern Med, 2004, 140(11): 945-950. EURODIAB ACE Study Group. Variation and trends in incidence of childhood diabetes in Europe. Lancet, 2000, 355(9207): 873-876. Florez JC. Clinical review: the genetics of type 2 diabetes: arealistic appraisal in 2008. J Clin Endocrinol Metab, 2008, 93: 4633-4642. Fortier LA, Nixon AJ, Williams J. Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am J Vet Res, 1998, 59: 1182-1187. Friedenstein A. Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Immunology of Bone Transplantation. Berlin: Springer-Verlag, 1980, 25: 19-22. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol, 1976, 4(5): 267-274. Fuerst G, Gruber R, Tangl S, et al. Enhanced bone-to-implant contact by platelet-released growth factors in mandibular cortical bone: a histomorphometric study in minipigs. Int J Oral Maxillofac Implants, 2003,18: 685-690. Ghilzon R, McCulloch CA, Zohar R. Stromal mesenchymal progenitor cells in process citation. Leuk Lymphoma, 1999, 32: 211-222. Hagopian WA, Sanjeevi CB, Kockum I, et al. Glutamate decarboxylase-, insulin-, and islet cell-antibodies and HLA typing to detect diabetes in a general population-based study of Swedish children. J Clin Invest, 1995, 95: 1505-1511. Hawkes CJ, Schloot NC, Marks J, et al. T-cell lines reactive to an immunodominant epitope of the tyrosine phosphatase-like autoantigen IA-2 in type 1 diabetes. Diabetes, 2000, 49(3): 356-366. Hess D, Li L, Martin M, et al. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol, 2003, 21(7): 763-770. Hogan P, Dall T, Nikolov P. Economic costs of diabetes in the US in 2002. Diabetes Care, 2003, 26 (3): 917-932. Hotz G. Alveolar ridge augmentation with hydroxylapatite using fibrin sealant for fixation, Part II : Clinical application. J Oral Maxillofac Surg, 1991, 20: 208-213. Hundal RS, Krssak M, Dufour S, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes, 2000, 49(12): 2063-2069. Ikebukuro K, Adachi Y, Yamada Y, et al. Treatment of streptozotocin-induced diabetes mellitus by transplantation of islet cells plus bone marrow cells via portal vein in rats. Transplantation, 2002, 73(4): 512-518. Jahr H, Bretzel RG. Insulin-positive cells in vitro generated from rat bone marrow stromal cells. Transplant Proc, 2003, 35: 2140-2141. James H,Manuel S,Denize W.Biophysical and pharmacological properties of thevoltage-gated potassium current of human pancreatic β-cells. J Physiol, 2005, 567(1): 159-175. Jia YJ, Zhong L, Song JH, et al. Rat bone marrow mesenchymal stem cells transdifferentiated into islet-secreting cells in vitro. Chin J Comtemp Pediatx, 2003, 5(5): 393-397. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418: 41-49. Jones PH, Harper S, Watt FM, et al. Stem cell patterning and fate in human epidermis. Cell, 1995, 80(1): 83-93. Jordan MS, Boesteanu A, Reed AJ et al. Thymic election of CD4+ CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol, 2001, 2: 301- 306. Joseph C, Antoine D, Alain S, et al. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part IV: Clinical effects on tissue healing. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006, 101: E56-60. Joseph C, Antoine D, Alain S, et al. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part V: Histologic evaluations of PRF effects on bone allograft maturation in sinus lift. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006, 101: 299-303. Kassem M. Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning Stem Cells, 2004, 6: 369-374. Kiess W, Bottner A, Paffe K, Kapellen T, Miiller G, Galler A,Paschke P, Wabitsch M. Type 2 diabetes mellitus in children and adolescents: a review from a European perspective. Horm Ree, 2003; 59 (11): 77-84. Knox P, Crooks S, Rimmer CS. Role of fibronectin in the migration of fibroblasts into plasma clots. J Cell Biol, 1986, 102: 2318. Kojima H, Fujimiya M, Matsumura K, et al. Extra pancreatic insulin-producing cells in multiple organs in diabetes. Proc Natl Acad Sci, 2004, 101: 2458-2463. Konda S, Iwata I, Anzai K et al. Suppression of insulitis and diabetes in β cell-deficient mice treated with streptozocin: β cells are essential for the TCR clonotype spreading of islet-infiltrationg T cells. Inter Immunol, 2000, 12(7): 1075-1083. Krause DS, Theise ND, Collector MI, et al. Mufti-organ, mufti-lineage engraftment by a single bone marrow-derived stem cells. Cell, 2001, 105: 369-377. Krentz AJ, Ferner RE, Bailey CJ. Comparative tolerability profiles of oral antidiabetic agents. Drug Saf, 1994, 11(4): 223-241. Larsen CM, Faulenbach M,Vaag A, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med, 2007, 356: 1517-1526. Le Blanc K, Pittenger M. Mesenchymal stem cells: Progress toward promise. Cytoherapy, 2005, 7: 36-45. Lebovitz HE. α-Glucosidase inhibitors as agents in the treatment of diabetes. Diabetes Revs, 1998, 6(2): 132-145. Lee VM, Stoffel M. Bone marrow: An extra-pancreatic hideout for the elusive pancreatic stem cell? J Clin Invest, 2003, 111: 799-801. Levenberg S,Golub JS,Amit M,et al.Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci, 2002, 99(7): 4391-4396. Like AA, Appel MC, Williams RM et al. Streptozotocin-induced pancreatic insulitis in mice. Morphologic and physiologic studies. Lab Invest, 1978, 38(4): 470-86. Like AA, Rossini AA. Streptozotocin- induced pancreatic insulitis: new model of diabetes mellitus. Sci, 1976, 193(4251): 415-417. List JF, Habener JF. Glucagon-like peptide 1 agonists and the development and growth of pancreatic beta-cells. Am J Physiol Endocrinol Metab, 2004, 286(6): 875-881. Martin JM, Trink B, Daneman D, et al. Milk proteins in the etiology of insulin-dependent diabetes mellitus ( IDDM) . Ann Med, 1991, 23(4): 447-452. Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1998, 85(6): 638-646. Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP. Implant Dent, 2001, 10(4): 225-228. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med, 2001, 226(6): 507-520. Mohammad Mahboob Kanafi, Yajaman Bajjappa Rajeshwari, Sarita Gupta, Nidheesh Dadheech, Prabha Damodaran Nair, Pawan Kumar Gupta& Ramesh Ramchandra Bhonde. Transplantation of islet-like cell clusters derived from human dental pulp stem cells restores normoglycemia in diabetic mice. Cytotherapy, 2013, 15: 1228-1236. Nakamura M, Nagafuchi S, Yamaguchi K et al. The role of thymic immunity and insulitis in the development of streptozotocin-induced diabetes in mice. Diabetes, 1984, 33: 894-900. Oh SH, Muzzonigor TM, Bae SH, et al. Adult bone marrow-derived cells trans-differentiating into insulin-Producing cells for the treatment of type l diabetes. Lab Invest, 2004, 84(5): 607-617. Oli JM. Remittant diabetes mellitus in Nigeria. Trop Geogr Med, 1978, 30(1): 57-62. Paik SG, Fleischer N, Shin SI. Insulin dependent diabetes mellitus induced by subdiabetogenic doses of streptozotocin: obligatory role of cell mediated autoimmune process. Proc Nat Acad Sci USA, 1980, 77: 6129-6133. Patel DD. Escape from tolerance in the human X-linked autoimmunity-allergic disregulation syndrome and the Scurfy mouse. J Clin Invest 2001, 107(2): 155-157. Petersen BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells. Science, 1999, 284: 1168-1170. Pieper AA, Brat DJ, Krug DK, et al, Poly (ADPribose) polymerase deficient mice are protected from streptozotocin induced diabetes. Proc Natl Acad USA Sci, 1999, 96(6): 3059-3064. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult mesenchymal stem cells. Science, 1999, 284(5411): 143-147. Plumas J, Chaperot L, Richard MJ, et al. Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia, 2005, 19: 1597-1604. Pociot F, Akolkar B, Concannon P, et al. Genetics of type 1 diabetes: what's next? Diabetes, 2010, 59(7): 1561-1571. Pugliese A, Zeller M, Fernandez A, et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet, 1997, 15: 293-297. Qiu Q, Ducheyne P, Gao H, et al. Formation and differentiation of three-dimensional rat marrow stromal cell culture on microcarriers in a rotating-wall vessel. Tissue Eng, 1998, 4(1): 19-34. Quirici N, Sologo D, Bossalasco P, et al. Isolation of bone marrow cells by anti-nerve growth factor receptor antibodies. Exp Hematol, 2005, 30: 783-791. R. Riachy, B. Vandewalle, E. Moerman, S. Belaich, B. Lukowiak, V. Gmyr, G.Muharram, J. Kerr Conte, F. Pattou. 1, 25-dihydroxyvitamin D3 protects human pancreatic islets against cytokine-induced apoptosis via down-regulation of the fas receptor Apoptosis, 2006, 2: 151-159. Ru G,Jarkko U,Mari-Anne P,et al. Characterization of Endocrine Progenitor Cells and Critical Factors for Their Differentiation in Human Adult Pancreatic Cell Culture. Diabetes, 2003, 52: 2007-2015. Saeki K, Zhu M, Kubosaki A, et al. Targeted disruption of the protein tyrosine phosphatase-like molecule IA-2 results in alterations in glucose tolerance tests and insulin secretion. Diabetes, 2002, 51(6): 1842-1850. Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cellsfrom bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest, 2002, 109: 1291-1302. Shamblott MJ, Axelman J, Wang S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA, 1998, 95(23): 13726-13731. Shan S,Igor T,Michael C.Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus. Bio electrochemistry, 2006, 69(1): 127–135. Sher E, Giovannini F, Codignola A, et al. Voltage-operated calcium channel heterogeneity in pancreatic beta cells: physiopathological implications. J Bioenerg Biomembr, 2003, 35(6):687-696. Shoichiro S, Gu Y, Akihito H, et al. Stem Cells and Regenerative Medicine for Diabetes Mellitus. Pancreas, 2004; 29(3): e85-e89. Skyler JS, Oddo C. Diabetes trends in the USA. Diabetes Metab Res Rev, 2002, 18(3): 21-26. Sonnleitner D, Huemer P, SullivanDY A simplified technique for producing platelet rich plasma and platelet concentrate for intraoral bone grafting techniques: a technical note. J Oral Maxillofac Implants, 2000, 15: 879-882. Stumvoll M, Nurjhan N, Perriello G, et al. Metabolic effects of metformin in non-insulin-dependent diabetesmellitus. N Engl J Med, 1995, 333(9): 550-554. Suarez-Pinzon W, Rajotte RV, Mosmann TR, et al, Both CD4+ and CD8+ T-cells in the syngenic islet in NOD mice produce interferon-gamma during beta-cell destruction. Diabetes, 1996, 45: 1350. Sunitba Kaja V, Muniratbnam Naidu E. Platelet-rich fibrin: Evaluation of a second generation platelet concentrate. lndian J Dent Res, 2008, 19(1): 42-46. Tang DQ, Cao LZ, Burkhardt BR, et al. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes, 2004, 53(7): 1721-1732. Tang DQ, Cao LZ, Burkhardt BR, et al. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes, 2004, 53(7): 1721-1732. Tayapongsak P, O‘Brine DA, Monteiro CB, et al. Autologous fibrin adhesive in mandibular reconstruction with particulate cancellous bone and marrow. J Oral Maxillofac Surg, 1994, 52(2): 161-165. Terashima T, Kojima H, Fujimiya M, et al. The fusion of bone-marrow-derived proinsulin-expressing cells with nerve cells underlies diabetic neuropathy. Proc Natl Acad Sci, 2005, 102: 12525-12530. Traycoff CM, Abboud MR, Laver J, et al. Evaluation of the in vitro behavior of phenotypically defined populations of umbilical cord blood hematopoietic progenitor cells. Exp Hematol, 1994, 22(2): 215-222. Vaca P, Berna G, Martın F, et al. Nicotinamide induces both proliferation and differentiation of embryonic stem cells into insulin-producing cells. Transplantation Proceedings, 2003, 35(5): 2021-2023. Varela CR, Ellis R, Sgarbi G, et al. Characterization of the T-cell response to coxsackie virus B4: evidence that effect or memory cells predominate in patients with type 1 diabetes. Diabetes, 2002, 51(6): 1745-1753. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 2004, 27(5): 1047-1053. Witman DH, Berry RL, Green DM. Platelet gel: An autologous alternative to fibrin glue with application in oral and maxillofacial surgery. J Oral Maxillofac Surg, 1997, 55: 1294-1299. Zheag XX, Steele AW, Hancock WW, et al. A nomcutolytic IL10/ Fc fusion protein prewents diabetes, blocks autoimmunity, and peomotes suppressor phenomena in NOD mice. Immunol, 1997, 158: 4507. Zohar R, Sodek J, McCulloch CA. Characterization of stromal progenitor cells enriched by flow cytometry. Blood, 1997, 90: 3471-3481. Zuk PA, Zhu Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 2001, 7(2): 211-228. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54548 | - |
| dc.description.abstract | 糖尿病 (Diabetes Mellitus, DM) 是一種由於體內缺乏胰島素或是胰島素在靶細胞不能發揮正常的生理作用而起的糖、蛋白質和脂肪代謝紊亂,表現為高血糖的一種綜合性的慢性代謝性病症。是由遺傳因素和環境因素相互作用所引起的常見病,高血糖為其主要的臨床標誌,常見症狀主要有多飲、多尿、多食以及消瘦等。其分為I型糖尿病與 II型糖尿病。I型糖尿病是一種慢性疾病,其特徵為自身免疫系統破壞分泌胰島素的胰腺β細胞,結果導致自身無法產生足夠的胰島素,並引起空腹和餐後高血糖。典型症狀是多尿,煩渴,並多食。
幹細胞 (Stem Cell, SC) 是一類具有自我複製能力和分化能力的未分化或分化程度較低的細胞。一部分幹細胞位於成體組織,如間質幹細胞 (Mesenchymal Stem Cells, MSCs),其為一種多能幹細胞,可分化為心肌細胞、軟骨細胞、脂肪細胞等間質幹細胞在不同條件下可分化為多種細胞,為臨床上的應用提供了很大的可能性。 血小板,除具有凝集作用外,還含有許多與細胞增殖有關的因子存在。在組織修復和再生過程中,可調節體內新陳代謝,並促進組織的修復和癒合。富血小板纖維蛋白 (Platelet-rich Fibrin, PRF) 的製作過程簡便,無添加,條件溫和。纖維蛋白的聚合過程是緩慢而自然的凝結過程,與正常的纖維蛋白網的聚合過程類似,這種結構可以導致引導細胞遷移、增殖和癒合能力的增強,並且可以網羅住更多的血小板,讓血小板生長因子緩慢釋放,延長作用的時間。 本文利用間質幹細胞配合PRF的釋放液通過靜脈注射治療I型糖尿病小鼠,以及間質幹細胞在體外定向誘導分化成為類胰島細胞分泌團塊進行治療,並對其結果進行評估與比較。通過對血糖結果與組織學的評估得到結論,通過靜脈注射幹細胞、PRF釋放液、分化後的細胞都能對胰臟起到修復的作用,治療效果為分化後的細胞與間質幹細胞配合PRF釋放液相當,且最好,單獨使用間質幹細胞效果其次,單獨使用PRF釋放液效果最差。 | zh_TW |
| dc.description.abstract | Diabetes Mellitus is a serious disease in which the body cannot properly control the amount of sugar in your blood because it does not have enough insulin. And it can be divided into Type I diabetes and Type II diabetes. Type I diabetes mellitus is a chronic disease characterized by the autoimmune destruction of insulin-secreting pancreatic beta-cells, which results from the body's failure to produce enough insulin and gives rise to fasting and postprandial hyperglycemia. The classic symptoms are polyuria (excessive urination), polydipsia (excessive thirst), and polyphagia (excessive hunger).
Stem Cells are an unspecialized cell that gives rise to differentiated cells. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells which can differentiate into cardiac cells, chondrocytes, adipocytes and so on. And mesenchymal stem cells can differentiate into differentiate into specific cells under different conditions. Platelet-rich fibrin (PRF) is a source of autogenic neotype biomaterial, which is rich in cytokine and growth factors, and is called new generation of platelet concentrates. The molecular constitution of PRF is similar to nature blood clot, and to provide location with migration, proliferation, and differentiation for rhagiocrine cell. Currently, the slow polymerization during PRF preparation seems to generate a fibrin network very similar to the natural one. Such a network leads to a more efficient cell migration and proliferation and thus cicatrization. In our research, the mesenchymal stem cells derived from mouse bone marrow and adipose can be induced to proliferate and differentiate into islet-like cell clusters and to form islet-like structure. The stem cell differentiated islet could ameliorate the glyco metabolic disorder in diabetic animals and the result is as good as the group which use mesenchymal stem cells with PRF releasate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:03:37Z (GMT). No. of bitstreams: 1 ntu-104-R02629020-1.pdf: 2396193 bytes, checksum: 2c64d7719baab4e89cafd0523837445f (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 致謝 I
英文縮寫對照表 III 摘要 V Abstract VII 目錄 1 圖目錄 4 表目錄 7 第一章 緒言 8 第二章 文獻回顧 11 2.1 糖尿病 11 2.1.1定義 11 2.1.2病因 12 2.1.3臨床表現 14 2.1.4診斷 16 2.1.5傳統治療 17 2.2 幹細胞 19 2.2.1骨髓幹細胞 20 2.2.2幹細胞體外分化 21 2.3 富血小板纖維蛋白(PRF) 23 第三章 材料與方法 27 3.1材料 27 3.2儀器 29 3.3 實驗方法 30 3.3.1實驗動物 30 3.3.2小鼠骨髓幹細胞的製備 31 3.3.3流式細胞儀分離純化細胞 32 3.3.4間質幹細胞的體外分化 32 3.3.5細胞染色 33 3.3.6 ELISA 33 3.3.7兔子富血小板纖維蛋白(PRF)的製備 35 3.3.8實驗動物模型的建立 35 3.3.9藥物的給予途徑、劑量與時間 36 3.3.10 統計方法 36 第四章 實驗結果 37 4.1 小鼠骨髓幹細胞的製備結果 37 4.2 間質幹細胞的體外分化的結果 38 4.3 細胞染色的結果 38 4.4 ELISA結果 38 4.5 兔子富血小板纖維蛋白(PRF)釋放液的製備結果 39 4.6 小鼠I型糖尿病模型建立結果 39 4.7 靜脈注射治療糖尿病的血糖結果 40 4.8 切片結果 40 4.9 統計分析結果 41 第五章 討論 42 參考文獻 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 間質幹細胞 | zh_TW |
| dc.subject | I型糖尿病 | zh_TW |
| dc.subject | 類胰島素分泌團塊 | zh_TW |
| dc.subject | 胰島再生 | zh_TW |
| dc.subject | 富血小板纖維蛋白釋放液 | zh_TW |
| dc.subject | 類胰島素分泌團塊 | zh_TW |
| dc.subject | 胰島再生 | zh_TW |
| dc.subject | 富血小板纖維蛋白釋放液 | zh_TW |
| dc.subject | 間質幹細胞 | zh_TW |
| dc.subject | I型糖尿病 | zh_TW |
| dc.subject | Platelet-rich fibrin releasate | en |
| dc.subject | Islet-like cell clusters | en |
| dc.subject | Islets regeneration | en |
| dc.subject | Platelet-rich fibrin releasate | en |
| dc.subject | Mesenchymal stem cells | en |
| dc.subject | Type I diabetes | en |
| dc.subject | Islet-like cell clusters | en |
| dc.subject | Mesenchymal stem cells | en |
| dc.subject | Islets regeneration | en |
| dc.subject | Type I diabetes | en |
| dc.title | 骨髓間質幹細胞併用血小板纖維蛋白釋放液治療I型糖尿病小鼠 | zh_TW |
| dc.title | The Effect of Patelet-rich Fibrin (PRF) Releasate Combines with Bone marrow-derived Mesenchymal Stem Cells on Type I Diabetes Mellitus with a Mouse Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王家義,王建雄 | |
| dc.subject.keyword | I型糖尿病,間質幹細胞,富血小板纖維蛋白釋放液,胰島再生,類胰島素分泌團塊, | zh_TW |
| dc.subject.keyword | Type I diabetes,Mesenchymal stem cells,Platelet-rich fibrin releasate,Islets regeneration,Islet-like cell clusters, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-01 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
