Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54530
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊照彥(Jaw-Yen Yang)
dc.contributor.authorMin-Cheng Chuangen
dc.contributor.author莊閔誠zh_TW
dc.date.accessioned2021-06-16T03:02:27Z-
dc.date.available2019-07-20
dc.date.copyright2015-07-20
dc.date.issued2015
dc.date.submitted2015-07-01
dc.identifier.citation[1] Alekseenko A M., 'Numerical properties of high order discrete velocity solutions to the BGK kinetic equation,' Applied Numerical Mathematics, vol. 61, pp. 410-427, 2011.
[2] Bhatnagar P. L., Cross E. P. and Krook M., 'A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems,' Physical Review, vol. 94, p. 511, 1954.
[3] Bourgat J. F., Tallec P. Le, Perthame B., and Qiu Y., 'Coupling Boltzmann and Euler equations without overlapping,' Contemporary Mathematics, vol. 157, pp. 377-398, 1994.
[4] Bourgat J. F., Tallec P. Le, and Tidriri M. D., 'Coupling Boltzmann and Navier-Stokes equations by friction,' Research Report, RR-2483, 1995.
[5] Bennoune M., Lemou M., and Mieussens L., 'Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotic,' Journal of Computational Physics, vol. 227, pp. 3781-3803, 2008.
[6] Crouseilles N., Degond P., and Lemou M., 'A hybrid kinetic/fluid model for solving the gas dynamics Boltzmann–BGK equation,' Journal of Computational Physics, vol. 199, pp. 776-808, 2004.
[7] Degond P., Jin S., and Mieussens L., 'A smooth transition model between kinetic and hydrodynamic equations,' Journal of Computational Physics, vol. 209, pp. 665-694, 2005.
[8] Degond P., Dimarco G., and Mieussens L., 'A moving interface method for dynamic kinetic–fluid coupling,' Journal of Computational Physics, vol. 227, pp. 1176-1208, 2007.
[9] Dimarco G., Mieussens L., and Rispoli V., 'An asymptotic preserving automatic domain decomposition method for the Vlasov-Poisson-BGK system with applications to plasmas,' Journal of Computational Physics, vol. 274, pp. 122-139, 2014.
[10] Filbet F. and Jin S., 'A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources,' Journal of Computational Physics, vol. 229, pp. 7625-7648, 2010.
[11] Jin S. and Shi Y., 'A micro-macro decomposition based asymptotic-preserving scheme for the multispecies Boltzmann equation,' SIAM Journal on Scientific Computing, vol. 31, pp. 4580-4606, 2010.
[12] Muljadi B. P. and Yang J. Y., 'A direct Boltzmann-BGK equation solver for arbitrary statistics using the conservation element/solution element and discrete ordinate method,' Computational Fluid Dynamics 2010, pp. 637-642, 2011.
[13] Muljadi B. P. and Yang J. Y., 'Simulation of shock wave diffraction by a square cylinder in gases of arbitrary statistics using a semiclassical Boltzmann-Bhatnagar-Gross-Hrook equations solver,' Proceedings of the Royal Socirty A 468, pp. 651-670, 2012.
[14] Shu C. W. and Osher S., 'Efficient implementation of essentially non-oscillatory shock-capturing schemes,' Journal of Computational Physics, vol. 77, pp. 439-471, 1988.
[15] Tsai Y. D., 'A Semi-Classical Kinetic and Hydrodynamic Coupling Method for Rarefied Flow Computation,' Graduate Institute of Applied Mechanics College of Engineering National Taiwan University Master Thesis, 2013.
[16] Uehling, E. A. and Uhlenbeck, G. E., 'Transport Phenomena in Einstein-Bose and Fermi-Dirac gases. i,' Physical Review, vol. 43, p. 552, 1933.
[17] Uehling, E. A. and Uhlenbeck, G. E., 'Transport Phenomena in Einstein-Bose and Fermi-Dirac gases. ii,' Physical Review, vol. 46, p. 917, 1934.
[18] Wei T. L., 'Semiclassical Cross-Regime Rarefied Gas Flow Simulations Using Smooth Transition Zone,' Graduate Institute of Applied Mechanics College of Engineering National Taiwan University Master Thesis, 2014.
[19] Yang J. Y. and Huang J. C., 'Rarefied flow computations using nonlinear model Boltzmann equations,' Journal of Computational Physics, vol. 120, pp. 323-339, 1995.
[20] Yang J. Y. and Shi Y. H., 'A kinetic beam scheme for ideal quantum gas dynamics,' Proceedings of the Royal Socirty A 462, pp. 1553-1572, 2006.
[21] Yang J. Y., Hsieh T. Y., and Shi Y. H., 'Kinetic flux vector splitting schemes for ideal quantum gas dynamics,' SIAM Journal on Scientific Computing, vol. 29, pp. 221-244, 2007.
[22] Yang J. Y., Hsieh T. Y., Shi Y. H., and Xu K., 'High-Order kinetic flux vector splitting schemes in general coordinates for ideal quantum gas dynamics,' Journal of Computational Physics, vol. 227, pp. 967-982, 2007.
[23] Yang J. Y. and Muljadi B. P., 'Simulation of Shock Wave Diffraction over 90° Sharp Corner in Gases of Arbitrary Statistics,' Journal of Statistical Physics, vol. 145, pp. 1674-1688, 2011.
[24] Zhang S. and Shu C. W., 'A New Smoothness Indicator for the WENO Schemes and Its Effect on the Convergence to Steady State Solutions,' Journal of ScientificComputing, vol. 31, pp. 273-305, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54530-
dc.description.abstract為探討稀薄氣體效應下的氣體流動特性,本研究設計數值方法有效求解半古典Boltzmann-BGK方程式,並利用一維非穩態Sod震波管與二維非穩態震波繞射方柱的問題加以測式,同時搭配適當的機制達到節省計算成本的目的。
為了解決不連續現象引發的數值模擬困難,乃將滿足半古典Boltzmann-BGK方程式的速度分佈函數,用平滑的狄拉克δ函數拆解成兩條速度分佈函數,利用原半古典Boltzmann-BGK方程式推導並求解此兩速度分佈函數必須滿足之統御方程式;而平滑轉換區內的速度分佈函數即為該兩條速度分佈函數相加,因此,無須考慮耦合介面的邊界條件,因而簡化了模擬上的難度。研究中共採用線性、餘弦及雙曲三種截斷函數測試平滑轉換區內的轉換效果。
在數值的離散化上,以離散座標法用於的速度空間中,並使用全變量消逝法與加權型基本不震盪法的高解析算則處理物理空間。最後,將漸近保守算則引入,使得半古典Boltzmann-BGK方程式的鬆弛時間能獨立於碰撞項,以節省計算時間成本。
本文以一維非穩態Sod震波管與二維非穩態震波繞射方柱為測試例,進行Maxwell-Boltzmann、Fermi-Dirac與Bose-Einstein三種不同統計量子氣體之流場模擬,藉以探討前述算則在不同截斷函數搭配下於平滑轉換區之表現與節省計算時間的成效。
zh_TW
dc.description.abstractThis study is aimed at solving the semi-classical Boltzmann-BGK equation to figure out the characteristics of gas flow, especially for rarefied gases. The coupling transformation of both the unsteady one dimensional Sod shock tube and the unsteady two dimensional shock wave impinging upon a square cylinder were investigated numerically. In addition, in order to reduce the computational amount, an appropriated mechanism is applied in this study.
To deal with the discontinuity existing in problem, the solution of the semi-classical Boltzmann-BGK equation, namely the velocity distribution function, was divided into two parts with the help of a smoothed dirac delta function. Modified semi-classical Boltzmann-BGK equations were derived and solved for them over the whole computational domain then; the sum of the two parts gives the velocity distribution function in the buffer region. Consequently no more interface conditions need considering and the simulation is largely simplified. Three types of the smoothing functions – linear, cosine, and hypertangent, were tested and the conversation effect in buffer zone were examined in this thesis.
As far as numerical discretization is concerned, the discrete coordinate method is employed for the velocity space and a high resolution scheme, either Total Variation Diminishing (TVD) or Weighted Essentially Non Oscillatory (WENO), was utilized for the physical space.
Finally the asymptotic preserving scheme is taken in this study as well, which makes the relaxation time independent of collision term of semi-classical Boltzmann-BGK equation, resulting in a significant reduction in the computational amount.
Finally the flow fields of quantum gas described by Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics were all simulated. From the test examples of one dimensional unsteady Sod shock wave tube and two dimensional unsteady shock wave impinging upon a square cylinder, the investigation shows a use of a smoothing function and a high resolution scheme combined with the asymptotic preserving scheme technique does help reducing the computational amount.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:02:27Z (GMT). No. of bitstreams: 1
ntu-104-R02543037-1.pdf: 22169324 bytes, checksum: 2843516c8482526597cc21f54d7c7552 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 I
中文摘要 II
ABSTRACT III
目錄 V
表目錄 VII
圖目錄 VIII
符號說明 XIII
第一章 緒論 1
1-1 引言 1
1-2 文獻回顧 2
1-3 研究目的與動機 4
1-4 本文內容與架構 5
第二章 BOLTZMANN方程式 6
2-1 稀薄氣體分子動力學理論 6
2-2 古典BOLTZMANN方程式 7
2-3 BGK模型與鬆弛時間 11
2-4 速度分佈函數與流體巨觀量性質 12
2-5 MAXWELL速度分佈函數 15
2-6 連續體模型方程式 19
第三章 半古典BOLTZMANN方程式 22
3-1 量子氣體動力學 22
3-2 半古典BOLTZMANN方程式 25
3-3 巨觀量性質 26
第四章 數值模擬方法 29
4-1 無因次化 29
4-2 離散座標法 30
4-3 高解析算則 34
4-3-1 全變量消逝法 35
4-3-2 加權型基本不震盪法 36
4-4 漸近保守算則 38
4-5 平滑轉換區 40
4-5-1 截斷函數 40
4-5-2 Boltzmann-BGK方程式耦合 41
4-6 邊界條件 47
第五章 數值模擬分析結果與討論 48
5-1 一維非穩態SOD震波管 48
5-2 二維非穩態震波繞射方柱流場 51
第六章 結論與未來展望 55
6-1 結果 55
6-2 未來展望 57
參考文獻 58
dc.language.isozh-TW
dc.title使用漸近保守算則於半古典波茲曼方程式之數值模擬zh_TW
dc.titleNumerical Simulations for Semi-Classical Boltzmann Equation Using Asymptotic Preserving Schemeen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃美嬌(Mei-Jiau Huang),黃俊誠(Juan-Chen Huang),湯國樑(Gwo-Liang Tang)
dc.subject.keyword半古典Boltzmann-BGK方程式,平滑函數,高解析算則,漸近保守算則,zh_TW
dc.subject.keywordSemi-Classical Boltzmann-BGK Equation,Smoothing Function,High Resolution Scheme,Asymptotic Preserving Scheme,en
dc.relation.page106
dc.rights.note有償授權
dc.date.accepted2015-07-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
21.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved