Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 職業醫學與工業衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54496
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳章甫
dc.contributor.authorHo-Tang Liaoen
dc.contributor.author廖合堂zh_TW
dc.date.accessioned2021-06-16T03:00:23Z-
dc.date.available2020-09-14
dc.date.copyright2015-09-14
dc.date.issued2015
dc.date.submitted2015-07-03
dc.identifier.citationAlastuey A, Querol X, Plana F, Viana M, Ruiz CR, Sanchez de la Campa A, de la Rosa J, Mantilla E, Garcia dos Santos S. 2006. Identification and chemical characterization of industrial particulate matter sources in southwest Spain. J Air Waste Manag Assoc 56:993-1006.
Amato F, Pandolfi M, Escrig A, Querol X, Alastuey A, Pey J, Perez N, Hopke PK. 2009. Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2. Atmos Environ 43:2770-2780.
Amato F, Hopke PK. 2012. Source apportionment of the ambient PM2.5 across St. Louis using constrained positive matrix factorization. Atmos Environ 46:329-337.
Belis CA, Karagulian F, Larsen BR, Hopke PK. 2013. Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos Environ 69:94-108.
Blot R, Clarke AD, Freitag S, Kapustin V, Howell SG, Jensen JB, Shank LM, McNaughton CS, Brekhovskikh V. 2013. Ultrafine sea spray aerosol over the southeastern Pacific: Open-ocean contributions to marine boundary layer CCN. Atmos Chem Phys 13:7263-7278.
Brinkman G, Vance G, Hannigan MP, Milford JB. 2006. Use of synthetic data to evaluate positive matrix factorization as a source apportionment tool for PM2.5 exposure data. Environ Sci Technol 40:1892-1901.
Brown SG, Frankel A, Hafner HR. 2007. Source apportionment of VOCs in the Los Angeles area using positive matrix factorization. Atmos Environ 41:227-237.
Buzcu-Guven B, Brown SG, Frankel A, Hafner HR, Roberts PT. 2007. Analysis and apportionment of organic carbon and fine particulate matter sources at multiple sites in the midwestern United States. J Air Waste Manag Assoc 57:606-619.
Buzcu B, Fraser MP. 2006. Source identification and apportionment of volatile organic compounds in Houston, TX. Atmos Environ 40:2385-2400.
Chan Y-C, Hawas O, Hawker D, Vowles P, Cohen DD, Stelcer E, Simpson R, Golding G, Christensen E. 2011. Using multiple type composition data and wind data in PMF analysis to apportion and locate sources of air pollutants. Atmos Environ 45:439-449.
Chen YM, Lin WY, Chan CC. 2014. The impact of petrochemical industrialisation on life expectancy and per capita income in Taiwan: An 11-year longitudinal study. BMC Public Health 14.
Cheng M-T, Horng C-L, Su Y-R, Lin L-K, Lin Y-C, Chou CC-K. 2009. Particulate matter characteristics during agricultural waste burning in Taichung City, Taiwan. J Hazard Mater 165:187-192.
Cheng MT, Chou WC, Chio CP, Hsu SC, Su YR, Kuo PH, Tsuang BJ, Lin SH, Chou CCK. 2008. Compositions and source apportionments of atmospheric aerosol during Asian dust storm and local pollution in central Taiwan. J Atmos Chem 61:155-173.
Chin JY, Batterman SA. 2012. VOC composition of current motor vehicle fuels and vapors, and collinearity analyses for receptor modeling. Chemosphere 86:951-958.
Choi E, Heo J-B, Hopke P, Jin B-B, Yi S-M. 2011. Identification, apportionment, and photochemical reactivity of non-methane hydrocarbon sources in Busan, Korea. Water, Air, Soil Pollut 215:67-82.
Chow JC, Watson JG, Chen LW, Chang MC, Robinson NF, Trimble D, Kohl S. 2007a. The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. J Air Waste Manag Assoc 57:1014-1023.
Chow JC, Yu JZ, Watson JG, Ho SS, Bohannan TL, Hays MD, Fung KK. 2007b. The application of thermal methods for determining chemical composition of carbonaceous aerosols: A review. J Environ Sci Health A 42:1521-1541.
Christensen WF, Gunst RF. 2004. Measurement error models in chemical mass balance analysis of air quality data. Atmos Environ 38:733-744.
Christensen WF, Schauer JJ, Lingwall JW. 2006. Iterated confirmatory factor analysis for pollution source apportionment. Environmetrics 17:663-681.
Cooper JA, Watson JG. 1980. Receptor oriented methods of air particulate source apportionment. J Air Pollut Control Assoc 30:1116-1125.
Draxler RR, Rolph GD. 2015. Hysplit (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY Website (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, Silver Spring, MD.
Fraser MP, Cass GR, Simoneit BRT. 1998. Gas-phase and particle-phase organic compounds emitted from motor vehicle traffic in a Los Angeles roadway tunnel. Environ Sci Technol 32:2051-2060.
Gu JW, Pitz M, Schnelle-Kreis J, Diemer J, Reller A, Zimmermann R, Soentgen J, Stoelzel M, Wichmann HE, Peters A, Cyrys J. 2011. Source apportionment of ambient particles: Comparison of positive matrix factorization analysis applied to particle size distribution and chemical composition data. Atmos Environ 45:1849-1857.
Gugamsetty B, Wei H, Liu CN, Awasthi A, Hsu SC, Tsai CJ, Roam GD, Wu YC, Chen CF. 2012. Source characterization and apportionment of PM10, PM2.5 and PM0.1 by using positive matrix factorization. Aerosol Air Qual Res 12:476-491.
Guo H, Cheng HR, Ling ZH, Louie PKK, Ayoko GA. 2011. Which emission sources are responsible for the volatile organic compounds in the atmosphere of Pearl River Delta? J Hazard Mater 188:116-124.
Habre R, Coull B, Koutrakis P. 2011. Impact of source collinearity in simulated PM2.5 data on the PMF receptor model solution. Atmos Environ 45:6938-6946.
Hallquist M, Wenger J, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue N, George C, Goldstein A. 2009. The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos Chem Phys 9:5155-5236.
Han JS, Moon KJ, Lee SJ, Kim YJ, Ryu SY, Cliff SS, Yi SM. 2006. Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan background site in east Asia. Atmos Chem Phys 6:211-223.
Heal MR, Kumar P, Harrison RM. 2012. Particles, air quality, policy and health. Chem Soc Rev 41:6606-6630.
Hemann JG, Brinkman GL, Dutton SJ, Hannigan MP, Milford JB, Miller SL. 2009. Assessing positive matrix factorization model fit: A new method to estimate uncertainty and bias in factor contributions at the measurement time scale. Atmos Chem Phys 9:497-513.
Heo JB, Hopke PK, Yi SM. 2009. Source apportionment of PM2.5 in Seoul, Korea. Atmos Chem Phys 9:4957-4971.
Hopke PK, Ito K, Mar T, Christensen WF, Eatough DJ, Henry RC, Kim E, Laden F, Lall R, Larson TV, Liu H, Neas L, Pinto J, Stolzel M, Suh H, Paatero P, Thurston GD. 2006. PM source apportionment and health effects: 1. Intercomparison of source apportionment results. J Expo Sci Environ Epidemiol 16:275-286.
Hu S, Paulson SE, Fruin S, Kozawa K, Mara S, Winer AM. 2012. Observation of elevated air pollutant concentrations in a residential neighborhood of Los Angeles California using a mobile platform. Atmos Environ 51:311-319.
Huang CH, Chen KS, Wang HK. 2012. Measurements and PCA/APCS analyses of volatile organic compounds in Kaohsiung municipal sewer systems, southern Taiwan. Aerosol Air Qual Res 12:1315-1326.
Javitz HS, Watson JG, Robinson N. 1988. Performance of the chemical mass balance model with simulated local-scale aerosols. Atmos Environ 22:2309-2322.
Jian RS, Huang YS, Lai SL, Sung LY, Lu CJ. 2013. Compact instrumentation of a µ-gc for real time analysis of sub-ppb VOC mixtures. Microchem J 108:161-167.
Jung KH, Yan B, Chillrud SN, Perera FP, Whyatt R, Camann D, Kinney PL, Miller RL. 2010. Assessment of benzo(a)pyrene-equivalent carcinogenicity and mutagenicity of residential indoor versus outdoor polycyclic aromatic hydrocarbons exposing young children in New York City. Int J Environ Res Public Health 7:1889-1900.
Kampa M, Castanas E. 2008. Human health effects of air pollution. Environ Pollut 151:362-367.
Karnae S, John K. 2011. Source apportionment of fine particulate matter measured in an industrialized coastal urban area of south Texas. Atmos Environ 45:3769-3776.
Khoder M. 2002. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere 49:675-684.
Kim E, Hopke PK, Edgerton ES. 2003. Source identification of Atlanta aerosol by positive matrix factorization. J Air Waste Manag Assoc 53:731-739.
Kim E, Hopke PK, Pinto JP, Wilson WE. 2005. Spatial variability of fine particle mass, components, and source contributions during the Regional Air Pollution Study in St. Louis. Environ Sci Technol 39:4172-4179.
Kim E, Hopke PK. 2008. Source characterization of ambient fine particles at multiple sites in the Seattle area. Atmos Environ 42:6047-6056.
Kim KH, Jahan SA, Kabir E. 2013. A review on human health perspective of air pollution with respect to allergies and asthma. Environ Int 59:41-52.
Kleeman MJ, Riddle SG, Robert MA, Jakober CA. 2008. Lubricating oil and fuel contributions to particulate matter emissions from light-duty gasoline and heavy-duty diesel vehicles. Environ Sci Technol 42:235-242.
Kulkarni P, Chellam S, Fraser MP. 2007. Tracking petroleum refinery emission events using lanthanum and lanthanides as elemental markers for PM2.5. Environ Sci Technol 41:6748-6754.
Kuo CP, Liao HT, Chou CC, Wu CF. 2014. Source apportionment of particulate matter and selected volatile organic compounds with multiple time resolution data. Sci Total Environ 472:880-887.
Lall R, Ito K, Thurston GD. 2011. Distributed lag analyses of daily hospital admissions and source-apportioned fine particle air pollution. Environ Health Perspect 119:455-460.
Larson T, Henderson SB, Brauer M. 2009. Mobile monitoring of particle light absorption coefficient in an urban area as a basis for land use regression. Environ Sci Technol 43:4672-4678.
Larson TV, Covert DS, Kim E, Elleman R, Schreuder AB, Lumley T. 2006. Combining size distribution and chemical species measurements into a multivariate receptor model of PM2.5. J Geophys Res 111:D10S09.
Lee E, Chan CK, Paatero P. 1999. Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmos Environ 33:3201-3212.
Lee JH, Yoshida Y, Turpin BJ, Hopke PK, Poirot RL, Lioy PJ, Oxley JC. 2002. Identification of sources contributing to Mid-Atlantic regional aerosol. J Air Waste Manag Assoc 52:1186-1205.
Lee JH, Hopke PK, Turner JR. 2006. Source identification of airborne PM2.5 at the St. Louis-midwest supersite. J Geophys Res 111:D10S10.
Lee PKH, Brook JR, Dabek-Zlotorzynska E, Mabury SA. 2003. Identification of the major sources contributing to PM2.5 observed in Toronto. Environ Sci Technol 37:4831-4840.
Lee S, Baumann K, Schauer JJ, Sheesley RJ, Naeher LP, Meinardi S, Blake DR, Edgerton ES, Russell AG, Clements M. 2005. Gaseous and particulate emissions from prescribed burning in Georgia. Environ Sci Technol 39:9049-9056.
Leuchner M, Rappenglück B. 2010. VOC source-receptor relationships in Houston during TexAQS-II. Atmos Environ 44:4056-4067.
Li Y-C, Yu JZ, Ho SSH, Yuan Z, Lau AKH, Huang X-F. 2012. Chemical characteristics of PM2.5 and organic aerosol source analysis during cold front episodes in Hong Kong, China. Atmos Res 118:41-51.
Liao HT, Kuo CP, Hopke PK, Wu CF. 2013. Evaluation of a modified receptor model for solving multiple time resolution equations: A simulation study. Aerosol Air Qual Res 13:1253-1262.
Lin TH. 2001. Long-range transport of yellow sand to Taiwan in spring 2000: Observed evidence and simulation. Atmos Environ 35:5873-5882.
Lingwall JW, Christensen WF. 2007. Pollution source apportionment using a priori information and positive matrix factorization. Chemom Intell Lab Syst 87:281-294.
Lioy PJ, Zelenka MP, Cheng MD, Reiss NM, Wilson WE. 1989. The effect of sampling duration on the ability to resolve source types using factor-analysis. Atmos Environ 23:239-254.
Marmur A, Unal A, Mulholland JA, Russell AG. 2005. Optimization-based source apportionment of PM2.5 incorporating gas-to-particle ratios. Environ Sci Technol 39:3245-3254.
Marris H, Deboudt K, Augustin P, Flament P, Blond F, Fiani E, Fourmentin M, Delbarre H. 2012. Fast changes in chemical composition and size distribution of fine particles during the near-field transport of industrial plumes. Sci Total Environ 427:126-138.
Miller SL, Anderson MJ, Daly EP, Milford JB. 2002. Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data. Atmos Environ 36:3629-3641.
Moeinaddini M, Esmaili Sari A, Riyahi bakhtiari A, Chan AY, Taghavi SM, Hawker D, Connell D. 2014. Source apportionment of PAHs and n-alkanes in respirable particles in Tehran, Iran by wind sector and vertical profile. Environ Sci Pollut Res Int 21:7757-7772.
Mooibroek D, Schaap M, Weijers EP, Hoogerbrugge R. 2011. Source apportionment and spatial variability of PM2.5 using measurements at five sites in the Netherlands. Atmos Environ 45:4180-4191.
Mukerjee S, Biswas P. 1992. A concept of risk apportionment of air emission sources for risk reduction considerations. Environ Technol 13:635-646.
Norris G, Vedantham R, Wade K, Zahn P, Brown S, Paatero P, Eberly S, Foley C. 2009. Guidance document for PMF applications with the Multilinear Engine.
Paatero P, Tapper U. 1993. Analysis of different modes of factor analysis as least squares fit problems. Chemom Intell Lab Syst 18:183-194.
Paatero P, Tapper U. 1994. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111-126.
Paatero P, Hopke PK, Song X-H, Ramadan Z. 2002. Understanding and controlling rotations in factor analytic models. Chemom Intell Lab Syst 60:253-264.
Paatero P, Hopke PK. 2003. Discarding or downweighting high-noise variables in factor analytic models. Anal Chim Acta 490:277-289.
Paatero P. 2007. End user's guide to Multilinear Engine applications. Available: ftp://ftp.clarkson.edu/pub/hopkepk/pmf/ [accessed September 2012].
Paatero P, Hopke PK. 2009. Rotational tools for factor analytic models. J Chemometr 23:91-100.
Padró-Martínez LT, Patton AP, Trull JB, Zamore W, Brugge D, Durant JL. 2012. Mobile monitoring of particle number concentration and other traffic-related air pollutants in a near-highway neighborhood over the course of a year. Atmos Environ 61:253-264.
Pandolfi M, Gonzalez-Castanedo Y, Alastuey A, de la Rosa JD, Mantilla E, de la Campa AS, Querol X, Pey J, Amato F, Moreno T. 2011. Source apportionment of PM10 and PM2.5 at multiple sites in the strait of Gibraltar by PMF: Impact of shipping emissions. Environmental science and pollution research international 18:260-269.
Pedersen M, Stayner L, Slama R, Sorensen M, Figueras F, Nieuwenhuijsen MJ, Raaschou-Nielsen O, Dadvand P. 2014. Ambient air pollution and pregnancy-induced hypertensive disorders a systematic review and meta-analysis. Hypertension 64:494-500.
Pietrogrande MC, Abbaszade G, Schnelle-Kreis J, Bacco D, Mercuriali M, Zimmermann R. 2011. Seasonal variation and source estimation of organic compounds in urban aerosol of Augsburg, Germany. Environ Pollut 159:1861-1868.
Querol X, Viana M, Alastuey A, Amato F, Moreno T, Castillo S, Pey J, De la Rosa J, Sánchez de la Campa A, Artinano B. 2007. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos Environ 41:7219-7231.
Reff A, Eberly SI, Bhave PV. 2007. Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. J Air Waste Manag Assoc 57:146-154.
Richard A, Gianini MFD, Mohr C, Furger M, Bukowiecki N, Minguillón MC, Lienemann P, Flechsig U, Appel K, DeCarlo PF, Heringa MF, Chirico R, Baltensperger U, Prévôt ASH. 2011. Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland. Atmos Chem Phys 11:8945-8963.
Rolph GD. 2015. Real-time Environmental Applications and Display sYstem (READY) website (http://ready.arl.noaa.gov). NOAA Air Resources Laboratory, Silver Spring, MD.
Sahu M, Hu S, Ryan PH, Le Masters G, Grinshpun SA, Chow JC, Biswas P. 2011. Chemical compositions and source identification of PM2.5 aerosols for estimation of a diesel source surrogate. Sci Total Environ 409:2642-2651.
Seagrave J, McDonald JD, Bedrick E, Edgerton ES, Gigliotti AP, Jansen JJ, Ke L, Naeher LP, Seilkop SK, Zheng M, Mauderly JL. 2006. Lung toxicity of ambient particulate matter from southeastern U.S. sites with different contributing sources: Relationships between composition and effects. Environ Health Perspect 114:1387-1393.
Seco R, Penuelas J, Filella I, Llusia J, Schallhart S, Metzger A, Muller M, Hansel A. 2013. Volatile organic compounds in the western Mediterranean basin: Urban and rural winter measurements during the DAURE campaign. Atmos Chem Phys 13:4291-4306.
Sheesley RJ, Schauer JJ, Orf ML. 2010. Assessing the impact of industrial source emissions on atmospheric carbonaceous aerosol concentrations using routine monitoring networks. J Air Waste Manag Assoc 60:149-155.
Shie RH, Yuan TH, Chan CC. 2013. Using pollution roses to assess sulfur dioxide impacts in a township downwind of a petrochemical complex. J Air Waste Manag Assoc 63:702-711.
Simon H, Beck L, Bhave PV, Divita F, Hsu Y, Luecken D, Mobley JD, Pouliot GA, Reff A, Sarwar G, Strum M. 2010. The development and uses of EPA's SPECIATE database. Atmos Pollut Res 1:196-206.
Song Y, Dai W, Shao M, Liu Y, Lu S, Kuster W, Goldan P. 2008. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China. Environ Pollut 156:174-183.
Sonntag DB, Bailey CR, Fulper CR, Baldauf RW. 2012. Contribution of lubricating oil to particulate matter emissions from light-duty gasoline vehicles in Kansas City. Environ Sci Technol 46:4191-4199.
Stanek LW, Brown JS, Stanek J, Gift J, Costa DL. 2011. Air pollution toxicology-a brief review of the role of the science in shaping the current understanding of air pollution health risks. Toxicol Sci 120 Suppl 1:S8-27.
Sturtz TM, Adar SD, Gould T, Larson TV. 2014. Constrained source apportionment of coarse particulate matter and selected trace elements in three cities from the multi-ethnic study of atherosclerosis. Atmos Environ 84:65-77.
Swietlik R, Molik A, Molenda M, Trojanowska M, Siwiec J. 2011. Chromium(III/VI) speciation in urban aerosol. Atmos Environ 45:1364-1368.
Taiwo AM, Beddows DCS, Shi ZB, Harrison RM. 2014. Mass and number size distributions of particulate matter components: Comparison of an industrial site and an urban background site. Sci Total Environ 475:29-38.
Taner S, Pekey B, Pekey H. 2013. Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks. Sci Total Environ 454:79-87.
Ulbrich IM, Canagaratna MR, Zhang Q, Worsnop DR, Jimenez JL. 2009. Interpretation of organic components from positive matrix factorization of aerosol mass spectrometric data. Atmos Chem Phys 9:2891-2918.
US EPA. 2011. An overview of methods for EPA's National-scale Air Toxics Assessment. Available: http://www.epa.gov/ttn/atw/nata2005/05pdf/nata_tmd.pdf [accessed October 2014].
USEPA. 1998. Integrated Risk Information System, Chromium (VI) (CASRN 18540-29-9). Available: http://www.epa.gov/iris/subst/0144.htm [accessed February 2015].
Vallius M, Lanki T, Tiittanen P, Koistinen K, Ruuskanen J, Pekkanen J. 2003. Source apportionment of urban ambient PM2.5 in two successive measurement campaigns in Helsinki, Finland. Atmos Environ 37:615-623.
Vedal S, Hannigan MP, Dutton SJ, Miller SL, Milford JB, Rabinovitch N, Kim SY, Sheppard L. 2009. The Denver Aerosol Sources and Health (DASH) study: Overview and early findings. Atmos Environ 43:1666-1673.
Viana M, Kuhlbusch TAJ, Querol X, Alastuey A, Harrison RM, Hopke PK, Winiwarter W, Vallius M, Szidat S, Prévôt ASH, Hueglin C, Bloemen H, Wåhlin P, Vecchi R, Miranda AI, Kasper-Giebl A, Maenhaut W, Hitzenberger R. 2008a. Source apportionment of particulate matter in Europe: A review of methods and results. J Aerosol Sci 39:827-849.
Viana M, Pandolfi M, Minguillón MC, Querol X, Alastuey A, Monfort E, Celades I. 2008b. Inter-comparison of receptor models for PM source apportionment: Case study in an industrial area. Atmos Environ 42:3820-3832.
Wagstrom KM, Pandis SN. 2011. Contribution of long range transport to local fine particulate matter concerns. Atmos Environ 45:2730-2735.
Wang WC, Chen KS, Chen SJ, Lin CC, Tsai JH, Lai CH, Wang SK. 2008. Characteristics and receptor modeling of atmospheric PM2.5 at urban and rural sites in Pingtung, Taiwan. Aerosol Air Qual Res 8:112-129.
Westerdahl D, Fruin S, Sax T, Fine PM, Sioutas C. 2005. Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles. Atmos Environ 39:3597-3610.
Willmott CJ, Matsuura K. 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res 30:79-82.
Wimolwattanapun W, Hopke PK, Pongkiatkul P. 2011. Source apportionment and potential source locations of PM2.5 and PM2.5-10 at residential sites in metropolitan Bangkok. Atmos Pollut Res 2:172‐181.
Wu C-F, Larson TV, Wu S-Y, Williamson J, Westberg HH, Liu LJS. 2007. Source apportionment of PM2.5 and selected hazardous air pollutants in Seattle. Sci Total Environ 386:42-52.
Wu CF, Wu SY, Wu YH, Cullen AC, Larson TV, Williamson J, Liu LJS. 2009. Cancer risk assessment of selected hazardous air pollutants in Seattle. Environ Int 35:516-522.
Xie M, Coons TL, Hemann JG, Dutton SJ, Milford JB, Peel JL, Miller SL, Kim S-Y, Vedal S, Sheppard L, Hannigan MP. 2012. Intra-urban spatial variability and uncertainty assessment of PM2.5 sources based on carbonaceous species. Atmos Environ 60:305-315.
Xie YL, Berkowitz CM. 2006. The use of positive matrix factorization with conditional probability functions in air quality studies: An application to hydrocarbon emissions in Houston, Texas. Atmos Environ 40:3070-3091.
Xu HM, Tao J, Ho SSH, Ho KF, Cao JJ, Li N, Chow JC, Wang GH, Han YM, Zhang RJ, Watson JG, Zhang JQ. 2013. Characteristics of fine particulate non-polar organic compounds in Guangzhou during the 16th Asian Games: Effectiveness of air pollution controls. Atmos Environ 76:94-101.
Yang HH, Lai SO, Hsieh LT, Hsueh HJ, Chi TW. 2002. Profiles of PAH emission from steel and iron industries. Chemosphere 48:1061-1074.
Yen CH, Horng JJ. 2009. Volatile organic compounds (VOCs) emission characteristics and control strategies for a petrochemical industrial area in middle Taiwan. J Environ Sci Heal A 44:1424-1429.
Young LH, Wang CS. 2002. Characterization of n-alkanes in PM2.5 of the Taipei aerosol. Atmos Environ 36:477-482.
Yuan TH, Shie RH, Chin YY, Chan CC. 2015. Assessment of the levels of urinary 1-hydroxypyrene and air polycyclic aromatic hydrocarbon in PM2.5 for adult exposure to the petrochemical complex emissions. Environ Res 136:219-226.
Yuan Z, Lau AKH, Shao M, Louie PKK, Liu SC, Zhu T. 2009. Source analysis of volatile organic compounds by positive matrix factorization in urban and rural environments in Beijing. J Geophys Res 114:D00G15.
Yue W, Stolzel M, Cyrys J, Pitz M, Heinrich J, Kreyling WG, Wichmann HE, Peters A, Wang S, Hopke PK. 2008. Source apportionment of ambient fine particle size distribution using positive matrix factorization in Erfurt, Germany. Sci Total Environ 398:133-144.
Zheng M, Cass GR, Schauer JJ, Edgerton ES. 2002. Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers. Environ Sci Technol 36:2361-2371.
Zhou L, Hopke PK, Paatero P, Ondov JM, Pancras JP, Pekney NJ, Davidson CI. 2004. Advanced factor analysis for multiple time resolution aerosol composition data. Atmos Environ 38:4909-4920.
Zhou LM, Hopke PK, Stanier CO, Pandis SN, Ondov JM, Pancras JP. 2005. Investigation of the relationship between chemical composition and size distribution of airborne particles by partial least squares and positive matrix factorization. J Geophys Res-Atmos 110.
Zhu Y, Pudota J, Collins D, Allen D, Clements A, DenBleyker A, Fraser M, Jia Y, McDonald-Buller E, Michel E. 2009. Air pollutant concentrations near three Texas roadways, PART I: Ultrafine particles. Atmos Environ 43:4513-4522.
莊鳳宸. 2009. 六輕離島工業區附近地區懸浮微粒來源之受體模式分析. 雲林縣:雲林科技大學.
景丰科技股份有限公司. 2014. 101年度六輕相關計畫之特定有害空氣汙染物所致健康風險評估計畫報告.台灣塑膠工業股份有限公司等公司.
詹長權, 胡素婉. 2009. 97年度空氣污染對沿海地區環境及居民健康影響之風險評估規畫第1年計畫.雲林縣環境保護局.
詹長權, 李永凌, 洪壽宏. 2010. 98年度沿海地區空氣污染物及環境健康世代研究計畫.雲林縣環境保護局.
詹長權, 李永凌, 洪壽宏. 2011. 99年度沿海地區空氣污染物及環境健康世代研究計畫. 雲林縣環境保護局.雲林縣環境保護局.
詹長權, 李永凌, 洪壽宏. 2012. 100年度沿海地區空氣污染物及環境健康世代研究計畫.雲林縣環境保護局.
詹長權, 李永凌, 陳雅美, 洪壽宏, 蔡政憲. 2013. 101年度沿海地區空氣污染物及環境健康世代研究計畫.雲林縣環境保護局.
詹嘉瑋. 2007. 六輕離島工業區對空氣品質之影響評估研究. 雲林縣:雲林科技大學.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54496-
dc.description.abstractThis study was conducted to evaluate the performance of an improved source apportionment model that is suitable for incorporating data with multiple time resolutions. This evaluation was achieved by using synthetic data sets that simulated environmental concentrations of volatile organic compounds (VOCs) and fine particulate matter (PM2.5) from the five following sources: petroleum refinery, vehicle exhaust, industrial coating, coal combustion, and natural gas. Hourly VOCs and speciated PM2.5 data were simulated for a one-week period. The PM2.5 data were further averaged every twelve hours to generate data sets with mixed temporal resolutions. The Multilinear Engine program was applied to resolve the source profiles and contributions. A series of sensitivity analyses was conducted to examine how uncertainties in the profile variation, measurement error, and source collinearity affected the model performance. The resolved factor profiles closely matched the input profiles, and the measurement error had a larger impact on the modeling results than the profile variation. In the most comprehensive data set that contained all three types of uncertainty, the R2 values between the input and retrieved source contributions were between 0.87 and 0.95. The estimated percentage contributions were also comparable with the input ones, demonstrating the applicability and validity of this improved model.
Additionally, a field study was conducted to identify and quantify the sources of selected VOCs and PM2.5 by using a partially constrained source apportionment model suitable for multiple time resolution data. Hourly VOC, 12-h and 24-h PM2.5 speciation data were collected in three seasons in 2013. Eight factors were retrieved from the Positive Matrix Factorization models and adding source profile constraints enhanced the interpretability of source profiles. Results showed that the evaporative emission factor was the largest contributor (25%) to VOC mass concentration, while the largest contributor to PM2.5 mass concentration was soil dust/regional transport related factor (26%). Besides a petrochemical related factor, several factors (including traffic/industry related, evaporative emission, combustion, and soil dust/regional transport) were partially related with the petrochemical complex which should be considered when estimating the overall contribution from it.
Furthermore, field campaigns were conducted at multiple receptor sites using a mobile monitoring platform set up to collect particle size distribution and PM2.5 speciation data. The most relevant sources of selected air pollutants to all mobile monitoring sites were identified and quantified using the improved source apportionment model. Results indicated that a mixed source was the largest contributor to PM2.5 at most sites. The difficulty in estimating accurate source contributions of a mixed source profile suggests that a further study is needed to resolve this type of problems. Different patterns of seasonal contributions among monitoring sites specified association with both spatial heterogeneity and temporal variability.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:00:23Z (GMT). No. of bitstreams: 1
ntu-104-D99841004-1.pdf: 4346201 bytes, checksum: 9665703c5f692f4d4bf504d8fbc3fb54 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書............................................................................................................i
誌謝................................................................................................................................ iii
摘要..................................................................................................................................v
Abstract ......................................................................................................................... vii
1. Introduction .............................................................................................................1
2. Materials and Methods ...........................................................................................5
2.1. Study area.........................................................................................................6
2.2. Simulation study ..............................................................................................8
2.2.1. Data simulation ....................................................................................... 8
2.2.2. Model implementation ......................................................................... 12
2.2.3. Data analysis ......................................................................................... 13
2.3. Central site .....................................................................................................14
2.3.1. Data Collection...................................................................................... 14
2.3.2. Receptor Modeling ............................................................................... 15
2.3.3. Conditional Probability Function ....................................................... 15
2.3.4. Model Constraints ................................................................................ 16
2.3.5. Risk Apportionment ............................................................................. 16
2.4. Mobile monitoring .........................................................................................17
2.4.1. Data Collection...................................................................................... 17
2.4.2. Receptor Modeling ............................................................................... 18
3. Results and Discussion ..........................................................................................19
3.1. Simulation study ............................................................................................19
3.1.1. Primary analysis ................................................................................... 19
3.1.2. Sensitivity analysis................................................................................ 20
3.2. Central site .....................................................................................................28
3.2.1. Descriptive Analysis.............................................................................. 28
3.2.2. Base Model Run .................................................................................... 30
3.2.3. Constrained Model Run ....................................................................... 38
3.2.4. Source Contributions and Risk Apportionment ................................ 39
3.3. Mobile monitoring .........................................................................................45
3.3.1. Descriptive Analysis.............................................................................. 45
3.3.2. Model Run Results ............................................................................... 47
3.3.3. Source Contribution ............................................................................. 50
3.3.4. VOC measurements.............................................................................. 54
4. Conclusion ..............................................................................................................58
5. References...............................................................................................................59
dc.language.isoen
dc.title適用於多重時間解析度資料之空氣污染物來源解析模式之研究方法探討及其應用zh_TW
dc.titleMethodological study and application of a modified source apportionment model for analyzing air pollution sources with multiple time resolution dataen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee詹長權,陳志傑,郭育良,林文印,王家麟
dc.subject.keyword污染源解析,多重時間解析度,空氣污染,揮發性有機化合物,懸浮微粒,風險解析,移動式監測,zh_TW
dc.subject.keywordsource apportionment,multiple time resolution,air pollution,volatile organic compounds,particulate matter,risk apportionment,mobile monitoring,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2015-07-03
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept職業醫學與工業衛生研究所zh_TW
顯示於系所單位:職業醫學與工業衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
4.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved